CHAPTER NOTES – CHAPTER 16 Covalent Bonding Goals : to Gain

Total Page:16

File Type:pdf, Size:1020Kb

CHAPTER NOTES – CHAPTER 16 Covalent Bonding Goals : to Gain CHAPTER NOTES – CHAPTER 16 Covalent Bonding Goals : To gain an understanding of : 1. Valence electron and electron dot notation. 2. Stable electron configurations. 3. Covalent bonding. 4. Polarity of bonds and molecules NOTES: Valence electrons are the electrons in the highest energy level of an atom. For example, in the calcium atom (electron configuration 1s22s22p63s23p64s2) the 4s2 electrons are the valence electrons. In the titanium atom (electron configuration 1s22s22p63s23p64s23d2) The 4s2 electrons are still the valence electrons -they are in the highest energy level. In the phosphorus atom (electron configuration 1s22s22p63s23p3) the 3s23p3 are the valence electrons. The valence electron numbers of the representative elements are: • Group 1 - 1 valence electron • Group 2 - 2 valence electrons • Group 13 - 3 valence electrons • Group 14 - 4 valence electrons • Group 15 - 5 valence electrons • Group 16 - 6 valence electrons • Group 17 - 7 valence electrons • Group 18 - 8 valence electrons The Noble gases (Group 0) have a stable electron configuration (s2p6) with 8 electrons filling the outer s and p orbitals. This stability comes from the low energy state of this configuration and also accounts for the low reactivity of these elements (most elements react with other elements to get to a lower, more stable energy state). For example the halogens (Group 7A) have 7 valence electrons (s2p5) and want to gain one electron to get the low energy, stable electron configuration of the noble gases. The elements in group 6 (s2p4) want to gain 2 electrons to get the low energy, stable electron configuration of the noble gases. The Group 1A elements (s1) want to lose their outer electron to empty their outer shell and get a stable electron configuration. For example if sodium (1s22s22p63s1) loses its 3s1 electron it will have filled s and p orbitals in its outer energy level. Gilbert Lewis, in 1916, proposed the octet rule : Atoms react by changing their number of electrons so as to acquire the stable electron configuration of a noble gas (s2p6). An exception to the octet rule is the electron configuration of helium. Helium(1s2) is a noble gas, only it has only one orbital, the s orbital. It is filled and therefore stable and elements close to it (lithium, beryllium and sometimes hydrogen) try to acquire its electron configuration by losing or gaining electrons). Covalent bonding is a type of bonding that occurs between nonmetals. Nonmetals have many valence electrons and wish to gain electrons in order to fill their outer energy level to become stable (fulfill the octet rule - get the outer electron 2 6 configuration of a noble gas, s p ). For example fluorine (F2) is a diatomic molecule consisting of two fluorine atoms covalently bonded together. Each atom is one electron shy of the noble gas electron configuration (valence electrons are s2p5) and so they each share one of each other's electrons to fill up their outer energy level. In a Bohr model it would look like this: The electron dot structure would look like: We can translate the above dot structure into a structural formula - a formula which represents the bonding pair of electrons as a line. All other valence electrons are ignored. In a quantum mechanical representation it would look like this : The outer electrons occupy the same orbital, outlined in red, giving each atom the s2p6 noble gas electron configuration. Note the electrons in the outer orbital (outlined in red) have opposite spins according to the Pauli exclusion principle. 2 2 Here is another example using carbon dioxide (CO2). Carbon has four valence electrons (s p ) and needs four more (to get to s2p6) and each of the oxygen atoms has 6 valence electrons (s2p4) and needs to share two more. I will skip the Bohr model as it is not the most accurate representation of modern atomic theory. Electron dot structure: Structural formula: Quantum mechanical model: Note each model represents four bonding pairs of electrons and each model shows the outer energy level filled - having the s2p6 electron configuration with the shared electrons. Another observation is that carbon is no longer in its ground state. Note in the above diagram of the quantum mechanical model that carbon has only one electron in its 2s orbital. In order to get four unpaired electrons (to bond with the two oxygen atom's four unpaired electrons) from carbon one of the 2s electrons moves into the 2p orbitals to form what are called sp3 orbitals - one s orbital combined with 3 p orbitals). This is called hybridization and is shown below. • Single bonds are formed when one pair of electrons forms the bond (e.g fluorine - see above). • Double bonds are formed when two pairs of electrons form bonds between atoms (e.g. CO2 - see above). • Triple bonds are formed when three pairs of electrons form bonds between atoms. An example is nitrogen (N2). A nitrogen atoms has the outer electron configuration of s2p3 and therefore needs three electrons and forms a triple bond when bonding with another nitrogen atom as shown below. 2 An exception to the octet rule is when atoms bond to attain the electron configuration of the noble gas helium (1s ). This is also a very stable, low energy electron configuration. An example of this is hydrogen (H2). Polyatomic ions are groups of atoms that are covalently bonded together that have, as a group, gained or lost electrons to form an ion. The covalent bonds holding them together are strong so they usually act as a single unit and do not break apart 2- or change during chemical reactions. An example is the sulfate ion (SO4 ). It consists of one sulfur atom and 4 oxygen atoms that have gained two electrons and therefore have a 2- charge. The dot structure is shown below. Sulfur and oxygen are group 16 elements and have six valence electrons (s2p4). Sulfur's electrons are in black, oxygen's are in blue and the electrons gained from another source (probably from a metallic element) are in red. The whole polyatomic ion in shown in brackets with the charge indicated. Resonance is the phenomenon ion which two or more equally valid formulas (electron dot or structural) can be drawn for a molecule. This can be seen in the ozone (O3) molecule below (I have chosen to show it as a linear molecule. The actual shape is bent triatomic). When the total number of valence electrons of a substance is odd it is impossible to arrange the electrons in such a way as to fulfill the octet rule. For example, nitrogen dioxide (NO2) has a total of 17 valence electrons (5 from the nitrogen and six from each oxygen). If we draw the structural formula of one of the resonance forms with the remaining valence electrons we find that there is always an unpaired electron: The results of this are that an orbital will have only one electron with a certain spin. This spinning electron creates a magnetic field causing the substance to be attracted to an external magnetic field. These substances are called paramagnetic and can be detected experimentally by determining their mass in and out of a magnetic field. A magnetic field can be placed so that it will pull down on a paramagnetic substance giving it a greater apparent mass than it has outside of the magnetic field. Substances which have an even number of electrons have orbitals with a pair of electrons with opposite spins. These opposite spins create magnetic fields which cancel each other out leaving no net magnetic effect on the substance. These substances are called diamagnetic. The VSEPR theory stands for Valence Shell Electron Pair Repulsion theory. This theory explains the shape of molecules based on the idea that electron pairs repel each other so that the electrons involved in bonds try to get as far apart as possible. For example, CO2 has two oxygen atoms double bonded to the central carbon. The two pairs of electrons involved in the bond all have the same charge (negative) and so try to move as far apart as possible, making it a linear molecule. It would be wrong to draw the bonds closer together than they would have to be, as illustrated below. While bonding pairs of electrons repel each other, unshaired pairs have a greater effect on the shape of a molecule. Their charge is not diluted between the attraction for opposite nuclei and so repel bonded pairs to a great extent. If we look again at the ozone molecule we can see why its actual shape is bent. The unshared pair of electrons at the top of the molecule repels the electrons in the bonds forcing them downward into a bent shape. The molecular shape of a compound is important because the shape of a compound's molecule determines many of the chemical and physical properties of the compound. Covalent bonds can be either polar or nonpolar. In a nonpolar covalent bond the electrons are evenly distributed between the two atoms sharing the electrons. This is because the electronegativities of the two atoms are very similar. Diatomic substances (made up of two of the same atoms, e.g. F2, O2, N2 etc.) are nonpolar because atoms of the same element will have identical electronegativities. In a polar covalent bond one of the atoms has a greater electronegativity and therefore the shared electrons are pulled toward that atom creating a polar bond - a bond with a negative and positive side. Polar bonds can be illustrated by using the sigma (+ or -) symbol or by an arrow starting with a + sign as shown below. In the water molecule oxygen is more electronegative so it attracts the electrons to itself making the oxygen side of the bond negative and leaving the hydrogen side of the bond positive.
Recommended publications
  • Magnetism, Magnetic Properties, Magnetochemistry
    Magnetism, Magnetic Properties, Magnetochemistry 1 Magnetism All matter is electronic Positive/negative charges - bound by Coulombic forces Result of electric field E between charges, electric dipole Electric and magnetic fields = the electromagnetic interaction (Oersted, Maxwell) Electric field = electric +/ charges, electric dipole Magnetic field ??No source?? No magnetic charges, N-S No magnetic monopole Magnetic field = motion of electric charges (electric current, atomic motions) Magnetic dipole – magnetic moment = i A [A m2] 2 Electromagnetic Fields 3 Magnetism Magnetic field = motion of electric charges • Macro - electric current • Micro - spin + orbital momentum Ampère 1822 Poisson model Magnetic dipole – magnetic (dipole) moment [A m2] i A 4 Ampere model Magnetism Microscopic explanation of source of magnetism = Fundamental quantum magnets Unpaired electrons = spins (Bohr 1913) Atomic building blocks (protons, neutrons and electrons = fermions) possess an intrinsic magnetic moment Relativistic quantum theory (P. Dirac 1928) SPIN (quantum property ~ rotation of charged particles) Spin (½ for all fermions) gives rise to a magnetic moment 5 Atomic Motions of Electric Charges The origins for the magnetic moment of a free atom Motions of Electric Charges: 1) The spins of the electrons S. Unpaired spins give a paramagnetic contribution. Paired spins give a diamagnetic contribution. 2) The orbital angular momentum L of the electrons about the nucleus, degenerate orbitals, paramagnetic contribution. The change in the orbital moment
    [Show full text]
  • Unit 3 Notes: Periodic Table Notes  John Newlands Proposed an Organization System Based on Increasing Atomic Mass in 1864
    Unit 3 Notes: Periodic Table Notes John Newlands proposed an organization system based on increasing atomic mass in 1864. He noticed that both the chemical and physical properties repeated every 8 elements and called this the ____Law of Octaves ___________. In 1869 both Lothar Meyer and Dmitri Mendeleev showed a connection between atomic mass and an element’s properties. Mendeleev published first, and is given credit for this. He also noticed a periodic pattern when elements were ordered by increasing ___Atomic Mass _______________________________. By arranging elements in order of increasing atomic mass into columns, Mendeleev created the first Periodic Table. This table also predicted the existence and properties of undiscovered elements. After many new elements were discovered, it appeared that a number of elements were out of order based on their _____Properties_________. In 1913 Henry Mosley discovered that each element contains a unique number of ___Protons________________. By rearranging the elements based on _________Atomic Number___, the problems with the Periodic Table were corrected. This new arrangement creates a periodic repetition of both physical and chemical properties known as the ____Periodic Law___. Periods are the ____Rows_____ Groups/Families are the Columns Valence electrons across a period are There are equal numbers of valence in the same energy level electrons in a group. 1 When elements are arranged in order of increasing _Atomic Number_, there is a periodic repetition of their physical and chemical
    [Show full text]
  • Structure and Bonding Electron Configurations in the Periodic Table
    Structure and Bonding The study of organic chemistry must at some point extend to the molecular level, for the physical and chemical properties of a substance are ultimately explained in terms of the structure and bonding of molecules. This module introduces some basic facts and principles that are needed for a discussion of organic molecules. Electronic Configurations Electron Configurations in the Periodic Table 1A 2A 3A 4A 5A 6A 7A 8A 1 2 H He 1 2 1s 1s 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 2 2 2 2 2 2 2 2 1s 1s 1s 1s 1s 1s 1s 1s 2s1 2s2 2s22p1 2s22p2 2s22p3 2s22p4 2s22p5 2s22p6 11 12 13 14 15 16 17 18 Na Mg Al Si P S Cl Ar [Ne] [Ne] [Ne] [Ne] [Ne] [Ne] [Ne] [Ne] 3s1 3s2 3s23p1 3s23p2 3s23p3 3s23p4 3s23p5 3s23p6 Four elements, hydrogen, carbon, oxygen and nitrogen, are the major components of most organic compounds. Consequently, our understanding of organic chemistry must have, as a foundation, an appreciation of the electronic structure and properties of these elements. The truncated periodic table shown above provides the orbital electronic structure for the first eighteen elements (hydrogen through argon). According to the Aufbau principle, the electrons of an atom occupy quantum levels or orbitals starting from the lowest energy level, and proceeding to the highest, with each orbital holding a maximum of two paired electrons (opposite spins). Electron shell #1 has the lowest energy and its s-orbital is the first to be filled.
    [Show full text]
  • VSEPR Theory
    VSEPR Theory The valence-shell electron-pair repulsion (VSEPR) model is often used in chemistry to predict the three dimensional arrangement, or the geometry, of molecules. This model predicts the shape of a molecule by taking into account the repulsion between electron pairs. This handout will discuss how to use the VSEPR model to predict electron and molecular geometry. Here are some definitions for terms that will be used throughout this handout: Electron Domain – The region in which electrons are most likely to be found (bonding and nonbonding). A lone pair, single, double, or triple bond represents one region of an electron domain. H2O has four domains: 2 single bonds and 2 nonbonding lone pairs. Electron Domain may also be referred to as the steric number. Nonbonding Pairs Bonding Pairs Electron domain geometry - The arrangement of electron domains surrounding the central atom of a molecule or ion. Molecular geometry - The arrangement of the atoms in a molecule (The nonbonding domains are not included in the description). Bond angles (BA) - The angle between two adjacent bonds in the same atom. The bond angles are affected by all electron domains, but they only describe the angle between bonding electrons. Lewis structure - A 2-dimensional drawing that shows the bonding of a molecule’s atoms as well as lone pairs of electrons that may exist in the molecule. Provided by VSEPR Theory The Academic Center for Excellence 1 April 2019 Octet Rule – Atoms will gain, lose, or share electrons to have a full outer shell consisting of 8 electrons. When drawing Lewis structures or molecules, each atom should have an octet.
    [Show full text]
  • Chemistry Third Marking Period Review Sheet Spring, Mr
    Chemistry Third Marking Period Review Sheet Spring, Mr. Wicks Chapters 7-8: Ionic and Covalent Bonding • I can explain the difference between core electrons and valence electrons. • I can write Lewis dot symbols for atoms of particular elements and show the gain or loss of electrons to form ionic compounds. • I can compare and contrast ionic and molecular compounds. See Table 1. • I can describe ionic and covalent bonding and explain the differences between them. • I can compare and contrast the properties of ionic and molecular compounds. • I can predict trends in bond length when comparing carbon-carbon single, double, and triple bonds. Table 1: Comparing Ionic and Molecular Compounds Ionic Compounds Molecular Compounds Bonding Type: Ionic Bonding Covalent Bonding In this type of bonding, electrons are _____: Transferred Shared Type(s) of Elements Involved: Metal + Nonmetal Elements Nonmetal Elements Comparison of Larger Smaller electronegativity differences: Comparison of Properties: a. Melting and boiling points: a. Higher a. Lower b. Hardness: b. Harder b. Softer c. Conduction of electricity: c. When molten or dissolved in c. Molecular compounds do water, ionic compounds tend to not conduct electricity. conduct electricity. • I can apply trends for electronegativity in the periodic table to solve homework problems. • I can use electronegativity differences to classify bonds as nonpolar covalent, polar covalent, and ionic. See Table 2. Table 2: Classifying Bonds Using Electronegativity Differences Electronegativity Difference Bond Type 0 - 0.2 Nonpolar covalent bond 0.3 - 1.9 Polar covalent bond ≥ 2.0 Ionic bond Chemistry Third Marking Period Review Sheet, Page 2 • I can apply the octet rule to write Lewis structures for molecular compounds and polyatomic ions.
    [Show full text]
  • 8.3 Bonding Theories >
    8.3 Bonding Theories > Chapter 8 Covalent Bonding 8.1 Molecular Compounds 8.2 The Nature of Covalent Bonding 8.3 Bonding Theories 8.4 Polar Bonds and Molecules 1 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 8.3 Bonding Theories > Molecular Orbitals Molecular Orbitals How are atomic and molecular orbitals related? 2 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 8.3 Bonding Theories > Molecular Orbitals • The model you have been using for covalent bonding assumes the orbitals are those of the individual atoms. • There is a quantum mechanical model of bonding, however, that describes the electrons in molecules using orbitals that exist only for groupings of atoms. 3 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 8.3 Bonding Theories > Molecular Orbitals • When two atoms combine, this model assumes that their atomic orbitals overlap to produce molecular orbitals, or orbitals that apply to the entire molecule. 4 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 8.3 Bonding Theories > Molecular Orbitals Just as an atomic orbital belongs to a particular atom, a molecular orbital belongs to a molecule as a whole. • A molecular orbital that can be occupied by two electrons of a covalent bond is called a bonding orbital. 5 Copyright © Pearson Education, Inc., or its affiliates. All Rights Reserved. 8.3 Bonding Theories > Molecular Orbitals Sigma Bonds When two atomic orbitals combine to form a molecular orbital that is symmetrical around the axis connecting two atomic nuclei, a sigma bond is formed. • Its symbol is the Greek letter sigma (σ).
    [Show full text]
  • Chemical Bonding & Chemical Structure
    Chemistry 201 – 2009 Chapter 1, Page 1 Chapter 1 – Chemical Bonding & Chemical Structure ings from inside your textbook because I normally ex- Getting Started pect you to read the entire chapter. 4. Finally, there will often be a Supplement that con- If you’ve downloaded this guide, it means you’re getting tains comments on material that I have found espe- serious about studying. So do you already have an idea cially tricky. Material that I expect you to memorize about how you’re going to study? will also be placed here. Maybe you thought you would read all of chapter 1 and then try the homework? That sounds good. Or maybe you Checklist thought you’d read a little bit, then do some problems from the book, and just keep switching back and forth? That When you have finished studying Chapter 1, you should be sounds really good. Or … maybe you thought you would able to:1 go through the chapter and make a list of all of the impor- tant technical terms in bold? That might be good too. 1. State the number of valence electrons on the following atoms: H, Li, Na, K, Mg, B, Al, C, Si, N, P, O, S, F, So what point am I trying to make here? Simply this – you Cl, Br, I should do whatever you think will work. Try something. Do something. Anything you do will help. 2. Draw and interpret Lewis structures Are some things better to do than others? Of course! But a. Use bond lengths to predict bond orders, and vice figuring out which study methods work well and which versa ones don’t will take time.
    [Show full text]
  • Periodic Trends Lab CHM120 1The Periodic Table Is One of the Useful
    Periodic Trends Lab CHM120 1The Periodic Table is one of the useful tools in chemistry. The table was developed around 1869 by Dimitri Mendeleev in Russia and Lothar Meyer in Germany. Both used the chemical and physical properties of the elements and their tables were very similar. In vertical groups of elements known as families we find elements that have the same number of valence electrons such as the Alkali Metals, the Alkaline Earth Metals, the Noble Gases, and the Halogens. 2Metals conduct electricity extremely well. Many solids, however, conduct electricity somewhat, but nowhere near as well as metals, which is why such materials are called semiconductors. Two examples of semiconductors are silicon and germanium, which lie immediately below carbon in the periodic table. Like carbon, each of these elements has four valence electrons, just the right number to satisfy the octet rule by forming single covalent bonds with four neighbors. Hence, silicon and germanium, as well as the gray form of tin, crystallize with the same infinite network of covalent bonds as diamond. 3The band gap is an intrinsic property of all solids. The following image should serve as good springboard into the discussion of band gaps. This is an atomic view of the bonding inside a solid (in this image, a metal). As we can see, each of the atoms has its own given number of energy levels, or the rings around the nuclei of each of the atoms. These energy levels are positions that electrons can occupy in an atom. In any solid, there are a vast number of atoms, and hence, a vast number of energy levels.
    [Show full text]
  • Electron Configurations, Orbital Notation and Quantum Numbers
    5 Electron Configurations, Orbital Notation and Quantum Numbers Electron Configurations, Orbital Notation and Quantum Numbers Understanding Electron Arrangement and Oxidation States Chemical properties depend on the number and arrangement of electrons in an atom. Usually, only the valence or outermost electrons are involved in chemical reactions. The electron cloud is compartmentalized. We model this compartmentalization through the use of electron configurations and orbital notations. The compartmentalization is as follows, energy levels have sublevels which have orbitals within them. We can use an apartment building as an analogy. The atom is the building, the floors of the apartment building are the energy levels, the apartments on a given floor are the orbitals and electrons reside inside the orbitals. There are two governing rules to consider when assigning electron configurations and orbital notations. Along with these rules, you must remember electrons are lazy and they hate each other, they will fill the lowest energy states first AND electrons repel each other since like charges repel. Rule 1: The Pauli Exclusion Principle In 1925, Wolfgang Pauli stated: No two electrons in an atom can have the same set of four quantum numbers. This means no atomic orbital can contain more than TWO electrons and the electrons must be of opposite spin if they are to form a pair within an orbital. Rule 2: Hunds Rule The most stable arrangement of electrons is one with the maximum number of unpaired electrons. It minimizes electron-electron repulsions and stabilizes the atom. Here is an analogy. In large families with several children, it is a luxury for each child to have their own room.
    [Show full text]
  • Atomic Structure and Bonding
    IM2665 Chemistry of Nanomaterials Atomic Structure and Bonding Assoc. Prof. Muhammet Toprak Division of Functional Materials KTH Royal Institute of Technology Background • Electromagnetic waves • Materials wave motion, • Quantified energy and – Louis de Broglie (1892-1987) photons • Uncertainity principle – Max Planck (1858-1947) – Werner Heisenberg (1901-1976) – Albert Einstein (1879-1955) • Schrödinger equation • Bohr’s atom model – Erwin Schrödinger (1887-1961) – Niels Bohr (1885-1962) IM2657 Nanostr. Mater. & Self Assembly 2 Electromagnetic Spectrum Visible light is only a small part of the Electromagnetic Spectrum IM2657 Nanostr. Mater. & Self Assembly 3 Electromagnetic Waves • Wavemotion is defined by • Calculations – ν = Frequency ( Hz) – c = ν × λ – λ = wavelength (m) – c = 3,00 × 108 m/s (speed of light) IM2657 Nanostr. Mater. & Self Assembly 4 Quantified Energy and Photons • E = h × ν; where h = 6,63 × 10-34 J s (Planck’s constant) • Photoelectric Effect (1905) IM2657 Nanostr. Mater. & Self Assembly 5 Thomson´s Pudding Model For a helium atom, the model proposes a large spherical cloud with two units of positive charge. Th e two electrons lie on a line through the center of the cloud. The loss of one electron produces the He+1 ion, with the remaining electron at the center of the cloud. The loss of a second electron prod uces He+2 , in which there is just a cloud of positive charge. IM2657 Nanostr. Mater. & Self Assembly 6 Rutherford’s Experiment The notion that atoms consist of very small nuclei containing protons and neutrons surrounded by a much larger cloud of electrons was IM2657 Nanostr. Mater. & Self Assembly 7 developed from an α particle scattering experiment.
    [Show full text]
  • Electromagnetic Radiation and Quantum Theory Questions KEY
    Electromagnetic Radiation and Quantum Theory Questions KEY What you will be given for the test: A periodic table (you cannot use the blank one where you filled in the electron configuration) c=λv c=3.0x108 m/s E=hv h=6.626x10-34 J*s For the test, you should be able to answer these questions…. 1. What does ROY G. BV represent? The colors of the visible light portion of the electromagnetic spectrum. 2. How does the energy of a red photon compare to that of a blue photon? Explain. A blue photon has higher energy than a red photon. Blue photons have a shorter wavelength and therefore a higher frequency and higher energy. 3. According to the Bohr model of the hydrogen atom, how does the hydrogen atom emit light? When an electron absorbs energy, it jumps to a higher energy level. When the electron falls back down, energy is released from the atom in the form of light. 4. What is the difference between an electron at ground state and an excited electron? A ground state electron is the lowest possible energy for that electron. An excited electron is one that has absorbed energy and is in a higher energy level. 5. What accounts for different color lines (red, blue-green, blue, and violet) in the emission spectrum of the hydrogen atom? The electron releases different amounts of energy has it drops to different energy levels. Each of these drops in energies corresponds to a specific frequency and color of light. 6. Can two different elements produce the same identical emissions spectrum? No two elements can produce the same emission spectrum, it is similar to a fingerprint for an atom.
    [Show full text]
  • Structure Controlled Magnetism in Mg-Ti-O Thin Films
    In Quest of a Ferromagnetic Insulator - Structure Controlled Magnetism in Mg-Ti-O Thin Films Johannes Frantti*,1, Yukari Fujioka1, Christopher Rouleau2, Alexandra Steffen3, Alexander Puretzky2, Nickolay Lavrik2, Ilia N. Ivanov2 and Harry M. Meyer2 1Finnish Research and Engineering, Helsinki 00180, Finland 2Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA 3Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA *Corresponding author: e-mail johannes.frantti@fre.fi 1 Abstract Ferromagnetic insulator thin films can convey information by spin waves, avoiding charge displacement and Eddy current losses. The sparsity of high-temperature insulating ferromagnetic materials hinders the development of spin wave based devices. Stoichiometric magnesium titanate, MgTiO3, has an electronic- energy-band structure in which all bands are either full or empty, being a paramagnetic insulator. The MgTiO3 ilmenite consists of ordered octahedra and cation network in which one third of the octahedra are vacant, one third host magnesium and one third titanium. By giving up these characteristics, a rich variety of different magnetic structures can be formed. Our experiments and electronic-energy-band-structure computations show that the magnetic and electric properties of Mg-Ti-O films can drastically be changed and controlled by Mg- and Ti-cation arrangement and abundancy in the octahedra. Insulating titanium- and semiconducting magnesium-rich films were ferromagnetic up to elevated temperatures. The presence and origin of ferromagnetic insulating phase in the films is not apparent - the expectation, based on the well- established rules set by Goodenough and Kanamori, is paramagnetic or antiferromagnetic ordering. We show that ferro- and paramagnetic phases, possessing the same stoichiometry, can be obtained by merely rearranging the cations, thus allowing defect-free interfaces in multilayer structures.
    [Show full text]