Continuous and High-Frequency Measurements in Limnology: History

Total Page:16

File Type:pdf, Size:1020Kb

Continuous and High-Frequency Measurements in Limnology: History 52 REVIEW Continuous and high-frequency measurements in limnology: history, applications, and future challenges Pille Meinson, Agron Idrizaj, Peeter Nõges, Tiina Nõges, and Alo Laas Abstract: Over the past 15 years, an increasing number of studies in limnology have been using data from high-frequency measurements (HFM). This new technology offers scientists a chance to investigate lakes at time scales that were not possible earlier and in places where regular sampling would be complicated or even dangerous. This has allowed capturing the effects of episodic or extreme events, such as typhoons on lakes. In the present paper we review the various fields of limnology, such as monitoring, studying highly dynamic processes, lake metabolism studies, and budget calculations, where HFM has been applied, and which have benefitted most from the application. Our meta-analysis showed that more than half of the high-frequency studies from lakes were made in North America and Europe. The main field of application has been lake ecology (monitoring, lake metabolism) followed by physical limnology. Water temperature and dissolved oxygen have been the most universal and commonly measured parameters and we review the various study purposes for which these measurements have been used. Although a considerable challenge for the future, our review highlights that broadening the spatial scale of HFM would substantially broaden the applicability of these data across a spectrum of different fields. Key words: lake metabolism, temporal variability, spatial variability, extreme events, hydrodynamics. Résumé : Au cours des 15 dernières années, on observe un nombre croissant d’études en limnologie ayant utilisé des données provenant de mesures a` hautes fréquences (HFM). Cette nouvelle technologie offre aux scientifiques la possibilité d’étudier les lacs a` des échelles de temps qui étaient impossibles auparavant et dans des endroits où l’échantillonnage serait compliqué ou même dangereux. Ceci a permis de saisir les effets d’événement épisodiques ou extrêmes, tels que des typhons sur des lacs. Les auteurs passent ici en revue différents champs de la limnologie tels que le suivi, l’étude de processus hautement dynamiques, l’étude du métabolisme des lacs ainsi que le calcul des budgets, où on a appliqué la HFM et qui ont le plus bénéficié de cette application. La méta-analyse des auteurs montre que plus de la moitié des études conduites en hautes fréquences dans des lacs l’ont été en Amérique du Nord. Le principal champ d’application a concerné l’écologie des lacs (suivi, métabolisme des lacs), suivi de la limnologie physique. La température et l’oxygène dissout constituent les paramètres les plus universels et communément mesurés et les auteurs passent en revue les objectifs des diverses études pour lesquels ces mesures ont été utilisées. Bien que ceci For personal use only. constitue un défi considérable pour le futur, cette revue souligne que l’élargissement de l’échelle spatiale des HFM élargirait substantiellement l’applicabilité des données pour un ensemble de champs différents. [Traduit par la Rédaction] Mots-clés : métabolisme des lacs, variabilité temporelle, variabilité spatiale, évènements extrêmes, hydrodynamiques. 1. Introduction automatic high-frequency measurements (HFM). Even though automatic recording is vulnerable to vandalism, biofouling, Today, global environmental change and the increasing exploi- and occasional failures in the systems, and maintenance issues tation of ecosystem services by man has created complex multiple may causes gaps in time series data (Dur et al. 2007), a fast transi- stressor situations for most inland water bodies (Ormerod et al. tion to automatic HFM in environmental monitoring systems is 2010). This has obviated the need for more and better monitoring inevitable. data and is a prerequisite for understanding the often synergistic, The need for continuous observations has led to automating cumulative, and non-linear impacts of combined stressors (Brown measurements since the early times of limnology. In the first et al. 2013) and for making adequate management decisions report of the Indiana University Turkey Lake Biological Station (Hering et al. 2015). Until recently, the majority of standard lake (the first inland biological station in America), its director, monitoring programs were based on manual in situ measure- C.H. Eigenmann, mentioned, among other equipment, an “auto- ments that can be time-consuming and costly to procure and matic recording apparatus to observe seiches” (Eigenmann 1895, often lack both the necessary spatial coverage as well as an appro- p. 207). In the same year, Warren and Whipple (1895, p. 639) in- priate sampling frequency (Vos et al. 2003). The latter is especially troduced the thermophone, “a new instrument for obtaining the important for detecting the effects of hydrology or weather- temperature of a distant or inaccessible place,” and provided related episodic events, from which biological consequences can some temperature profiles measured in Lake Cochituate, Mass. range from short-term, reversible changes to those that are more Simple physical parameters, such as lake water levels and water Environ. Rev. Downloaded from www.nrcresearchpress.com by Nanjing Institute of Geography and Limnology, CAS on 01/17/17 persistent (Jennings et al. 2012). Time and reliability issues can be temperature, were among the first limnological variables for efficiently addressed by replacing manual measurements with which measurement could be automated. Parameters recorded in Received 26 May 2015. Accepted 5 October 2015. P. Meinson,* A. Idrizaj, P. Nõges, T. Nõges, and A. Laas. Centre for Limnology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, 61117 Rannu, Tartu County, Estonia. Corresponding author: Pille Meinson (e-mail: [email protected]). *Present address: Kreutzwaldi 5, Tartu 51014, Estonia. Environ. Rev. 24: 52–62 (2016) dx.doi.org/10.1139/er-2015-0030 Published at www.nrcresearchpress.com/er on 6 October 2015. Meinson et al. 53 physical meteorology, such as air temperature, humidity, wind confront the information management and analytical challenges speed and direction, and the amount of precipitation served as posed by massive volumes of data, while Porter and Lin (2013) important background data supporting lake research (Porter et al. specifically focused on available hybrid wireless sensor network 2005). However, soon the development of electrochemistry — the technologies. Johnson et al. (2007) reviewed the chemical sensing invention of the glass electrode by Cremer (1906) and the intro- capabilities with a special focus on such chemical sensor net- duction of the concept of pH by Sørensen (1909) — gave an impe- works that can be deployed on autonomous platforms in aquatic tus to the development of various chemical sensors initially environments and then operated without significant human in- enabling automatic recording of a number of single charged ions, tervention for extended periods. Crawford et al. (2015) analyzed + + + such as H ,Na ,NH4 , proved soon as limnological key variables. the potential of using advanced sensors to investigate spatial vari- The oxygen electrode widely used in aquatic studies measuring ability in biogeochemistry and hydrology. Besides Porter et al. oxygen on a catalytic platinum surface was invented by Leland (2005), which gives a broad picture of HFM applications in envi- Clark in 1954, initially for blood gas analysis (Severinghaus and ronmental studies, some reviews give more specific insights into Astrup 1986). While chemical sensors still cannot fully compete to the use of high-frequency (HF) data in lakes. For example, with physical sensors regarding their cost or reliability, a variety Jennings et al. (2012) analyzed the potential of HFM for identifying of chemical sensing systems (e.g., for carbon dioxide, pH, and the effects of weather-related episodic events in lakes, whereas oxygen and a number of ions) are now continuously deployed in Staehr et al. (2010) reviewed the use of the diel oxygen technique aquatic environments (reviewed by Johnson et al. 2007). for studying lake metabolism. A big leap in environmental measurement and monitoring In the present paper we review various fields of limnology and technologies came with the transition from analogue to digital lake management that have benefitted or potentially may benefit technologies from the late 1990s to the early 2000s (Hilbert and from using HF measurements, in the hope of stimulating addi- López 2011). Thanks to fast technological development, the auton- tional use of this promising technology. We highlight the advan- omy of different measurement systems has increased. Using wire- tages of using HFM for various purposes compared to discrete or less systems allows retrieving data from the weather and water manual sampling, but also discuss the challenges. We put the monitoring stations in near-real time and without manually vis- main focus on HF data applications related to buoy and mooring iting the study site (Porter et al. 2005). The development of sensors systems and do not discuss other fields of HF technologies, such as has made progress by taking under consideration the protection SONAR, eco-sounding, ADCP or remote-sensing systems. We have from biofouling (Manov et al. 2004) using self-cleaning systems reviewed 154 papers using HFM in lakes and grouped the studies (e.g., wipers or pressure). After reviewing the recent develop-
Recommended publications
  • NETLAKE Toolbox for the Analysis of High-Frequency Data from Lakes
    NETLAKE NETLAKE toolbox for the analysis of high-frequency data from lakes Working Group 2: Data analysis and modelling tools October 2016 Suggested citation for the complete set of factsheets: Obrador, B., Jones, I.D. and Jennings, E. (Eds.) NETLAKE toolbox for the analysis of high-frequency data from lakes. Technical report. NETLAKE COST Action ES1201. 60 pp. http://eprints.dkit.ie/id/eprint/530 Editors: Biel Obrador. Department of Ecology, University of Barcelona. Av. Diagonal 645, Barcelona, Spain. [email protected] Ian Jones. Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, United Kingdom. [email protected] Eleanor Jennings. Centre for Freshwater and Environmental Studies, Department of Applied Science, Dundalk Institute of Technology, Dublin Road, Dundalk, Ireland. [email protected] Author affiliations: Rosana Aguilera. Catalan Institute of Water Research, Girona, Spain. Louise Bruce. Aquatic Ecodynamics Research Group, University of Western Australia, Perth, Australia. Jesper Christensen. Institute of Bioscience, Aarhus University, Roskilde, Denmark. Raoul-Marie Couture. Norwegian Institute for Water Research, Norway. Elvira de Eyto. Burrishoole research station, Marine Institute, Ireland. Marieke Frassl. Department of Lake Research, Helmholtz Centre for Environmental Research, UFZ, Magdeburg, Germany. Mark Honti. Budapest University of Technology and Economics, Hungary. Ian Jones. Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, United Kingdom. Rafael Marcé. Catalan Institute of Water Research, Girona, Spain. Biel Obrador. Department of Ecology, University of Barcelona, Barcelona, Spain. Dario Omanović. Ruđer Bošković Institute, Zagreb, Croatia. Ilia Ostrovsky. Israel Oceanographic & Limnological Research, Kinneret Limnological Laboratory, P.O.B. 447, Migdal 14950, Israel. Don Pierson. Lake Erken field station, Uppsala University, Sweden.
    [Show full text]
  • Carbon Metabolism and Nutrient Balance in a Hypereutrophic Semi-Intensive fishpond
    Knowl. Manag. Aquat. Ecosyst. 2019, 420, 49 Knowledge & © M. Rutegwa et al., Published by EDP Sciences 2019 Management of Aquatic https://doi.org/10.1051/kmae/2019043 Ecosystems Journal fully supported by Agence www.kmae-journal.org française pour la biodiversité RESEARCH PAPER Carbon metabolism and nutrient balance in a hypereutrophic semi-intensive fishpond Marcellin Rutegwa1,*, Jan Potužák1,2, Josef Hejzlar3 and Bořek Drozd1 1 Institute of Aquaculture and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic 2 Institute of Botany of the Czech Academy of Sciences, Department of Vegetation Ecology, 602 00 Brno, Czech Republic 3 Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, 370 05 České Budějovice, Czech Republic Received 3 June 2019 / Accepted 29 October 2019 Abstract – Eutrophication and nutrient pollution is a serious problem in many fish aquaculture ponds, whose causes are often not well documented. The efficiency of using inputs for fish production in a hypereutrophic fishpond (Dehtář), was evaluated using organic carbon (OC), nitrogen (N) and phosphorus (P) balances and measurement of ecosystem metabolism rates in 2015. Primary production and feeds were the main inputs of OC and contributed 82% and 13% to the total OC input, respectively. Feeds and manure were the major inputs of nutrients and contributed 73% and 86% of the total inputs of N and P, respectively. Ecosystem respiration, accumulation in water and accumulation in sediment were the main fates of OC, N and P, respectively.
    [Show full text]
  • Ecological Features and Processes of Lakes and Wetlands
    Ecological features and processes of lakes and wetlands Lakes are complex ecosystems defined by all system components affecting surface and ground water gains and losses. This includes the atmosphere, precipitation, geomorphology, soils, plants, and animals within the entire watershed, including the uplands, tributaries, wetlands, and other lakes. Management from a whole watershed perspective is necessary to protect and maintain healthy lake systems. This concept is important for managing the Great Lakes as well as small inland lakes, even those without tributary streams. A good example of the need to manage from a whole watershed perspective is the significant ecological changes that have occurred in the Great Lakes. The Great Lakes are vast in size, and it is hard to imagine that building a small farm or home, digging a channel for shipping, fishing, or building a small dam could affect the entire system. However, the accumulation of numerous human development activities throughout the entire Great Lakes watershed resulted in significant changes to one of the largest freshwater lake systems in the world. The historic organic contamination problems, nutrient problems, and dramatic fisheries changes in our Great Lakes are examples of how cumulative factors within a watershed affect a lake. Habitat refers to an area that provides the necessary resources and conditions for an organism to survive. Because organisms often require different habitat components during various life stages (reproduction, maturation, migration), habitat for a particular species may encompass several cover types, plant communities, or water-depth zones during the organism's life cycle. Moreover, most species of fish and wildlife are part of a complex web of interactions that result in successful feeding, reproduction, and predator avoidance.
    [Show full text]
  • Trophic State and Metabolism in a Southeastern Piedmont Reservoir
    TROPHIC STATE AND METABOLISM IN A SOUTHEASTERN PIEDMONT RESERVOIR by Mary Callie Mayhew (Under the direction of Todd C. Rasmussen) Abstract Lake Sidney Lanier is a valuable water resource in the rapidly developing region north of Atlanta, Georgia, USA. The reservoir has been managed by the U.S Army Corps of Engineers for multiple purposes since its completion in 1958. Since approximately 1990, Lake Lanier has been central to series of lawsuits in the “Eastern Water Wars” between Georgia, Alabama and Florida due to its importance as a water-storage facility within the Apalachicola-Chattahoochee-Flint River Basin. Of specific importance is the need to protect lake water quality to satisfy regional water supply demands, as well as for recreational and environmental purposes. Recently, chlorophyll a levels have exceeded state water-quality standards. These excee- dences have prompted the Georgia Environmental Protection Division to develop Total Max- imum Daily Loads for phosphorus in Lake Lanier. While eutrophication in Southeastern Piedmont impoundments is a regional problem, nutrient cycling in these lakes does not appear to behave in a manner consistent with lakes in higher latitudes, and, hence, may not respond to nutrient-abatement strategies developed elsewhere. Although phosphorus loading to Southeastern Piedmont waterbodies is high, soluble reac- tive phosphorus concentrations are generally low and phosphorus exports from the reservoir are only a small fraction of input loads. The prevailing hypothesis is that ferric oxides in the iron-rich, clay soils of the Southeastern Piedmont effectively sequester phosphorus, which then settle into the lake benthos. Yet, seasonal algal blooms suggest the presence of internal cycling driven by uncertain mechanisms.
    [Show full text]
  • Drivers of Ecosystem Metabolism in Restored and Natural Prairie Wetlands
    Canadian Journal of Fisheries and Aquatic Sciences Drivers of ecosystem metabolism in restored and natural prairie wetlands Journal: Canadian Journal of Fisheries and Aquatic Sciences Manuscript ID cjfas-2018-0419.R2 Manuscript Type: Article Date Submitted by the 17-Apr-2019 Author: Complete List of Authors: Bortolotti, Lauren; Ducks Unlimited Canada, Institute for Wetland and Waterfowl Research St.Louis, Vincent; University of Alberta, Biological Sciences Vinebrooke,Draft Rolf; University of Alberta, ecosystem metabolism, ecosystem restoration, WETLANDS < Keyword: Environment/Habitat Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue? : https://mc06.manuscriptcentral.com/cjfas-pubs Page 1 of 49 Canadian Journal of Fisheries and Aquatic Sciences 1 2 3 Drivers of ecosystem metabolism in restored and natural 4 prairie wetlands 5 6 Lauren E. Bortolotti,*† Vincent L. St. Louis, Rolf D. Vinebrooke 7 8 Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada 9 * Present address: Institute for WetlandDraft and Waterfowl Research, Ducks Unlimited Canada, 10 Stonewall, MB R0C 2Z0, Canada 11 †E-mail: [email protected] Phone:(204)467-3418 12 https://mc06.manuscriptcentral.com/cjfas-pubs Canadian Journal of Fisheries and Aquatic Sciences Page 2 of 49 13 Abstract 14 Elucidating drivers of aquatic ecosystem metabolism is key to forecasting how inland waters will 15 respond to anthropogenic changes. We quantified gross primary production (GPP), respiration 16 (ER), and net ecosystem production (NEP) in a natural and two restored prairie wetlands (one 17 “older” and one “recently” restored), and identified drivers of temporal variation. GPP and ER 18 were highest in the older restored wetland, followed by the natural and recently restored sites.
    [Show full text]
  • Harmful Algal Bloom Action Plan Lake George
    HARMFUL ALGAL BLOOM ACTION PLAN LAKE GEORGE www.dec.ny.gov EXECUTIVE SUMMARY SAFEGUARDING NEW YORK’S WATER Protecting water quality is essential to healthy, vibrant communities, clean drinking water, and an array of recreational uses that benefit our local and regional economies. 200 NY Waterbodies with HABs Governor Cuomo recognizes that investments in water quality 175 protection are critical to the future of our communities and the state. 150 Under his direction, New York has launched an aggressive effort to protect state waters, including the landmark $2.5 billion Clean 125 Water Infrastructure Act of 2017, and a first-of-its-kind, comprehensive 100 initiative to reduce the frequency of harmful algal blooms (HABs). 75 New York recognizes the threat HABs pose to our drinking water, 50 outdoor recreation, fish and animals, and human health. In 2017, more 25 than 100 beaches were closed for at least part of the summer due to 0 HABs, and some lakes that serve as the primary drinking water source for their communities were threatened by HABs for the first time. 2012 2013 2014 2015 2016 2017 GOVERNOR CUOMO’S FOUR-POINT HARMFUL ALGAL BLOOM INITIATIVE In his 2018 State of the State address, Governor Cuomo announced FOUR-POINT INITIATIVE a $65 million, four-point initiative to aggressively combat HABs in Upstate New York, with the goal to identify contributing factors fueling PRIORITY LAKE IDENTIFICATION Identify 12 priority waterbodies that HABs, and implement innovative strategies to address their causes 1 represent a wide range of conditions and protect water quality. and vulnerabilities—the lessons learned will be applied to other impacted Under this initiative, the Governor’s Water Quality Rapid Response waterbodies in the future.
    [Show full text]
  • Time‐Varying Responses of Lake Metabolism to Light and Temperature
    Limnol. Oceanogr. 00, 2019, 1–15 © 2019 Association for the Sciences of Limnology and Oceanography doi: 10.1002/lno.11333 Time-varying responses of lake metabolism to light and temperature Joseph S. Phillips * Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin Abstract Light is a primary driver of lake ecosystem metabolism, and the dependence of primary production on light is often quantified as a photosynthesis-irradiance or “P-I” curve. The parameters of the P-I curve (e.g., the maxi- mum primary production when light is in excess) can change through time due to a variety of biological factors (e.g., changes in biomass or community composition), which themselves are subject to external drivers (e.g., herbivory or nutrient availability). However, the relative contribution of variation in the P-I curve to over- all ecosystem metabolism is largely unknown. I developed a statistical model of ecosystem metabolism with time-varying parameters governing the P-I curve, while also accounting for the influence of temperature. I parameterized the model with dissolved oxygen time series spanning six summers from Lake Mývatn, a shal- low eutrophic lake in northern Iceland with large temporal variability in ecosystem metabolism. All of the esti- mated parameters of the P-I curve varied substantially through time. The sensitivity of primary production to light under light-limiting conditions was particularly variable (>15-fold) and had a compensatory relationship with ambient light levels. However, the 3.5-fold variation in the maximum potential primary production made the largest contribution to variation in ecosystem metabolism, accounting for around 90% of the variance in net ecosystem production.
    [Show full text]
  • The Metabolism of Aquatic Ecosystems: History, Applications, and Future Challenges
    Aquat Sci (2012) 74:15–29 DOI 10.1007/s00027-011-0199-2 Aquatic Sciences OVERVIEW The metabolism of aquatic ecosystems: history, applications, and future challenges Peter A. Staehr • Jeremy M. Testa • W. Michael Kemp • Jon J. Cole • Kaj Sand-Jensen • Stephen V. Smith Received: 18 June 2010 / Accepted: 15 March 2011 / Published online: 30 March 2011 Ó Springer Basel AG 2011 Abstract Measurements of the production and con- and managing aquatic systems. We identify four broad sumption of organic material have been a focus of aquatic research objectives that have motivated ecosystem metab- science for more than 80 years. Over the last century, a olism studies: (1) quantifying magnitude and variability of variety of approaches have been developed and employed metabolic rates for cross-system comparison, (2) estimating for measuring rates of gross primary production (Pg), res- organic matter transfer between adjacent systems or sub- piration (R), and net ecosystem production (Pn = Pg - R) systems, (3) measuring ecosystem-scale responses to within aquatic ecosystems. Here, we reconsider the range of perturbation, both natural and anthropogenic, and (4) approaches and applications for ecosystem metabolism quantifying and calibrating models of biogeochemical measurements, and suggest ways by which such studies can processes and trophic networks. The magnitudes of whole- continue to contribute to aquatic ecology. This paper system gross primary production, respiration and net eco- reviews past and contemporary studies of aquatic ecosys- system production rates vary among aquatic environments tem-level metabolism to identify their role in understanding and are partly constrained by the chosen methodology. We argue that measurements of ecosystem metabolism should Electronic supplementary material The online version of this be a vital component of routine monitoring at larger scales article (doi:10.1007/s00027-011-0199-2) contains supplementary in the aquatic environment using existing flexible, precise, material, which is available to authorized users.
    [Show full text]
  • The Influence of Fluvial Wetlands on Metabolism and Dissolved Oxygen Patterns Along a Shallow Sloped River Continuum
    University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Fall 2020 The influence of fluvial wetlands on metabolism and dissolved oxygen patterns along a shallow sloped river continuum Joshua Slocum Cain University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Cain, Joshua Slocum, "The influence of fluvial wetlands on metabolism and dissolved oxygen patterns along a shallow sloped river continuum" (2020). Master's Theses and Capstones. 1379. https://scholars.unh.edu/thesis/1379 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. i The influence of fluvial wetlands on metabolism and dissolved oxygen patterns along a shallow sloped river continuum By Joshua S. Cain BS in Environmental Science, COLSA, 2012 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science In Natural Resources: Soil and Water Resource Management September 2020 ii This thesis was examined and approved in partial fulfillment of the requirements for the degree of Master of Science in Natural Resources: Soil and Water Resource Management by: Wil Wollheim, Associate Professor, Natural Resources and the Environment Anne Lightbody, Associate Professor, Earth Sciences Ken Sheehan, Postdoctoral Researcher, Water Systems Analysis Group On November 22, 2016 iii TABLE OF CONTENTS ACKNOWLEDGEMENTS………………………………………………… v LIST OF TABLES………………………………………………………….
    [Show full text]
  • Jenney Kellogg Was Born in Bath, NY in 1981
    FACTORS INFLUENCING PARTIAL PRESSURE CARBON DIOXIDE LEVELS IN FLORIDA LAKES: pH, AQUATIC MACROPHYTES, AND GEOLOGY By JENNEY L. KELLOGG A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2007 1 © 2007 Jenney L. Kellogg 2 ACKNOWLEDGMENTS Gratitude is expressed to the many people who helped me carry out this project. Special thanks are given to Dr. Carlos Duarte and Dr. Yves Prairie who helped to initiate my project and begin data analysis. Thanks to Dr. Roger Bachmann who helped me with my project in ways too numerous to list. The staff of Florida LAKEWATCH provided guidance on sampling protocol and equipment and helped with the chemical analysis of my samples. Thanks go to Francesco Lazzarino for his help with data entry and analysis and expertise on programming languages. Gratitude is expressed to Christy Horsburgh for her continued support and advice. Thanks are given to Dr. Charles E. Cichra for encouraging my professional growth. Thanks are given to Mark Hoyer for his support and guidance on this project. Gratitude is expressed to my committee members for helping to oversee my project. Finally, thanks are given to Dr. Daniel E. Canfield, Jr., my mentor, advisor and chair for his patience, ingenuity and guidance throughout this project. 3 TABLE OF CONTENTS page ACKNOWLEDGMENTS ...............................................................................................................3 LIST OF TABLES...........................................................................................................................5
    [Show full text]
  • Aquatic Microbial Ecology 38:103
    AQUATIC MICROBIAL ECOLOGY Vol. 38: 103–111, 2005 Published February 9 Aquat Microb Ecol Does autochthonous primary production drive variability in bacterial metabolism and growth efficiency in lakes dominated by terrestrial C inputs? Emma S. Kritzberg1,*, Jonathan J. Cole2, Michael M. Pace2, Wilhelm Granéli1 1Department of Ecology/Limnology, Ecology Building, Lund University, 223 62 Lund, Sweden 2Institute of Ecosystem Studies, Box AB, Millbrook, New York 12545, USA ABSTRACT: During the past 20 yr, aquatic microbiologists have reported 2 strong patterns which initially appear contradictory. In pelagic systems, bacterial growth and biomass is well correlated with the growth and biomass of primary producers. However, bacterial respiration often exceeds net primary production, which suggests that bacteria are subsidized by external inputs of organic matter. We hypothesize that bacterial growth efficiency (BGE) varies systematically between autochthonous and allochthonous carbon (C) sources and that this variation resolves the above conundrum. To test these ideas, we examined the ecological regulation of bacterial secondary production (BP), bacterial respiration (BR) and BGE in a series of lakes dominated by terrestrial (allochthonous) C inputs. BP was correlated with autochthonous C sources (chlorophyll a) even though the lakes were net hetero- trophic (i.e. heterotrophic respiration consistently exceeded primary production). The results were simulated by a simple steady-state model of bacterial utilization of autochthonous and allochthonous dissolved organic C. A higher preference and greater growth efficiency of bacteria on autochthonous C may explain why BP is coupled to autochthonous production also in net heterotrophic ecosystems where the use of allochthonous C by bacteria is high. These results suggest that little of the alloch- thonous C assimilated by bacteria is likely to reach higher consumers.
    [Show full text]
  • Hallow and D Ep Lak S: Determining Successful Mana·-Ge·M.Ent Options
    hallow and D ep Lak s: Determining Successful Mana·-ge·m.ent Options G. Dennis Cooke, Paola Lombardo~ an([Christina Brant hallow lakes are far more Table 1. Characteristics of shallow and deep lakes abundant than deep lakes, and more people are concerned about Characteristic Shallow Deep their quality, management, 1. Likely Size of Drainage Area to Lake Area High Lower and 2. Responsiveness to Diversion of External P Loading Lower Higher rehabilitation. 3. Polymictic Often Rarely Knowledge 4. Benthic-Pelagic Coupling High Low about them has not developed as 5.1ntemal Loading Impact on Photic Zone High Low rapidly as 6. Impact of Benthivorous Fish on Nutientstrurbidity High Low knowledge of 7. Fish Biomass Per Unit Volume Higher Lower Cooke (and grandkid) deep lakes,-but 8. Fish Predation on Zooplankton High Lower progress now is 9. Nutrient Control of Algal Biomass Lower Higher being made. 10. Responsiveness to Strong Biomanipulation Higher Lower Much of this 11. Chance of Turbid State with Plant Removal Higher Lower work is 12. Probability of Fish Winterkill Higher Lower European, for example the 13. % AreaNolume Available for Rooted Plants High Low works of Moss, 14. Impact of Birds/Snails on Lake Metabolism High Lower Hosper, Scheffer, 15. Chance ofMacrophyte-free Clear Water Low Higher Meijer, Van Donk, Jeppesen, Sondergaard, Lombardo Persson, deep areas behind a dam, has a large concentrations often are the result of Benndorf, surface area relative to mean depth, and external loading. Shallow lakes may Hansson, and does not have summer-long thermal differ greatly from deep lakes in their Bronmark, as stratification.
    [Show full text]