Thirteenth European Rotorcraft Forum

Total Page:16

File Type:pdf, Size:1020Kb

Thirteenth European Rotorcraft Forum THIRTEENTH EUROPEAN ROTORCRAFT FORUM g2 Paper No. 23 EVOLUTION OF THE LAND FORCES AIRMOBILITY CONCEPT EI~IDIO VALENTE Colonel, Italian Army (Ret d) AGUSTA, ITALY September 8-11, 1987 ARLES, FRANCE ASSOCIATION AERONAUTIQUE. ET ASTRONAUTIQUE DE FRANCE EVOLUTION OF THE LAND FORCES AIRMOBILITY CONCEPT Emidio Valente Colonel, Italian Army (Retd) AGUSTA, ITALY A 8 S T R A C T PREMISE This p~per can be considered the continuation of that one presented last year at the 12° Forum on "European helicopters for NATO theater'', where a glint was given to the approach of the convertiplane as a new aerial ve hicle able to meeting new operational requirements. - Deeper considerations are here exposed about the milita ry employments of the convertiplane, mainly within the Land Forces airmobility concept. THE AIRI~OBILITY \'IHA T ? The airmobility is the capability of a modern Army to employ its own aircraft for performing by air essential duties not otherwise performable using other air or ground vehicles, or with new parameters in terms of speed, range, flexibility. The essential functions: transport,information support, protection, fire support. 1'/HY ? Airmobility as force multiplier factor. Very ofte·n, the only possible solution of the logistic problem. The only suitable countermeasure to the enemy airmobi lit y. H0\1 ? The Army Aviation is the appropriate organization for translating into the reality the airmobility concept. The Army Aviation is the complex of personnel, means and logistic structure necessary for performing the as signed duties. MEANS FOR AIRMOBILITY Aeroplanes and helicopters: the use of light fixed wing aircraft was the first approach to the airmobility concept; mainly in terms of artillery service and liai son. But the helicopter soon demonstrated to be the only possible answer to the requirements when the con cept expanded to other possible roles and functions. Joint evolution of helicopter capabilities and users 1 requirements. Helicopter limitations. Present situation and tendencies in NATO and WP environ men t. ANOTHER EVOLUTION OF THE OPERATIONAL REQUIREMENTS New strategic situation. New threats. Different operational scenarios. Land Forces need improved operational capability in terms of flexibility, quick reaction and long range in tervention. MEETING THE NEW REQUIREMENTS IN AIRMOBILE TERMS The aircraft should maintain the basic capability of vertically taking-off and landing and of operating in hovering flight but together with more speed, more ra~ ge, more manoeuverability. Possible solutions: .jet lift, combination of fixed-wing and rotary-wing performance. The tilt-rotor convertiplane. Different fields of application. MILITARY EMPLOYMENT OF THE CONVERTIPLANE All Services will receive substantial benefits from the use of convertiplanes. Naval missions, Air Force missions. Army missions. HELICOPTERS AND CONVERTIPLANES IN THE NINETIES The role of the helicopters and the convertiplanes in the Land Forces environment. The current programs and the European perspectives. Coordination between civil and military exigencies. EVOLUTION OF THE LAND FORCES AIRMOBILITY CONCEPT Emidio Valente Co lone 1, Italian Army ( Retd) /----/ PREMISE - At last Rotorcraft Forum in Garmish, I presented a paper on ''European Helicopters for NATO Theater'' where I touched the subiect of the convertiplane as another pos sible field for cooperation in the rotorcraft sector. - Today I wish to enlarge this argument, again from an European point of view and mainly in the optics of the military employment of this aircraft within the land forces environment. However my examination will also include some aspects of the use of the tilt-rotor by other Services and by civil operators. I realize that my paper does not contain new tt]ings ·technically and operationally speaking; never the less I hope that stressing new solutions and possibilities for improving the operational effectiveness of the European NATO forces into the aeronautical field, there could arise new options both from military and industrial si de. Another purpose of this paper is the attempt to put in a real and balanced perspective the alternate aerial means for the land forces airmobility in order to avoid two possible negative consequences from the appearance at the horizon of a new and advanced rotorcraft: - or the underestimation of. the new possibilities offer ed by the new machines; - or the understimation of the present generation rot.or craft, posponing reinfrircement and improvement pr£ grams that are necessary and possible since today. - It is a matter of fact that the time is rapidly approa ching that new configuration rotorcraft will be availa ble for both civil and military uses. After many years of studies, experiences and tests on how to improve on the phisical and inherent limitations 6f the conventional helicopter whilst retaining its typi cal and unrenounceable performance for vetical take-off- 9.2-1 and landing and hovering, we have under our eyes the rea lity of the already tested formula of a tilt-rotor con vertiplane. In fact, following the experimental XV-15 BELL aircraft, the on-going program launched by the U .5. Defense for the V-22 convertiplane, demonstrates confidence that such an aircraft will allow a substantial improvement in the operational effectiveness of the Armed Forces,whilst the Aeronautical Industries envisage also a practical and convenient employment for civil uses. - Moving from this concrete fact, my exposition will pr:?_ ceed along the following points: the airmobility: its operational meaning, its necessi ty, how it can be implemented; means for airmobility: the present situation and the new perspectives; evolution of the military requirements; how new requirements can be met; the military employment of the convertiplane; how helicopters and convertiplanes will be coexisting in the nineties and beyond. THE-LAND FORCES AIRMOBILITY WHAT ? The airmobility is the capability of a Modern Army to employ its own aircraft for performing by Air essential duties not otherwise performable using conventional sur face and aerial vehicles. Today the Airmobility is no more, as in the past, a complementary capability of Ground Forces, but has the same level of importance of the other capabilities provi ded by traditional vehicles and armament systems. - A modern Army without the direct control - in terms of organization, management and employment of the air­ craft, would suffer serious limitations in performing its roles. - I want only list the range of the tactical employment of the land forces aircraft: - command, control and liaison; aerial reconnaisance and security; - aerial resupply; 9.2-2 - aeromedical evacuation; - movement of troops and equipment; - fire support against point and area, hard and soft tar gets. - Furthermore, the Airmobility allows the Ground Forces to give an increased contribution on peace time to national problems as natural disasters, integrating the State planning and organization. In this frame, the inevitable high cost for implementing the Airmobile concept, becomes an useful investment that would be easily accepted by the public opinion which is generally against the continuous growth of the military budgets. Tactically the availability of a modern Army Aviation allows Ground Commanders to extend the operational cap~ bility implementing the classic war principles: '' maneuver, mass, surprise''. In fact, thanks to the capability to rapidly deploy troops and supplies, it is possible to move ground units according to the situation (maneuver), to regroupe them, at the right place and on the right time, for obtaining the requested strength level (mass) and to attack the enemy from unespected directions (surprise). WHY ? - Airmobility is a luxury or a high priority exigency~ - I think and hope that it is no more necessary to demo~ strate that a modern Army is incoceivable without ade quate airmobile potential not because it is an attrac ting aspect of the Armed Forces modernization, but for a series of good reasons. First of all, taking into account that the warring su periority of the enemy forces shows now a tremendous airmobile potential in terms of helitransport and heli combat in different forms, anuling the only present superiority of the conventional forces from NATO side. But there are other not negligible aspects of the importance of the Airmobility such as: Airmobility as force multiplier factor Airmobility as the only possible solution of the logistic problems. The continuos growth of the cost for maintaing the Ar med Forces and the General reluctance against the milT tary expenditures, make very difficult, if not impossT ble, to combine the operational effectiveness of the Ground Forces - in quality terms - with the quantity 9.2-3 level necessary for facing the potential threats. The Airmobility can provide a solution. In fact some highly specialized units particularly equipped and trained, provided with aerial vehicles, could repre sent very precious reserves to be employed for perfor ming assault operations or for reestablishing the sT tuation, should the enemy pressure cause breakthroughs in the defensive lines. Furthermore, an airmobile fire support, mainly with antitank capabilities, would integrate or replace the surface armament systems when they are not sufficient or not available in critical situations. Many negative factors could hamper or disturb the more accurate logistic planning. Enemy interventions against supply lines, refugies crowding the roads, units dispersion, increased distan ces due
Recommended publications
  • Over Thirty Years After the Wright Brothers
    ver thirty years after the Wright Brothers absolutely right in terms of a so-called “pure” helicop- attained powered, heavier-than-air, fixed-wing ter. However, the quest for speed in rotary-wing flight Oflight in the United States, Germany astounded drove designers to consider another option: the com- the world in 1936 with demonstrations of the vertical pound helicopter. flight capabilities of the side-by-side rotor Focke Fw 61, The definition of a “compound helicopter” is open to which eclipsed all previous attempts at controlled verti- debate (see sidebar). Although many contend that aug- cal flight. However, even its overall performance was mented forward propulsion is all that is necessary to modest, particularly with regards to forward speed. Even place a helicopter in the “compound” category, others after Igor Sikorsky perfected the now-classic configura- insist that it need only possess some form of augment- tion of a large single main rotor and a smaller anti- ed lift, or that it must have both. Focusing on what torque tail rotor a few years later, speed was still limited could be called “propulsive compounds,” the following in comparison to that of the helicopter’s fixed-wing pages provide a broad overview of the different helicop- brethren. Although Sikorsky’s basic design withstood ters that have been flown over the years with some sort the test of time and became the dominant helicopter of auxiliary propulsion unit: one or more propellers or configuration worldwide (approximately 95% today), jet engines. This survey also gives a brief look at the all helicopters currently in service suffer from one pri- ways in which different manufacturers have chosen to mary limitation: the inability to achieve forward speeds approach the problem of increased forward speed while much greater than 200 kt (230 mph).
    [Show full text]
  • Mcdonnell's Model 82- the XV-1 Convertiplane
    McDonnell Aircraft XV-1 Convertiplane The Convertiplane was the most publicized product of the Helicopter Division Of McDonnell Aircraft Company, a part of the company that probably few people remember today. Although officially long disbanded, the personnel of that division were still active in the McDonnell- Douglas Corporation, engineering the VTOL and STOL activities for many years. History In December 1948 the McDonnell Aircraft Company (MAC) submitted a preliminary study of high speed rotorcraft to the Office of Naval Research (ONR). MAC's conclusion was that the most promising configuration was one that used its engine to power a propeller for forward flight and to supply compressed air to fuel burning jets on the rotor tips for hovering flight. ONR responded by giving MAC a contract to investigate in more detail the aerodynamic characteristics of lightly loaded rotors at high advance ratios (high forward speeds), to study means of rotor jet propulsion and to apply the practical results of the studies to a high speed ship to shore air vehicle. This last contract fostered two independent, but parallel, projects; the XHCH-1 and more indirectly, the XV-1. The XHCH-1 was a 30 seat vertical takeoff and landing assault aircraft for the Marines. Three articles were ordered (BuAer numbers 133736-738) but the program was canceled when research and development funds ran out. The XV-1 also benefited from this study contract, although it was designed specifically to meet an early 1950 joint Army/ Air Force design competition for VTOL aircraft. The Army goal was to develop a relatively small aircraft for use by Army field forces as a liaison type and to furnish data for future larger designs.
    [Show full text]
  • Introduction of the M-85 High-Speed Rotorcraft Concept Robert H
    t NASA Technical Memorandum 102871 Introduction of the M-85 High-Speed Rotorcraft Concept Robert H. Stroub '-] ,t 0 January 1991 National Aeronautics and Space Administration NASATechnicalMemorandum102871 Introduction of the M-85 High-Speed Rotorcraft Concept Robert H. Stroub, Ames Research Center, Moffett Field, California January 1991 NationalAeronautics and Space Administration Ames Research Center Moffett Field, California 94035-1000 ABSTRACT As a result of studying possible requirements for high-speed rotorcrafl and studying many high- speed concepts, a new high-speed rotorcraft concept, designated as M-85, has been derived. The M-85 is a helicopter that is reconfigured to a fixed-wing aircraft for high-speed cruise. The concept was derived as an approach to enable smooth, stable conversion between fixed-wing and rotary-wing while retaining hover and low-speed flight characteristics of a low disk loading helicopter. The name, M-85, reflects the high-speed goal of 0.85 Mach Number at high altitude. For a high-speed rotorcraft, it is expected that a viable concept must be a cruise-efficient, fixed-wing aircraft so it may be attractive for a multiplicity of missions. It is also expected that a viable high-speed rotorcraft con- cept must be cruise efficient first and secondly, efficient in hover. What makes the M-85 unique is the large circular hub fairing that is large enough to support the aircraft during conversion between rotary-wing and fixed-wing modes. With the aircraft supported by this hub fairing, the rotor blades can be unloaded during the 100% change in rotor rpm. With the blades unloaded, the potential for vibratory loads would be lessened.
    [Show full text]
  • November 2018
    The Flightline Volume 48, Issue 20 Newsletter of the Propstoppers RC Club AMA 1042 November 2018 President’s Message Hello all, Now that the outdoor season is now pretty much over, I have good news. I have secured permission to use the Brookhaven gym for indoor flying on Saturday nights. The schedule will be, starting in November, 7:00-9:00 pm, the second Saturday after the monthly meeting. I have been giving a lot of thought to different events we can fly, perhaps races for the different classes, carrier landings, and anything else you can think up. As in previous years, we plan to collect $2.00 per person to tip the janitor. After you catch a plane in the lights or rafters, you will know why. I N S I D E T H I S I SSUE On the first night session in November, we will discuss what types 1 President’s Message of planes most people want to fly and establish any size limits and flight categories at that time. November Meeting Agenda 2 I'm looking forward to a good turnout, the more the merrier. Give 3 October Meeting Minutes me a call with any questions or suggestions. Editor’s Note 4 Chuck Kime President Elect Dick Seiwell, President Emeritus 5 By Dave Harding The Philadelphia Region: The Cradle of 6 Rotary-Wing Aviation in the U.S. By Robert Beggs Agenda for November 13th 7. Meeting At Gateway Church Meeting Room 7:00 pm till 8:30 1. Call to Order and Roll Call 2.
    [Show full text]
  • Aerodynamic Concept of the Uav in the Gyrodyne Configuration
    TRANSACTIONS OF THE INSTITUTE OF AVIATION 1 (250) 2018, pp. 49–66 DOI: 10.2478/tar-2018-0005 © Copyright by Wydawnictwa Naukowe Instytutu Lotnictwa AERODYNAMIC CONCEPT OF THE UAV IN THE GYRODYNE CONFIGURATION Jan Muchowski*, Marek Szumski*, Andrzej Krzysiak** *Department of Fluid Mechanics and Aerodynamics, Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszow **Aerodynamics Department, Institute of Aviation, Al. Krakowska 110/114, 02-256 Warsaw [email protected], [email protected], [email protected], Abstract The article presents an aerodynamic concept of UAV in the gyrodyne configuration, as a more efficient one than the currently used UAV airframe configuration applied for monitoring tasks of pow- er lines and railway infrastructure. A sample task which is realised by conceptual gyrodyne based on monitoring aerial power lines was characterised and described . The assumed idea of UAV was shown in comparison to the currently used aircraft configuration presented in the introduction. Referring to momentum theory, hover efficiency of the multicopter and the helicopter was evaluated. In relation to the helicopter, an initial draft of the airframe conception accompanied by a description of advan- tages of the gyrodyne configuration was exposed. Problems related to the gyrodyne configuration were emphasised in the summary. Keywords: aerodynamic concept, UAV, VTOL, gyrodyne, airframe configuration 1. INTRODUCTION In recent years a dynamic growth of the UAV (Unmanned Aerial Vehicle) usage in civil and mili- tary missions can be observed . Economic aspects are the main reasons of that increase, i.e. the purchas- ing cost of the UAS (Unmanned Aircraft System) varies from 40% up to 80% of the manned system cost.
    [Show full text]
  • Performance Analysis of the Slowed-Rotor Compound Helicopter Configuration
    Performance Analysis of the Slowed-Rotor Compound Helicopter Configuration Matthew W. Floros Wayne Johnson Raytheon ITSS Army/NASA Rotorcraft Division Moffett Field, California NASA Ames Research Center Moffett Field, California The calculated performance of a slowed-rotor compound aircraft, particularly at high flight speeds, is exam- ined. Correlation of calculated and measured performance is presented for a NASA Langley high advance ratio test and the McDonnell XV-1 demonstrator to establish the capability to model rotors in such flight conditions. The predicted performance of a slowed-rotor vehicle model based on the CarterCopter Technology Demonstra- tor is examined in detail. An isolated rotor model and a model of a rotor and wing are considered. Three tip speeds and a range of collective pitch settings are investigated. A tip Mach number of 0.2 and zero collective pitch are found to be the optimum condition to minimize rotor drag. Performance is examined for both sea level and cruise altitude conditions. Nomenclature Much work has been focused on tilt rotor aircraft; both military and civilian tilt rotors are currently in development. But other configurations may provide comparable benefits to CT thrust coefficient tilt rotors in terms of range and speed. Two such configura- CQ torque coefficient tions are the compound helicopter and the autogyro. These CH longitudinal inplane force coefficient configurations provide STOL or VTOL capability, but are ca- D drag pable of higher speeds than a conventional helicopter because L lift the rotor does not provide the propulsive force or at high MTIP tip Mach number speed, the vehicle lift. The drawback is that redundant lift VT tip speed and/or propulsion add weight and drag which must be com- q dynamic pressure pensated for in some other way.
    [Show full text]
  • Second European Rotorcraft and Powered Lift Aircraft Forum
    SECOND EUROPEAN ROTORCRAFT AND POWERED LIFT AIRCRAFT FORUM Paper No. 36 TILT ROTOR V/STOL AIRCRAFT TECHNOLOGY L. Kingston Director of Research and J. DeTore Group Engineer Advanced V/STOL Bell Helicopter Textron Fort Worth, Texas September 20 - 22 1976 Bllckeburg, Federal Republic of Germany Deutsche Gesellschaft fUr Luft- und Raurnfahrt e.V. Postfach 510645, D-5000 K8ln, Germany TILT ROTOR V/STOL AIRCRAFT TECHNOLOGY L. Kingston, Director of Research J. DeTore, Group Engineer, Advanced V/STOL Bell Helicopter Textron 1.0 Abstract This paper summarizes current tilt rotor technology and discusses the operation­ al concept of this class aircraft. The basis for selecting the tilt rotor from a spectrum of V/STOL aircraft options spanning the subsonic speed range is presented. The development of tilt rotor technology starting with the XV-3 Convertiplane pro­ gram is reviewed resulting in a summary of the rationale behind the configuration of the XV-15. Descriptions of the XV-15 aircraft and its present program are in­ cluded. Future applications are discussed and the role of an operational demon­ strator aircraft is identified. Conclusions are presented concerning projected tilt rotor productivity, current tilt rotor technology status, and future steps. An extensive list of reference~ is provided. 2.0 Introduction Bell Helicopter Textron is currently preparing the XV-15 Tilt Rotor Research Aircraft, Figure 1, for its first flight. The effort is the culmination of a period of development of tilt rotor technology begun in the 1950 1 s with the XV-3 Converti­ plane. The tilt rotor aircraft is the one of several V/STOL aircraft options which promises the greatest improvement in productivity over the helicopter.
    [Show full text]
  • Technology Needs for High-Speed Rotorcraft
    NASA Contractor Report 177578 Technology Needs for High-Speed Rotorcraft John Rutherford, Matthew O'Rourke, Christopher Martin, Marc Lovenguth, and Clark Mitchell McDonnell Douglas Helicopter Company, Mesa, Arizona Prepared for Ames Research Center CONTRACT NAS2-13070 April 1991 National Aeronautics and Space Administration Ames Research Center Moffett Field, California 94035-1000 TABLE OF CONTENTS Page SECTION I - INITIAL TECHNOLOGY ASSESSMENT AND CONCEPT DEFINITION SUMMARY 1-1 INTRODUCTION 1-3 INITIAL CONCEPT SELECTION 1-4 Initial Concept Description 1-5 Results of Initial Selection 1-7 CONCEPT SIZING 1-9 Generic Mission 1-9 Configuration Sizing Assumptions 1-9 Weights Methodology 1-10 Sizing for Optimum Cruise Altitude 1- I 1 Rotor Parametric Sizing Matrices I- 12 Sized Concept Descriptions 1-17 Trail-Rotor Convertiplane General Description 1-17 Trail-Rotor Convertiplane Conversion Description 1-18 Folding Tilt Rotor General Description 1-19 Folding Tilt-Rotor Conversion Description 1-20 Tilt Rotor General Description 1-21 Tilt Rotor Conversion Description 1-22 Rotor/Wing Description 1-23 Rotor/Wing Conversion Description 1-24 Tilt Wing Convertiplane General Description 1-25 Tilt Wing Conversion Description 1-26 Initial Technology Assessment 1-28 Structures & Materials 1-28 Propulsion 1-29 Drive System 1-30 Aerodynamics and Acoustics 1-31 Aerodynamics of High-Speed Forward Flight 1-32 Prop/Rotor Performance 1- 34 Conversion Axis - Center of Gravity Relationship 1-35 Rotor/Wing Helicopter and Airplane Flight Requirements 1-36 Dynamics
    [Show full text]
  • The Evolution of the British Rotorcraft Industry 1842-2012
    Journal of Aeronautical History Paper No. 2012/07 THE EVOLUTION OF THE BRITISH ROTORCRAFT INDUSTRY 1842-2012 Eur Ing David Gibbings C Eng., FRAeS Based on a paper originally presented to the European Rotorcraft Forum in Hamburg, September 2009. ABSTRACT This paper relates the way in which rotorcraft developed in Britain, leading to the growth of an effective design and manufacturing industry. The narrative is divided into five sections, each of which represents defining phases in UK based activity leading towards the development of the modern helicopter: 1. The Pre-Flight Period (1842-1903) This section covers British activity during the period when the objective was simply to demonstrate powered flight by any means, and where rotors might be considered to be a way of achieving this. 2. The Early Helicopter Period (1903-1926). Early attempts to build helicopters, including the work of Louise Brennan, which achieved limited success with a rotor driven by a propellers mounted on the blade tips. 3. The Pre-War Years (1926-1939) This section gives emphasis to development of the gyroplane and in particular the work of Juan de la Cierva, with his UK-based company to develop his 'Autogiro', from which the understanding of rotor dynamics and control was established, and which was to lead to the realisation of the helicopter by others. Although UK rotary wing development was driven by the gyroplane, the work carried out by the Weir Company, which was to lead to the first successful British helicopter is discussed. 4. The War Years. (1939-1945) Rotary wing activities in the UK were very limited during World War 2, restricted to the work carried out by Raoul Hafner with the Rotachute/ Rotabuggy programme and the use of autogiros for the calibration of radar.
    [Show full text]
  • General Operating Rules
    Safety Best Practices Manual CHAPTER 4 Standard Operating Procedures – Rotary Wing HELICOPTER FLIGHT OPERATIONS (GENERAL) All aircraft operations will be conducted in accordance with all applicable FARs, local and national laws, manufacturers’ aircraft manuals and limitations, and this Manual. Aircraft will be operated in an airworthy condition at all times. Aviation personnel are expected to utilize sound, conservative judgment in their approach to their duties. Safety is the primary objective of the Department. The policies and procedures in this section are supplemental to those listed in the General Section of this manual. Where the word “aircraft” is used, the material applies to both fixed-wing and helicopter operations. The words “airplane” or “helicopter” respectively refer to airplane and helicopter categories of aircraft. FLIGHT CREW CHECK-IN AND POST FLIGHT PERIOD Flight crewmembers shall check-in for flights no less than one hour and 15 minutes prior to the scheduled departure time. When the Chief Pilot or PIC determines the conditions warrant additional time prior to departure, an earlier check-in time may be designated. The post-flight period is assumed to be 30 minutes. FLIGHT PLANNING The PIC is responsible for flight planning and related information (i.e. catering, ground transportation, servicing requirements, reservations, etc.). The PIC may assign this duty to the other pilot but retains the responsibility for the task. There must be no confusion as to which pilot is to do this function. Both pilots will thoroughly review the trip manifest prepared by Flight Dispatch. Any discrepancies or questions should be reviewed with the dispatcher. Confirm the number of passengers on each leg so that proper fuel planning can be accomplished, and ensure all ground transportation needs are understood.
    [Show full text]
  • An Overview of Autogyros and the Mcdonnell XV-1 Convertiplane
    NASA/CR—2003–212799 An Overview of Autogyros and The McDonnell XV-1 Convertiplane Franklin D. Harris Prepared for Ames Research Center under Contract NAG2-1597 October 2003 The NASA STI Program Office ... in Profile Since its founding, NASA has been dedicated to • CONFERENCE PUBLICATION. the advancement of aeronautics and space Collected papers from scientific and science. The NASA Scientific and Technical technical conferences, symposia, Information (STI) Program Office plays a key seminars, or other meetings sponsored or part in helping NASA maintain this important co-sponsored by NASA. role. • SPECIAL PUBLICATION. Scientific, The NASA STI Program Office is operated by technical, or historical information from Langley Research Center, the lead center for NASA programs, projects, and missions, NASA’s scientific and technical information. The often concerned with subjects having NASA STI Program Office provides access to the substantial public interest. NASA STI Database, the largest collection of aeronautical and space science STI in the world. • TECHNICAL TRANSLATION. English- The Program Office is also NASA’s institutional language translations of foreign scientific mechanism for disseminating the results of its and technical material pertinent to research and development activities. These results NASA’s mission. are published by NASA in the NASA STI Report Series, which includes the following report types: Specialized services that complement the STI Program Office’s diverse offerings include • TECHNICAL PUBLICATION. Reports of creating custom thesauri, building customized completed research or a major significant databases, organizing and publishing research phase of research that present the results of results ... even providing videos. NASA programs and include extensive data or theoretical analysis.
    [Show full text]
  • Albert Yackle Papers
    http://oac.cdlib.org/findaid/ark:/13030/c8ng4wt8 No online items Albert Yackle papers Finding aid prepared by Gina C Giang. Manuscripts Department The Huntington Library 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2191 Fax: (626) 449-5720 Email: [email protected] URL: http://www.huntington.org © 2017 The Huntington Library. All rights reserved. Albert Yackle papers mssYackle 1 Descriptive Summary Title: Albert Yackle papers Dates: 1936-2010 Collection Number: mssYackle Collector: Yackle, Albert Extent: 38 boxes Repository: The Huntington Library, Art Collections, and Botanical Gardens Manuscripts Department The Huntington Library 1151 Oxford Road San Marino, California 91108 Phone: (626) 405-2191 Fax: (626) 449-5720 Email: [email protected] URL: http://www.huntington.org Abstract: The Albert Yackle papers consist of documents related to his career in helicopter design engineering at Kellett Aircraft Corporation and Lockheed Aircraft Corporation. Language of Material: The records are in English. Access Collection is open to qualified researchers by prior application through the Reader Services Department. For more information, please go to following web site . Publication Rights The Huntington Library does not require that researchers request permission to quote from or publish images of this material, nor does it charge fees for such activities. The responsibility for identifying the copyright holder, if there is one, and obtaining necessary permissions rests with the researcher. Preferred Citation Albert Yackle papers, The Huntington Library, San Marino, California. Acquisition Information Gift of Linda McCann, January 2015. Biography Albert Yackle was born on May 13, 1922 in Willow Grove, Pennsylvania. He graduated from Pennsylvania State University in 1944 with B.S.
    [Show full text]