Algorithmic Aspects of Temporal Betweenness Variants Based On, Strict and Non-Strict, Shortest, Foremost, and Fastest Paths
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
From Static to Temporal Network Theory: Applications to Functional Brain Connectivity
METHODS From static to temporal network theory: Applications to functional brain connectivity William Hedley Thompson1, Per Brantefors1, and Peter Fransson1 1Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden Keywords: Resting-state, Temporal network theory, Temporal networks, Functional connectome, Dynamic functional connectivity Downloaded from http://direct.mit.edu/netn/article-pdf/1/2/69/1091947/netn_a_00011.pdf by guest on 28 September 2021 ABSTRACT an open access journal Network neuroscience has become an established paradigm to tackle questions related to the functional and structural connectome of the brain. Recently, interest has been growing in examining the temporal dynamics of the brain’s network activity. Although different approaches to capturing fluctuations in brain connectivity have been proposed, there have been few attempts to quantify these fluctuations using temporal network theory. This theory is an extension of network theory that has been successfully applied to the modeling of dynamic processes in economics, social sciences, and engineering article but it has not been adopted to a great extent within network neuroscience. The objective of this article is twofold: (i) to present a detailed description of the central tenets of temporal network theory and describe its measures, and; (ii) to apply these measures to a resting-state fMRI dataset to illustrate their utility. Furthermore, we discuss the interpretation of temporal network theory in the context of the dynamic functional brain connectome. All the temporal network measures and plotting functions described in this article are freely available as the Python Citation: Thompson, W. H., Brantefors, package Teneto. P., & Fransson, P. (2017). From static to temporal network theory: Applications to functional brain connectivity. -
Approximating Network Centrality Measures Using Node Embedding and Machine Learning
Approximating Network Centrality Measures Using Node Embedding and Machine Learning Matheus R. F. Mendon¸ca,Andr´eM. S. Barreto, and Artur Ziviani ∗† Abstract Extracting information from real-world large networks is a key challenge nowadays. For instance, computing a node centrality may become unfeasible depending on the intended centrality due to its computational cost. One solution is to develop fast methods capable of approximating network centralities. Here, we propose an approach for efficiently approximating node centralities for large networks using Neural Networks and Graph Embedding techniques. Our proposed model, entitled Network Centrality Approximation using Graph Embedding (NCA-GE), uses the adjacency matrix of a graph and a set of features for each node (here, we use only the degree) as input and computes the approximate desired centrality rank for every node. NCA-GE has a time complexity of O(jEj), E being the set of edges of a graph, making it suitable for large networks. NCA-GE also trains pretty fast, requiring only a set of a thousand small synthetic scale-free graphs (ranging from 100 to 1000 nodes each), and it works well for different node centralities, network sizes, and topologies. Finally, we compare our approach to the state-of-the-art method that approximates centrality ranks using the degree and eigenvector centralities as input, where we show that the NCA-GE outperforms the former in a variety of scenarios. 1 Introduction Networks are present in several real-world applications spread among different disciplines, such as biology, mathematics, sociology, and computer science, just to name a few. Therefore, network analysis is a crucial tool for extracting relevant information. -
Are the Different Layers of a Social Network Conveying the Same
Manivannan et al. REGULAR ARTICLE Are the different layers of a social network conveying the same information? Ajaykumar Manivannan1, W. Quin Yow1, Roland Bouffanais1y and Alain Barrat2,3*y *Correspondence: [email protected] Abstract 1Singapore University of Technology and Design, 8 Comprehensive and quantitative investigations of social theories and phenomena Somapah Road, 487372, Singapore increasingly benefit from the vast breadth of data describing human social 2 Aix Marseille Univ, Universit´ede relations, which is now available within the realm of computational social science. Toulon, CNRS, CPT, Marseille, France Such data are, however, typically proxies for one of the many interaction layers 3Data Science Laboratory, composing social networks, which can be defined in many ways and are typically Institute for Scientific Interchange composed of communication of various types (e.g., phone calls, face-to-face (ISI) Foundation, Torino, Italy Full list of author information is communication, etc.). As a result, many studies focus on one single layer, available at the end of the article corresponding to the data at hand. Several studies have, however, shown that y Equal contributor these layers are not interchangeable, despite the presence of a certain level of correlations between them. Here, we investigate whether different layers of interactions among individuals lead to similar conclusions with respect to the presence of homophily patterns in a population|homophily represents one of the widest studied phenomenon in social networks. To this aim, we consider a dataset describing interactions and links of various nature in a population of Asian students with diverse nationalities, first language and gender. -
Temporal Network Metrics and Their Application to Real World Networks
Temporal network metrics and their application to real world networks John Kit Tang Robinson College University of Cambridge 2011 This dissertation is submitted for the degree of Doctor of Philosophy Declaration This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation does not exceed the regulation length of 60 000 words, including tables and footnotes. Summary The analysis of real social, biological and technological networks has attracted a lot of attention as technological advances have given us a wealth of empirical data. Classic studies looked at analysing static or aggregated networks, i.e., networks that do not change over time or built as the results of aggregation of information over a certain period of time. Given the soaring collections of measurements related to very large, real network traces, researchers are quickly starting to realise that connections are inherently varying over time and exhibit more dimensionality than static analysis can capture. This motivates the work in this dissertation: new tools for temporal complex network analysis are required when analysing real networks that inherently change over time. Firstly, we introduce the temporal graph model and formalise the notion of shortest temporal paths, used extensively in graph theory, and show that as static graphs ignore the time order of contacts, the available links are overestimated and the true shortest paths are underestimated. In addition, contrary to intuition, we find that slowly evolving graphs can be efficient for information dissemination due to small-world behaviour in temporal graphs. -
Temporal Network Approach to Explore Bike Sharing Usage Patterns
Temporal Network Approach to Explore Bike Sharing Usage Patterns Aizhan Tlebaldinova1, Aliya Nugumanova1, Yerzhan Baiburin1, Zheniskul Zhantassova2, Markhaba Karmenova2 and Andrey Ivanov3 1Laboratory of Digital Technologies and Modeling, S. Amanzholov East Kazakhstan State University, Shakarim Street, Ust-Kamenogorsk, Kazakhstan 2Department of Computer Modeling and Information Technologies, S. Amanzholov East Kazakhstan State University, Shakarim Street, Ust-Kamenogorsk, Kazakhstan 3JSC «Bipek Auto» Kazakhstan, Bazhov Street, Ust-Kamenogorsk, Kazakhstan Keywords: Bike Sharing, Temporal Network, Betweenness Centrality, Clustering, Time Series. Abstract: The bike-sharing systems have been attracting increase research attention due to their great potential in developing smart and green cities. On the other hand, the mathematical aspects of their design and operation generate a lot of interesting challenges for researchers in the field of modeling, optimization and data mining. The mathematical apparatus that can be used to study bike sharing systems is not limited only to optimization methods, space-time analysis or predictive analytics. In this paper, we use temporal network methodology to identify stable trends and patterns in the operation of the bike sharing system using one of the largest bike-sharing framework CitiBike NYC as an example. 1 INTRODUCTION cluster centralization measurements for one hour of a certain day of the week into one value and decode The bike-sharing systems have been attracting it into a color cell. In order to make heat map more increase research attention due to their great contrast and effective, we propose an unusual way of potential in developing smart and green cities. On collapsing data, in which only the highest cluster the other hand, the mathematical aspects of their centralization values are taken into account. -
Nonlinearity + Networks: a 2020 Vision
Nonlinearity + Networks: A 2020 Vision Mason A. Porter Abstract I briefly survey several fascinating topics in networks and nonlinearity. I highlight a few methods and ideas, including several of personal interest, that I anticipate to be especially important during the next several years. These topics include temporal networks (in which the entities and/or their interactions change in time), stochastic and deterministic dynamical processes on networks, adaptive networks (in which a dynamical process on a network is coupled to dynamics of network structure), and network structure and dynamics that include “higher-order” interactions (which involve three or more entities in a network). I draw examples from a variety of scenarios, including contagion dynamics, opinion models, waves, and coupled oscillators. 1 Introduction Network analysis is one of the most exciting areas of applied and industrial math- ematics [121, 141, 143]. It is at the forefront of numerous and diverse applications throughout the sciences, engineering, technology, and the humanities. The study of networks combines tools from numerous areas of mathematics, including graph theory, linear algebra, probability, statistics, optimization, statistical mechanics, sci- entific computation, and nonlinear dynamics. In this chapter, I give a short overview of popular and state-of-the-art topics in network science. My discussions of these topics, which I draw preferentially from ones that relate to nonlinear and complex systems, will be terse, but I will cite many review articles and highlight specific research papers for those who seek more details. This chapter is not a review or even a survey; instead, I give my perspective on the short-term and medium-term future of network analysis in applied mathematics for 2020 and beyond. -
Contextual Experience Modifies Functional Connectome Indices of Topological Strength and Organization
bioRxiv preprint doi: https://doi.org/10.1101/2020.06.13.150060; this version posted June 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Contextual experience modifies functional connectome indices of topological strength and organization Marjory Pompilus1,2, Luis M. Colon-Perez4, Matteo M. Grudny1, **Marcelo Febo1,2,3 1 Department of Psychiatry, 2Advanced Magnetic Resonance Imaging and Spectroscopy (AMRIS) Facility, 3Evelyn F. and William L. McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida; 4Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, School of Medicine, University of California, Irvine, California Short title: Experience-dependent functional topology in rat brain **Corresponding author: Marcelo Febo, PhD P.O. Box 100256, Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL 32611 Email: [email protected]; Phone: +1 (352) 294 4911 Acknowledgments: Supported by National Institute on Drug Abuse grant R03 DA042971, R21 AG065819 and University of Florida College of Medicine Opportunity fund (DRPD-ROF2019) to MF. LMC-P was supported by a McKnight Brain Foundation postdoctoral fellowship and is supported by K25 DA047458 and a young investigator grant from the Brain and Behavior Research Foundation. The contents of this manuscript are solely the responsibility of the authors and do not necessarily represent the official views of the funding agencies. This work was performed in the McKnight Brain Institute at the National High Magnetic Field Laboratory’s AMRIS Facility, which is supported by National Science Foundation Cooperative Agreement No. -
Dyhcn: Dynamic Hypergraph Convolutional Networks
Under review as a conference paper at ICLR 2021 DYHCN: DYNAMIC HYPERGRAPH CONVOLUTIONAL NETWORKS Anonymous authors Paper under double-blind review ABSTRACT Hypergraph Convolutional Network (HCN) has become a default choice for cap- turing high-order relations among nodes, i.e., encoding the structure of a hyper- graph. However, existing HCN models ignore the dynamic evolution of hyper- graphs in the real-world scenarios, i.e., nodes and hyperedges in a hypergraph change dynamically over time. To capture the evolution of high-order relations and facilitate relevant analytic tasks, we formulate dynamic hypergraph and devise the Dynamic Hypergraph Convolutional Networks (DyHCN). In general, DyHCN consists of a Hypergraph Convolution (HC) to encode the hypergraph structure at a time point and a Temporal Evolution module (TE) to capture the varying of the relations. The HC is delicately designed by equipping inner attention and outer at- tention, which adaptively aggregate nodes’ features to hyperedge and estimate the importance of each hyperedge connected to the centroid node, respectively. Exten- sive experiments on the Tiigo and Stocktwits datasets show that DyHCN achieves superior performance over existing methods, which implies the effectiveness of capturing the property of dynamic hypergraphs by HC and TE modules. 1 INTRODUCTION Graph Convolutional Network (GCN) Scarselli et al. (2008) extends deep neural networks to process graph data, which encodes the relations between nodes via propagating node features over the graph structure. GCN has become a promising solution in a wide spectral of graph analytic tasks, such as relation detection Schlichtkrull et al. (2018) and recommendation Ying et al. (2018). An emer- gent direction of GCN research is extending the graph covolution operations to hypergraphs, i.e., hypergraph convolutional networks Zhu et al. -
Improving the Betweenness Centrality of a Node by Adding Links
X Improving the Betweenness Centrality of a Node by Adding Links ELISABETTA BERGAMINI, Karlsruhe Institute of Technology, Germany PIERLUIGI CRESCENZI, University of Florence, Italy GIANLORENZO D’ANGELO, Gran Sasso Science Institute (GSSI), Italy HENNING MEYERHENKE, Institute of Computer Science, University of Cologne, Germany LORENZO SEVERINI, ISI Foundation, Italy YLLKA VELAJ, University of Chieti-Pescara, Italy Betweenness is a well-known centrality measure that ranks the nodes according to their participation in the shortest paths of a network. In several scenarios, having a high betweenness can have a positive impact on the node itself. Hence, in this paper we consider the problem of determining how much a vertex can increase its centrality by creating a limited amount of new edges incident to it. In particular, we study the problem of maximizing the betweenness score of a given node – Maximum Betweenness Improvement (MBI) – and that of maximizing the ranking of a given node – Maximum Ranking Improvement (MRI). We show 1 that MBI cannot be approximated in polynomial-time within a factor ¹1 − 2e º and that MRI does not admit any polynomial-time constant factor approximation algorithm, both unless P = NP. We then propose a simple greedy approximation algorithm for MBI with an almost tight approximation ratio and we test its performance on several real-world networks. We experimentally show that our algorithm highly increases both the betweenness score and the ranking of a given node and that it outperforms several competitive baselines. To speed up the computation of our greedy algorithm, we also propose a new dynamic algorithm for updating the betweenness of one node after an edge insertion, which might be of independent interest. -
Navigation of Brain Networks
Navigation of brain networks Caio Seguina,1, Martijn P. van den Heuvelb,c, and Andrew Zaleskya,d aMelbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC 3010, Australia; bDutch Connectome Lab, Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands; cDepartment of Clinical Genetics, Amsterdam Neuroscience, VU University Medical Center, 1081 HV Amsterdam, The Netherlands; and dDepartment of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia Edited by Edward T. Bullmore, University of Cambridge, Cambridge, United Kingdom, and accepted by Editorial Board Member Michael S. Gazzaniga May 7, 2018 (received for review January 24, 2018) Understanding the mechanisms of neural communication in large- Navigation is a network communication strategy that routes scale brain networks remains a major goal in neuroscience. We information based on the distance between network nodes (23). investigated whether navigation is a parsimonious routing model Navigating a network is as simple as progressing to the next node for connectomics. Navigating a network involves progressing to that is closest in distance to a desired target. Navigation is not the next node that is closest in distance to a desired destina- guaranteed to successfully reach a target destination. Moreover, tion. We developed a measure to quantify navigation efficiency targets might be reached using long, inefficient paths. However, and found that connectomes in a range of mammalian species several real-world networks are known to be efficiently naviga- (human, mouse, and macaque) can be successfully navigated with ble, including biological, social, transportation, and technological near-optimal efficiency (>80% of optimal efficiency for typical systems (24–26). -
The Pennsylvania State University the Graduate School ANALYSIS
The Pennsylvania State University The Graduate School ANALYSIS OF EVOLVING GRAPHS A Dissertation in Industrial Engineering and Operations Research by An-Yi Chen c 2009 An-Yi Chen Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2009 The thesis of An-Yi Chen was reviewed and approved∗ by the following: Dennis K. J. Lin Distinguished Professor of Supply Chain and Information Systems Thesis Advisor, Chair of Committee M. Jeya Chandra Professor of Industrial Engineering Graduate Program Officer for Industrial Engineering Soundar R. T. Kumara Allen E. Pearce/Allen M. Pearce Professor of Industrial Engineering Zan Huang Assistant Professor of Supply Chain and Information Systems ∗Signatures are on file in the Graduate School. Abstract Despite the tremendous variety of complex networks in the natural, physical, and social worlds, little is known scientifically about the common rules that underlie all networks. How do real-world networks look like? How do they evolve over time? How could we tell an abnormal evolving network from a normal one? To be able to answer these questions, we proposed a novel analytical approach, lying at the intersection of graph theory and time series analysis, to study the network evolution process. Utilizing the notion of evolution formalizes a time domain in the problem. Specifically, we model the evolution process through the creation of a sequence of sample graphs. The idea of slicing the entire network evolution process by time stamps provides us a sequence of sampled graphs within the study period and engages the opportunity to take a time series like approach to tackle the problem. -
Span-Core Decomposition for Temporal
Span-core Decomposition for Temporal Networks: Algorithms and Applications Edoardo Galimberti, Martino Ciaperoni, Alain Barrat, Francesco Bonchi, Ciro Cattuto, Francesco Gullo To cite this version: Edoardo Galimberti, Martino Ciaperoni, Alain Barrat, Francesco Bonchi, Ciro Cattuto, et al.. Span- core Decomposition for Temporal Networks: Algorithms and Applications. ACM Transactions on Knowledge Discovery from Data (TKDD), ACM, 2020, 15 (1), pp.1-44. 10.1145/3418226. hal- 03047191 HAL Id: hal-03047191 https://hal.archives-ouvertes.fr/hal-03047191 Submitted on 16 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Span-core Decomposition for Temporal Networks: Algorithms and Applications Edoardo Galimberti, Martino Ciaperoni, Alain Barrat, Francesco Bonchi, Ciro Cattuto, Francesco Gullo December 16, 2020 Abstract When analyzing temporal networks, a fundamental task is the iden- tification of dense structures (i.e., groups of vertices that exhibit a large number of links), together with their temporal span (i.e., the period of time for which the high density holds). In this paper we tackle this task by introducing a notion of temporal core decomposition where each core is associated with two quantities, its coreness, which quantifies how densely it is connected, and its span, which is a temporal interval: we call such cores span-cores.