The Memory of Beta Factors∗ Janis Beckery, Fabian Hollsteiny, Marcel Prokopczuky,z, and Philipp Sibbertseny September 24, 2019 Abstract Researchers and practitioners employ a variety of time-series pro- cesses to forecast betas, using either short-memory models or implic- itly imposing infinite memory. We find that both approaches are inadequate: beta factors show consistent long-memory properties. For the vast majority of stocks, we reject both the short-memory and difference-stationary (random walk) alternatives. A pure long- memory model reliably provides superior beta forecasts compared to all alternatives. Finally, we document the relation of firm characteris- tics with the forecast error differentials that result from inadequately imposing short-memory or random walk instead of long-memory pro- cesses. JEL classification: C58, G15, G12, G11 Keywords: Long memory, beta, persistence, forecasting, predictability ∗Contact:
[email protected] (J. Becker),
[email protected] (F. Holl- stein),
[email protected] (M. Prokopczuk), and
[email protected] (P. Sibbertsen). ySchool of Economics and Management, Leibniz University Hannover, Koenigsworther Platz 1, 30167 Hannover, Germany. zICMA Centre, Henley Business School, University of Reading, Reading, RG6 6BA, UK. 1 Introduction In factor pricing models like the Capital Asset Pricing Model (CAPM) (Sharpe, 1964; Lintner, 1965; Mossin, 1966) or the arbitrage pricing theory (APT) (Ross, 1976) the drivers of expected returns are the stock's sensitivities to risk factors, i.e., beta factors. For many applications such as asset pricing, portfolio choice, capital budgeting, or risk management, the market beta is still the single most important factor. Indeed, Graham & Harvey(2001) document that chief financial officers of large U.S.