Developing Detailed Chemical Kinetic Mechanisms for Fuel Combustion

Total Page:16

File Type:pdf, Size:1020Kb

Developing Detailed Chemical Kinetic Mechanisms for Fuel Combustion Available online at www.sciencedirect.com Proceedings of the Combustion Institute 37 (2019) 57–81 www.elsevier.com/locate/proci Developing detailed chemical kinetic mechanisms for fuel combustion Henry J. Curran Combustion Chemistry Centre, School of Chemistry, Ryan Institute, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland Received 16 November 2017; accepted 10 June 2018 Available online 1 July 2018 Abstract This paper discusses a brief history of chemical kinetic modeling, with some emphasis on the development of chemical kinetic mechanisms describing fuel oxidation. At high temperatures, the important reactions tend to be those associated with the H 2 /O 2 and C 1 –C 2 sub-mechanisms, particularly for non-aromatic fuels. At low temperatures, and for aromatic fuels, the reactions that dominate and control the reaction kinetics are those associated with the parent fuel and its daughter radicals. Strategies used to develop and optimize chemical kinetic mechanisms are discussed and some reference is made to lumped and reduced mechanisms. The importance of accurate thermodynamic parameters for the species involved is also highlighted, as is the little-studied importance of collider effciencies of different third bodies involved in pressure-dependent reactions. ©2018TheCombustionInstitute.PublishedbyElsevierInc.Allrightsreserved. Keywords: Chemical kinetics; Mechanisms; Oxidation; Hydrocarbon; Thermochemistry 1. Introduction There are broadly four levels of development that combustion researchers work in, (i) quantum Combustion is the ultimate interdisciplinary mechanics and direct kinetic measurements of rate feld; it requires knowledge of chemistry, physics, constants and reaction intermediate and products, fuid dynamics, thermodynamics, mathematics (ii) fuel structure and fundamental chemistry, and computer science. In addition, combustion (iii) CFD studies with reduced chemistry and science has a well-defned purpose in society today, (iv) practical applications. Electronic structure, facilitating the study and analysis of problems ab-initio methods and statistical theory lies at associated with the generation of air pollutants. “level 1”. These are used to calculate accurate ther- Figure 1 presents a diagram of the layers of mochemical parameters and rate constants for the information required to fully understand the com- species involved in chemical reactions. At “level 2”, bustion of a fuel from a molecular level leading these species and reactions are amalgamated into ultimately to their use in modern combustors with detailed chemical kinetic mechanisms which are increased effciency and reduced emissions. validated by comparing to experimental measure- ments, starting with homogeneous reactors and laminar fames, and steadily getting more complex E-mail address: [email protected] https://doi.org/10.1016/j.proci.2018.06.054 1540-7489 ©2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved. 58 H.J. Curran / Proceedings of the Combustion Institute 37 (2019) 57–81 Fig. 1. Schematic diagram (courtesy of Dr. Kieran Somers) showing the steps in the development of the understanding of combustion and application to real devices. (rapid compression machines and engines) and are/were used as surrogates for gasoline fuel and more practical at level 2. At level 3 chemical n-heptane for diesel fuel. Further work has been kinetic mechanisms are reduced in the number of performed on developing mechanisms describing species and reactions, simultaneously retaining a even larger hydrocarbon and oxygenated hydrocar- target feature e.g., ignition delay time, fame speed, bon molecules [6,7] and surrogate mechanisms [8] . emissions predictions, etc., so that they can be used These have been followed by recent successes in the in combination with chemical reactor networks or development of jet-fuel surrogates formulated us- computational fuid dynamic simulations in novel ing real fuel properties [9,10] and discussed in more designs of cleaner, more effcient combustors. At detail by Dryer [11] . Generally, predictions using level 4 are the practical applications people who published chemical kinetic mechanisms describing study jet engines, diesel engines, natural gas safety, the pyrolysis and/or oxidation of a fuel are within fuel inhibition, etc. less than a factor of two of experimental measure- Very few individuals/groups work at all four ments. However, despite the many successes in the levels. This paper will focus largely on level 2, community over the years there remain a lot of the development of detailed chemical kinetic potential improvements. The prediction of ignition mechanisms which depend on fuel structure and delay times for any fuel at temperatures above fundamental kinetics. There will be some dis- 1100 K typically depends on the kinetics describ- cussion and comment on level 1 where quantum ing the underlying C 0 –C 4 species. However, there chemistry plays an increasingly important role in is no commonly accepted community mechanism the development of detailed kinetic models. available to describe C 0 –C 4 fuel oxidation over a The chemical kinetic modeling community has wide range of temperature, pressure, equivalence had considerable success in developing reliable ratio, and dilution. In addition, we do not have a chemical kinetic mechanisms for fuel combustion. go-to database for the thermodynamic parameters GRI-Mech [1–3] was one of the frst mechanisms of species contained in chemical kinetic mech- freely available on the internet developed to sim- anisms. Similarly, databases containing libraries ulate natural gas mixtures and included NO x of measured validation data to develop reliable chemistry [3] to help with emissions predictions. predictive mechanisms need to be developed. The primary reference fuel (PRF) ( n -heptane and iso -octane) mechanisms published from Lawrence 1.1. What is a kinetic model? Livermore National laboratory [4,5] have also been very useful as they also are freely available A chemical kinetic mechanism contains species on the internet and describe the two fuels that with associated thermodynamic and transport H.J. Curran / Proceedings of the Combustion Institute 37 (2019) 57–81 59 properties and elementary chemical reactions and reactions that are important are the unimolecular associated rate constants. For instance, the oxida- fuel decomposition reactions and the reaction of tion of hydrogen can be described using the global the fuel with molecular oxygen. As reaction pro- reaction H ½O H O and that for methane gresses in time, higher concentrations of smaller 2 + 2 = 2 by CH 4 2O 2 CO 2 2H 2 O. However, these re- radical species are produced, eventually leading actions do+ not occur= as+ written. Hydrogen requires to autoignition of the fuel. For multi-dimensional eight species and approximately 30 elementary experiments, e.g., burner-stabilized fames, dif- reactions to describe its oxidation over a wide fusion and transport of species is important and range of pressure and temperature. For methane contributes to the species and energy conservation the mechanism is even more complex—requiring equations, so that the transport properties of all approximately 30 species and 200 elementary of the species must be included in the calculation. reactions. An elementary reaction specifes the Thus, transport properties for all of these species reactant and product species and the associated are needed and this highlights the need for accurate rate constant. The forward rate of the elementary transport properties. There has been a recent study reaction A ! B can be written as k f [A] and that in by Liu et al. [26] discussing the theory and exper- the reverse direction k r [B], where k f and k r are the iment of binary diffusion coeffcients of n -alkanes forward and reverse rate constants, respectively. in diluent gases, who refer to previous work by The expression for the rate constant can be written Violi and co-workers [27,28] , Jasper et al. [29] and in the Arrhenius form [12] where k A exp(– Jasper and Miller [30] on the subject. Typically, the Ea / RT ) or modifed Arrhenius form =[13,14]× where most important species controlling the reactivity k A T n exp(–Ea/RT ). At equilibrium the in fames are hydrogen atoms as these are light forward= × and ×reverse rates are equal, so we can and can diffuse easily from the reaction zone into write K k / k [B]/[A] (in this case K K the unburned gases of a fame. The importance of p = f r = p = C as !n 0). In the Arrhenius form, knowing H˙ atoms in fames is demonstrated by sensitivity = that K p exp(–!G r / RT ) it can be shown that analyses which show high sensitivity to reactions = A f /A r !S r / R and !H r E f – E r . Thus, from producing and consuming them. = = a knowledge of the forward rate constant and the The process involved in developing chemical thermochemical parameters of the reacting species kinetic models has been described previously by it is possible to calculate the reverse rate constant Miller et al. [31] Frenklach et al. [32] and Simmie and allow for thermodynamic equilibrium. A [33] . Typically, models are validated by simulating kinetic model contains a listing of both the species a wide range of experimental targets, including with their thermodynamic parameters and all of ignition delay times, fame speeds and species con- the elementary reactions and their associated rate centration measurements in fow- and jet-stirred constants and third body collision effciencies.
Recommended publications
  • Free and Open Source Software for Computational Chemistry Education
    Free and Open Source Software for Computational Chemistry Education Susi Lehtola∗,y and Antti J. Karttunenz yMolecular Sciences Software Institute, Blacksburg, Virginia 24061, United States zDepartment of Chemistry and Materials Science, Aalto University, Espoo, Finland E-mail: [email protected].fi Abstract Long in the making, computational chemistry for the masses [J. Chem. Educ. 1996, 73, 104] is finally here. We point out the existence of a variety of free and open source software (FOSS) packages for computational chemistry that offer a wide range of functionality all the way from approximate semiempirical calculations with tight- binding density functional theory to sophisticated ab initio wave function methods such as coupled-cluster theory, both for molecular and for solid-state systems. By their very definition, FOSS packages allow usage for whatever purpose by anyone, meaning they can also be used in industrial applications without limitation. Also, FOSS software has no limitations to redistribution in source or binary form, allowing their easy distribution and installation by third parties. Many FOSS scientific software packages are available as part of popular Linux distributions, and other package managers such as pip and conda. Combined with the remarkable increase in the power of personal devices—which rival that of the fastest supercomputers in the world of the 1990s—a decentralized model for teaching computational chemistry is now possible, enabling students to perform reasonable modeling on their own computing devices, in the bring your own device 1 (BYOD) scheme. In addition to the programs’ use for various applications, open access to the programs’ source code also enables comprehensive teaching strategies, as actual algorithms’ implementations can be used in teaching.
    [Show full text]
  • Atom: a MATLAB PACKAGE for MANIPULATION of MOLECULAR SYSTEMS
    Clays and Clay Minerals, Vol. 67, No. 5:419–426, 2019 atom: A MATLAB PACKAGE FOR MANIPULATION OF MOLECULAR SYSTEMS MICHAEL HOLMBOE * 1Chemistry Department, Umeå University, SE-901 87 Umeå, Sweden Abstract—This work presents Atomistic Topology Operations in MATLAB (atom), an open source library of modular MATLAB routines which comprise a general and flexible framework for manipulation of atomistic systems. The purpose of the atom library is simply to facilitate common operations performed for construction, manipulation, or structural analysis. Due to the data structure used, atoms and molecules can be operated upon based on different chemical names or attributes, such as atom-ormolecule-ID, name, residue name, charge, positions, etc. Furthermore, the Bond Valence Method and a neighbor-distance analysis can be performed to assign many chemical properties of inorganic molecules. Apart from reading and writing common coordinate files (.pdb, .xyz, .gro, .cif) and trajectories (.dcd, .trr, .xtc; binary formats are parsed via third-party packages), the atom library can also be used to generate topology files with bonding and angle information taking the periodic boundary conditions into account, and supports basic Gromacs, NAMD, LAMMPS, and RASPA2 topology file formats. Focusing on clay-mineral systems, the library supports CLAYFF (Cygan, 2004) but can also generate topology files for the INTERFACE forcefield (Heinz, 2005, 2013) for Gromacs and NAMD. Keywords—CLAYFF. Gromacs . INTERFACE force field . MATLAB . Molecular dynamics simulations . Monte Carlo INTRODUCTION Dombrowsky et al. 2018; Kapla & Lindén 2018; Matsunaga & Sugita 2018). This work presents the Molecular modeling is becoming increasingly important in Atomistic Topology Operations in MATLAB (atom)li- many different areas of fundamental and applied research brary – a large collection of >100 modular MATLAB (Cygan 2001;Luetal.2006; Medina, 2009).
    [Show full text]
  • ES2015 Compilation of Abstracts of Invited Speakers and Contributed
    ES2015 Compilation of Abstracts of Invited Speakers and Contributed Talk Speakers MONDAY, JUNE 22, 2015 Haggett Hall, Cascade Room, University of Washington New Methods Jim Chelikowsky, U of Texas, Austin “Seeing” the covalent bond: Simulating Atomic Force Microscopy Images Alexandru Georgescu, Yale U A Generalized Slave-Particle Formalism for Extended Hubbard Models Bryan Clark, UIUC From ab-initio to model systems: tales of unusual conductivity in electronic systems at high temperatures Advances in DFT and Applications Priya Gopal, Central Michigan U Novel tools for accelerated materials discovery in the AFLOWLIB.ORG repository Ismaila Dabo, Penn State U Electronic-Structure Calculations from Koopmans-Compliant Functionals Improving the performance of ab initio molecular dynamics simulations and band structure calculations for Eric Bylaska, PNNL actinide and geochemical systems with new algorithms and new machines QMC Hao Shi, College of William & Mary Recent developments in auxiliary-field quantum Monte Carlo: magnetic orders and spin-orbit coupling Fengjie Ma, College of William & Mary Ground and excited state calculations of auxiliary-field Quantum Monte Carlo in solids Paul Kent, ORNL New applications of Diffusion Quantum Monte Carlo Many Body Diana Qiu, UC Berkeley Many-body effects on the electronic and optical properties of quasi-two-dimensional materials Mei-Yin Chou, Academia Sinica Dirac Electrons in Silicene on Ag(111): Do they exist? Emmanuel Gull, U of Michigan Solutions of the Two Dimensional Hubbard Model TUESDAY, JUNE
    [Show full text]
  • Advances in Automated Transition State Theory Calculations: Improvements on the Autotst Framework
    Advances in automated transition state theory calculations: improvements on the AutoTST framework Nathan D. Harmsa, Carl E. Underkofflera, Richard H. Westa aDepartment of Chemical Engineering Northeastern University, Boston, MA 02115, USA Abstract Kinetic modeling of combustion chemistry has made substantial progress in recent years with the development of increasingly detailed models. However, many of the chemical kinetic parameters utilized in detailed models are estimated, often inaccurately. To help replace rate estimates with more accurate calculations, we have developed AutoTST, an automated Transition State Theory rate calculator. This work describes improvements to AutoTST, including: a systematic conformer search to find an ensemble of low energy conformers, vibrational analysis to validate transition state geometries, more accurate symmetry number calculations, and a hindered rotor treatment when deriving kinetics. These improvements resulted in location of transition state geometry for 93% of cases and generation of kinetic parameters for 74% of cases. Newly calculated parameters agree well with benchmark calculations and perform well when used to replace estimated parameters in a detailed kinetic model of methanol combustion. Keywords: Transition state theory, Chemical kinetic models, Model comparison, Uncertainty 1. Introduction Detailed kinetic models allow researchers to understand the chemistry of complex phenomena in systems such as combustion and hetrogeneous catalysis, thus enabling them to make informed experimental design choices, and to design and optimize processes and devices. Microkinetic models often contain hundreds of intermediates and thousands of reactions, for which thermodynamic and kinetic parameters need to be specified [1,2]. These parameters are ideally determined experimen- tally or calculated theoretically with high accuracy, but most are estimated [3].
    [Show full text]
  • Cantherm Refresher/Overview Enoch Dames RMG Study Group Meeting Jan
    CanTherm Refresher/Overview Enoch Dames RMG Study Group Meeting Jan. 12, 2015 Online Resources: http://cheme.scripts.mit.edu/green-group/cantherm/ http://greengroup.github.io/RMG-Py/theory/measure/index.html http://cccbdb.nist.gov/ - tables of force constant scaling factors, lots of explanations and tutorials User Guide: http://greengroup.github.io/RMG-Py/users/cantherm/index.html Outline of this RMG Study Group •What is CanTherm? How is it used? •The world’s most compact overview of the theory behind rate theory packages (with emphasis on kinetics) •Running CanTherm •Complex Pdep Example Calculation, I/O components Objective of this RMG Study Group Provide basic information and conduct a brief overview of topics necessary for computing pressure dependent rates using CanTherm What is CanTherm? CanTherm is an open source python package of utilities for the computation of the following: 1. Thermodynamic properties of stable molecules (H298, S , Cp(T) ) (see Shamel’s study group presentation #5 for more) 2. High pressure limit rate coefficients, k¥ 3. Pressure dependent rate coefficients, k(T,P), for arbitrarily large multiple-well reaction networks using either Modified Strong Collision, Reservoir State or Chemically Significant Eigenvalue (CSE) approximations Notes: • CanTherm does not have a GUI • There are numerous other similar codes out there, but CanTherm has the nice feature that many molecular properties can be automatically read in from outputs of quantum chemistry jobs • If you forked over a copy of RMG-Py from Github, you have CanTherm How CanTherm Is Used Prepare jobs via GaussView, WebMO, Avagadro Molecule (open source), etc. See: Editor http://en.wikipedia.org/wiki/Molecule_editor Quantum Chemistry Application: Gaussian, QChem Run jobs to obtain energies, frequencies Molpro, Mopac CanTherm Compute k(T,P), thermo parameters Rate Coefficients, Thermodynamic Properties Use k(T,P), thermo parameters for science Electronic Structure and Rates: varying levels of theory 1 Tt1 = Nelec Zador et al 2010 Prog.
    [Show full text]
  • Quantum Chemistry (QC) on Gpus Feb
    Quantum Chemistry (QC) on GPUs Feb. 2, 2017 Overview of Life & Material Accelerated Apps MD: All key codes are GPU-accelerated QC: All key codes are ported or optimizing Great multi-GPU performance Focus on using GPU-accelerated math libraries, OpenACC directives Focus on dense (up to 16) GPU nodes &/or large # of GPU nodes GPU-accelerated and available today: ACEMD*, AMBER (PMEMD)*, BAND, CHARMM, DESMOND, ESPResso, ABINIT, ACES III, ADF, BigDFT, CP2K, GAMESS, GAMESS- Folding@Home, GPUgrid.net, GROMACS, HALMD, HOOMD-Blue*, UK, GPAW, LATTE, LSDalton, LSMS, MOLCAS, MOPAC2012, LAMMPS, Lattice Microbes*, mdcore, MELD, miniMD, NAMD, NWChem, OCTOPUS*, PEtot, QUICK, Q-Chem, QMCPack, OpenMM, PolyFTS, SOP-GPU* & more Quantum Espresso/PWscf, QUICK, TeraChem* Active GPU acceleration projects: CASTEP, GAMESS, Gaussian, ONETEP, Quantum Supercharger Library*, VASP & more green* = application where >90% of the workload is on GPU 2 MD vs. QC on GPUs “Classical” Molecular Dynamics Quantum Chemistry (MO, PW, DFT, Semi-Emp) Simulates positions of atoms over time; Calculates electronic properties; chemical-biological or ground state, excited states, spectral properties, chemical-material behaviors making/breaking bonds, physical properties Forces calculated from simple empirical formulas Forces derived from electron wave function (bond rearrangement generally forbidden) (bond rearrangement OK, e.g., bond energies) Up to millions of atoms Up to a few thousand atoms Solvent included without difficulty Generally in a vacuum but if needed, solvent treated classically
    [Show full text]
  • Package Name Software Description Project
    A S T 1 Package Name Software Description Project URL 2 Autoconf An extensible package of M4 macros that produce shell scripts to automatically configure software source code packages https://www.gnu.org/software/autoconf/ 3 Automake www.gnu.org/software/automake 4 Libtool www.gnu.org/software/libtool 5 bamtools BamTools: a C++ API for reading/writing BAM files. https://github.com/pezmaster31/bamtools 6 Biopython (Python module) Biopython is a set of freely available tools for biological computation written in Python by an international team of developers www.biopython.org/ 7 blas The BLAS (Basic Linear Algebra Subprograms) are routines that provide standard building blocks for performing basic vector and matrix operations. http://www.netlib.org/blas/ 8 boost Boost provides free peer-reviewed portable C++ source libraries. http://www.boost.org 9 CMake Cross-platform, open-source build system. CMake is a family of tools designed to build, test and package software http://www.cmake.org/ 10 Cython (Python module) The Cython compiler for writing C extensions for the Python language https://www.python.org/ 11 Doxygen http://www.doxygen.org/ FFmpeg is the leading multimedia framework, able to decode, encode, transcode, mux, demux, stream, filter and play pretty much anything that humans and machines have created. It supports the most obscure ancient formats up to the cutting edge. No matter if they were designed by some standards 12 ffmpeg committee, the community or a corporation. https://www.ffmpeg.org FFTW is a C subroutine library for computing the discrete Fourier transform (DFT) in one or more dimensions, of arbitrary input size, and of both real and 13 fftw complex data (as well as of even/odd data, i.e.
    [Show full text]
  • RMG-Py and Cantherm Documentation ⇌Release 2.0.0
    RMG RMG-Py and CanTherm Documentation ⇌Release 2.0.0 William H. Green, Richard H. West, and the RMG Team Sep 16, 2016 CONTENTS 1 RMG User’s Guide 3 1.1 Introduction...............................................3 1.2 Release Notes..............................................4 1.3 Overview of Features...........................................6 1.4 Installation................................................7 1.5 Creating Input Files........................................... 20 1.6 Example Input Files........................................... 29 1.7 Running a Job.............................................. 36 1.8 Analyzing the Output Files........................................ 37 1.9 Species Representation.......................................... 38 1.10 Group Representation.......................................... 39 1.11 Databases................................................. 39 1.12 Thermochemistry Estimation...................................... 58 1.13 Kinetics Estimation........................................... 63 1.14 Liquid Phase Systems.......................................... 65 1.15 Guidelines for Building a Model..................................... 72 1.16 Standalone Modules........................................... 73 1.17 Frequently Asked Questions....................................... 81 1.18 Credits.................................................. 82 1.19 How to Cite................................................ 82 2 CanTherm User’s Guide 83 2.1 Introduction..............................................
    [Show full text]
  • Pyjac: Analytical Jacobian Generator for Chemical Kinetics
    pyJac: analytical Jacobian generator for chemical kinetics Kyle E. Niemeyera,∗, Nicholas J. Curtisb, Chih-Jen Sungb aSchool of Mechanical, Industrial, and Manufacturing Engineering Oregon State University, Corvallis, OR 97331, USA bDepartment of Mechanical Engineering University of Connecticut, Storrs, CT, 06269, USA Abstract Accurate simulations of combustion phenomena require the use of detailed chemical kinet- ics in order to capture limit phenomena such as ignition and extinction as well as predict pollutant formation. However, the chemical kinetic models for hydrocarbon fuels of prac- tical interest typically have large numbers of species and reactions and exhibit high levels of mathematical stiffness in the governing differential equations, particularly for larger fuel molecules. In order to integrate the stiff equations governing chemical kinetics, generally reactive-flow simulations rely on implicit algorithms that require frequent Jacobian matrix evaluations. Some in situ and a posteriori computational diagnostics methods also require accurate Jacobian matrices, including computational singular perturbation and chemical ex- plosive mode analysis. Typically, finite differences numerically approximate these, but for larger chemical kinetic models this poses significant computational demands since the num- ber of chemical source term evaluations scales with the square of species count. Furthermore, existing analytical Jacobian tools do not optimize evaluations or support emerging SIMD processors such as GPUs. Here we introduce pyJac, a Python-based open-source program that generates analytical Jacobian matrices for use in chemical kinetics modeling and anal- ysis. In addition to producing the necessary customized source code for evaluating reaction rates (including all modern reaction rate formulations), the chemical source terms, and the Jacobian matrix, pyJac uses an optimized evaluation order to minimize computational and memory operations.
    [Show full text]
  • An Open-Source, Extensible Software Suite for CVD Process Simulation D
    An Open-Source, Extensible Software Suite for CVD Process Simulation D. G. Goodwin Division of Engineering and Applied Science SIH4 0.0016 California Institute of Technology Mail Code 104-44 0.0135 Pasadena, CA 91125 SIH2 0.852 4.8e-005 Chemical vapor deposition processes involve a com- plex interplay of chemistry and transport, both in the 0.85 0.4 vapor and on the surface. Arriving at a mechanistic H3SISIH 0.415 0.429 understanding usually requires both experimental pro- 2.9e-005 cess diagnostics and numerical simulation. Just as ap- propriate tools (gas chromatographs, lasers, spectrom- 1 0.8 0.429 eters) are required for diagnostics, suitable numerical H2SISIH2 SI3H8 0.101 tools are needed for simulation, including ones to com- 0.0038 7.3e-005 pute chemical equilibrium, simulate stirred reactors or reacting flow problems with surface chemistry, carry 0.83 out reaction path analysis, among others. To be most SI2H6 effective, these software tools should be open-source, 0.00019 so that their internal workings can be examined if nec- essary (as can be done with hardware), should be ex- tensible, and should have easy-to-use interfaces. Figure 1: Example reaction path diagram tracing the This paper describes a suite of open-source software flow of elemental silicon among species. Each node is tools designed to provide a flexible, extensible toolkit labeled with the species name and mole fraction, and for simulations involving chemical kinetics, thermo- each path is labeled with its net relative flux. It is also dynamics, and transport processes. Known as Can- possible to show arrows for the forward and reverse tera, it can be used to efficiently evaluate thermody- paths separately, and to list the reaction contributing namic properties, transport properties, and homoge- to each path.
    [Show full text]
  • BIOVIA MATERIALS STUDIO OVERVIEW Datasheet
    BIOVIA MATERIALS STUDIO OVERVIEW Datasheet 10 Å 3 nm 15 µm Modeling and Simulation for Next Generation Materials. BIOVIA Materials Studio® is a complete modeling and simulation environment that enables researchers in materials science and chemistry to develop new materials by predicting the relationships of a material’s atomic and molecular structure with its properties and behavior. Using Materials Studio, researchers in many industries can engineer better performing materials of all types, including pharmaceuticals, catalysts, polymers and composites, metals and alloys, batteries and fuel cells, nanomaterials, and more. Materials Studio is the world’s most advanced, yet easy Materials Visualizer provides capability to construct, manipulate to use environment for modeling and evaluating materials and view models of molecules, crystalline materials, surfaces, performance and behavior. Using Materials Studio, materials polymers, and mesoscale structures. It also supports the full scientists experience the following benefits: range of Materials Studio simulations with capabilities to • Reduction in cost and time associated with physical testing visualize results through images, animations, graphs, charts, and experimentation through “Virtual Screening” of candidate tables, and textual data. Most tools in the Materials Visualizer material variations. can also be accessed through the MaterialsScript API, allowing • Acceleration of the innovation process - developing new, better expert users to create custom capabilities and automate performing, more sustainable, and cost effective materials faster repetitive tasks. Materials Visualizer’s Microsoft Windows than can be done with physical testing and experimentation. client operates with a range of Windows and Linux server • Improved fundamental understanding of the relationship architectures to provide a highly responsive user experience. between atomic and molecular structure with material properties and behavior.
    [Show full text]
  • Quick Navigation Mechanical Engineering Department Facilities
    Quick Navigation Department Facilities Multi-User Facilities Other Facilities Mechanical Engineering Department Facilities Departmental Facilities and Individual Faculty Research Laboratories: Shared Services Facilities Director: Haejune Kim We provide students and researchers open access to a wide range of equipment for measuring, characterizing and imaging of samples. If necessary, shared facility staff or super user of the instrument will offer training before giving access to the equipment. The shared services facilities are available to mechanical engineering faculty and students. Currently the group maintains and has available for scheduling the following machines:VEGA II LSU SEM, KLA- Tencor P-6 Stylus Profiler, VHX-600 Digital Microscope, High Performance Liquid Chromatography (HPLC), Total Organic Carbon (TOC) Analyzer, Atomic Layer Deposition (ALD) System, MicroClimate environmental chamber, Photron FSTCAM SA5 High Speed Camera, Olympus BX 61/Visitech QLC-100 Confocal Microscopy, Simultaneous Thermal Analyzer – Q600 SDT, Differential Scanning Calorimeter – DSC Q1000, Veeco Dektak 150 Profilometer, and Salt Spray Chamber. Acoustics and Signal Processing Laboratory Contact: Dr. Yong-Joe Kim The ASPL, founded in 2009, is a research laboratory of the Department of Mechanical Engineering at Texas A&M University (TAMU), College Station, Texas, USA. It is located at James J. Cain ’51 Building #409. Prof. Yong-Joe Kim currently serves as the director for the ASPL. The current research is focused on the areas of acoustics, signal processing, vibration, dynamics, and biomechanics. Advanced Computational Mechanics Laboratory Contact: Dr. J.N. Reddy Professor Reddy’s Advanced Computational Mechanics Laboratory (ACML) at Texas A&M University is dedicated to state-of-the-art research in the development of novel mathematical models and numerical simulation of physical phenomena.
    [Show full text]