The Nature of Fire

Total Page:16

File Type:pdf, Size:1020Kb

The Nature of Fire Laval University From the SelectedWorks of Fathi Habashi December, 2019 The aN ture of Fire Fathi Habashi Available at: https://works.bepress.com/fathi_habashi/588/ The Nature of Fire Introduction Fire remained a mystery for about two thousand years. Early people were much more intimately acquainted with fire than they are in the all-electric homes of today where fire is rarely seen. To the ancient Greeks fire was a magical element stolen from the gods and given to mankind by Prometheus. Some civilizations worshipped fire just as others worshipped the sun. In the early days of his evolution, man did not know how fire worked, but used it for hundreds of centuries. He was familiar with the volcano, lightning, forest fires, etc., but the mysterious flame, the similarity of its effects with that of the sun, its intimate connection with light, its terrible and yet genial power, easily account for the reverence in which it was held in ancient times. Fire was included in the four elements according to the Greek philosopher Empedocles about 440 BC, or earlier in the writings of the Persian prophet Zarathustra (630–553 BC) as a component of destruction as well as its utility in the cooking of foods. The Zoroastrians still keep fire burning in their temples since ancient times while modern Christians light candles in churches. Fire has its origin in the East even before Zarathustra. The Cambodian four elements is said to be described in the Sanskrit books and is well known to the people. Metallurgists of the Middle Ages like Vannoccio Biringuiccio (1480-1539) used fire to melt ores and cast metals and did not bother about its nature. It was in the middle of the 17th century that fire was the problem of the day - - what was its nature. The Four Elements A Zarathustra’s priest keeping fire burning in temple Phlogiston theory It was the alchemist Johann Joachim Becher (1635-1682) who first attempted to solve this problem. He was born at Speyer in Germany and was for a time in England. He published Physica Subterranea in 1669 and introduced the idea of an inflammable earth (terra pinguis) to explain combustibility, which was extended later by his student Georg Ernst Stahl (1659-1734). Johann Joachim Becher Georg Ernst Stahl A fire was a process by which something escaped from the burning substance such as wood. Burning was interpreted as separation of matter into the basic elements earth, water, air, and fire. The latter three went up in smoke and flame called phlogiston (phlox in Greek means flame) leaving the earth component behind as ashes or calx. This can be represented as: Heat Wood → Phlogiston + Calx Substances varied in their phlogiston content. Those with a high content burned readily and left little calx. Those with little phlogiston burned only with difficulty and left much calx. Since charcoal burned almost completely, leaving very little calx, it had been considered to be nearly pure phlogiston. On the other hand, when metals burned in air they left so much calx (oxide), hence they had been considered to be poor in phlogiston: Metal Phlogiston + Calx It was therefore,⟶ argued that if phlogiston were added to the calx, the metal could be obtained back, which actually happened: when charcoal (pure phlogiston) was heated with a calx (an ore), the metal was obtained: Ore + Charcoal Metal (oxide) Stahl further indicated ⟶that the air (gas) which escaped during the smelting process (CO2) was phlogisticated air, i.e., air saturated with phlogiston and consequently, it would no longer support combustion, nor was it fit to breathe. He also thought that on calcination of limestone, phlogiston is absorbed from the fire and this phlogiston was regarded as the cause of making the lime so vigorous in its reaction with water: Limestone + Φ → Caustic lime Cavendish The phlogiston was never isolated. It was Henry Cavendish (1731-1810) who determined to try. He noted in the work of Robert Boyle (1627-1691) that a flammable air was evolved when iron was treated with sulfuric acid. In 1766 he repeated Boyle’s experiment, extended it on zinc and tin, using sulfuric and hydrochloric acids, and collected the air formed in these experiments in a separate bladder. He noted that the flammable air produced from different acids by different metals was identical burning with a flame, and that its density was far less than that of atmospheric air. He called this gas “inflammable air” (hydrogen). He interpreted his experiments in terms of the phlogiston theory. He came to the erroneous conclusion that the gas came from the metal and not from the acid. He thought he had isolated the phlogiston and published his findings before the learned men of the Royal Society. Cavendish Lavoisier Priestley Lavoisier and Priestley By the mid-18th century laboratory apparatus had become more sophisticated. One example was the collection of gases. At first gases were collected in bladders that were not so 'air-tight' and made it impossible to obtain measurements such as volume and weight. Researches began to collect gases over water using a pneumatic trough, a bell jar and a specially shaped retort flask. Soon mercury replaced the water so that soluble gases could be collected. Gases could now be accurately measured and tested. Many famous scientists turned their attention to the study of gases. Soon after the time of his discovery of dephlogisticated air - - air that sustains respiration (oxygen), the English chemist Joseph Priestley (1733-1804) met Antoine Laurent Lavoisier (1743-1794) in Paris in 1774 and told him of his discovery. Lavoisier, however, had invented a very accurate balance and was able to confirm that when inflammable air (hydrogen) reacted with dephlogisticated air (oxygen) to give water, there was no mass present except that the reactants and products of the reaction. In 1775 he argued that since the mass of the reactants equals the mass of the products, in the reactions he investigated, there was no mass that could account for phlogiston. Phlogiston therefore could not exist. Lavoisier was able to explain combustion as an oxidation process, thus directing the final blow to the phlogiston theory. It was Lavoisier who gave the gas its name from the Greek words Oxys = acid, and genēs = I beget, because many substances like carbon or sulfur burn in the gas to give an acid. Epilogue [1] Fire is the phenomenon of combustion [2] Acids are not all formed from oxygen as Lavoisier had claimed because many acids like HCl and HF do not contain oxygen. In German language for example, oxygen is called “Suaerstoff”, i.e., acidic substance. [3] The phlogiston in modern language is the electron. The oxidation of a metal would be represented by: 2+ - M M + 2e - 2- ½ O2 + 2e O M2+ ⟶+ O2- MO ⟶ where M is a divalent⟶ metal and MO will be the calx. Similarly, the dissolution of a metal in an acid can be represented in modern terms as follows: 2+ - M M + 2e + - 2H + 2e H2 ⟶ ⟶ [4] Cavendish is the discoverer of hydrogen. References F. Habashi, "Zoroaster and the Theory of Four Elements", Bull. Hist. Chem. 25 (2), 109–115 (2000) F. Habashi, “Cambodia’s Four Elements,” Bull. Hist. Chem. 29 (2), 97–98 (2004) F. Habashi, “Phlogiston and Modern Chemistry,” Bull. Hist. Chem. 31 (1), 31 (2006) F. Habashi, “The Theory of Four Elements. Water, Air, Earth, and Fire,” pp. 15–20 in Proceedings First International Symposium on Aqua Science, Water Resource, and Innovation Development of Countryside, Sakuraza, Sakawa, Kochi Prefecture, Japan, November 26–30, 2007 .
Recommended publications
  • Hungarian Studies Review
    Prince Rupert, Godson of Gabor Bethlen Maria H. Krisztinkovich Prince Rupert's life is familiar to Canadian readers and scholars. Not so well known are Rupert's and his family's connections to Hungarian history, which were predominantly Calvinistic, like Rupert's own roots.1 The countries in this Protestant power-play were: his father's homeland, the Palatinate; his grandfather's England; his parents' kingdom, Bohemia; his godfather's principali- ty, Transylvania; and his Protestant aunts' and uncles' Holland and Sweden. Five of Rupert's many brothers and sisters also left their mark on history. They lived through the Thirty Years' War, of which Rupert's family was partly the victim, and partly the cause. Various writers have referred to the compelling personality of the prince by using colourful epithets: the Son of the Winter King, Robert le Diable, the Dark and Handsome Prince, the Cavalry Leader, the Mercenary of the King of Hungary, the Prince Without a Principality, the Would-be King of Madagascar, the Buccaneer, the Pirate, the Robber Prince, the Recluse Rupert, and so on, which reveal many facets of Rupert's life story, except for a generally ignored one: Prince Rupert was godson of Gabor Bethlen, Prince of Transylvania and, for a brief time, King of Hungary. Here we must resist the temptation to immerse ourselves in the tales of Rupert's romantic life of adventure and prowess, or in the portraits displaying his martial good looks. It is no exaggeration, perhaps, to claim that Rupert was the most talked about person of his era.
    [Show full text]
  • Monthly Blog 77
    MAY 2017 MONTHLY BLOG/ 77 IDEAS TAKING A WRONG TURN If citing, please kindly acknowledge © Penelope J. Corfield (2017). For more information about career and publications, please see www.penelopejcorfield.co.uk; and for monthly BLOGs, www.penelopejcorfield.com/monthly-blogs/ Meditating about ideas taking a wrong turn (there are a lot of wrong turns around), I was reminded of the eighteenth-century saga of phlogiston – or the spirit of fire. It was a concept that held sway in scientific circles for many years, before it was found to be wrong. Not fruitfully wrong, stimulating fresh research and new developments. Just simply erroneous – in intellectual terms, a wrong turning. There may be similarly erroneous ideas around in science today: superstring theories in theoretical physics,1 for example, or ‘dark matter’ in astro-physics (let alone ‘dark energy’ and/or ‘dark electromagnetism’).2 Such 1 Compare B.R. Greene, The Elegant Universe: Superstrings, Hidden Dimensions, Theory, and the Quest for the Ultimate Theory (1999); and L. Smolin, The Trouble with Physics: The Rise of String Theory, the Fall of a Science, and What Comes Next (Boston, 2006). 2 R.H. Sanders, The Dark Matter Problem: A Historical Perspective (Cambridge, 2010). 1 big concepts are intriguing ‘fillers’, often triggering intense debates. They fill a gap in knowledge, where there is perceived to be a problem but, as yet, no research-based solution with an accompanying explanatory theory. Sometimes such ideas are later empirically substantiated. Equally, however, sometimes not. In the case of phlogiston, seventeenth- and eighteenth-century scientists were keen to understand what happens in the process of combustion.
    [Show full text]
  • Curriculum Vitae
    3/2021 Curriculum Vitae PAMELA H. SMITH https://www.history.columbia.edu/faculty/pamela-h-smith/ Office Address Department of History Columbia University 605 Fayerweather Hall, MC 2516 1180 Amsterdam Avenue New York, N.Y. 10027 (212) 854-7662-Phone email: [email protected] EDUCATION THE JOHNS HOPKINS UNIVERSITY, Baltimore, Maryland (1983-1990) Ph.D., May 1991. Department of the History of Science. Dissertation: "Alchemy, Credit, and the Commerce of Words and Things: Johann Joachim Becher at the Courts of the Holy Roman Empire, 1635-82" (Advisers: Owen Hannaway, Mack Walker). UNIVERSITY OF WOLLONGONG, Wollongong, New South Wales, Australia (1976-79) B.A. First Class Honors, November 1979. Major: History and Philosophy of Science. EMPLOYMENT 2005-present: Seth Low Professor of History, Columbia University, New York. Courses in early modern European history and history of science. 2014-present: Founding Director, Making and Knowing Project, Columbia University A pedagogical and research initiative that explores the intersections of craft making and scientific knowing. www.makingandknowing.org 2014-present: Founding Chair, Presidential Scholars in Society and Neuroscience, Columbia University, https://presidentialscholars.columbia.edu/ The aim of this crosscutting initiative is to bring together scholars from all fields around questions of brain and mind. A community of postdoctoral scholars form the heart of a rich program of interdisciplinary events and research 2013-present: Founding Director, Center for Science and Society, Columbia University, https://scienceandsociety.columbia.edu/. 2000-2005: Margaret and Edwin F. Hahn Professor in the Social Sciences, and Professor of History, Pomona College (1990-2005: Assistant and Associate Professor of History) 1996-2003: Director of European Studies, Claremont Graduate University Pamela H.
    [Show full text]
  • Vitalismo, Idéologiey Fisiología En Buenos Aires. La Polémica Entre
    Artículos de investigación en Estudios Sociales de la Salud Vitalismo, idéologie y fisiología en Buenos Aires. La polémica entre Cosme Argerich y Crisóstomo Lafinur en El Americano, 1819 Vitalism, Idéologie and Physiology in Buenos Aires. The Debate between Cosme Argerich and Crisóstomo Lafinur in El Americano, 1819 Vitalismo, Ideologia e fisiologia em Buenos Aires. A polémica entre Cosme Argerich e Crisóstomo Lafinur emEl Americano, 1819 Mariano Di Pasquale, PhD1 Recibido: diciembre 11 de 2014 • Aprobado: marzo 11 de 2015 Doi: dx.doi.org/10.12804/revsalud13.especial.2015.02 Para citar este artículo: Di Pasquale M. Vitalismo, idéologie y fisiología en Buenos Aires. La polémica entre Cosme Argerich y Crisóstomo Lafinur en El Americano, 1819. Rev Cienc Salud 2015; 13 (esp): 13-28. Doi: dx.doi.org/10.12804/revsalud13.especial.2015.02 Resumen Objetivo: analizar la disputa intelectual entre el médico Cosme Mariano Argerich y el profesor de Filosofía Juan Crisóstomo Lafinur. El debate, situado en el espacio porteño y registrado en el diario El Americano, se originó por la introducción de nuevas enseñanzas ligadas al sensualismo y a la Fisiología francesa en el Colegio de la Unión del Sud en 1819. Desarrollo: se desea demostrar la existencia de un proceso de apropiación de saberes de estos actores locales según sus intereses y posicionamientos. Conclusiones: el propósito de Argerich y Lafinur era construir argumenta- ciones con el fin de convencer a una incipiente opinión pública de las propuestas del sensualismo y de la Fisiología de Magendie, respectivamente. En su afán por vencer en la discusión, ambos personajes perfeccionaron tanto sus demostraciones, que se puede observar un registro discursivo distinto respecto a las nociones originales de los autores europeos.
    [Show full text]
  • The Reality of Phlogiston in Great Britain
    The Reality of Phlogiston in Great Britain John Stewart Abstract: Mi Gyung Kim (2008) has challenged the historiographical assump- tion that phlogiston was the paradigmatic concept in eighteenth century chemistry. Her analysis of the operational, theoretical, and philosophical iden- tities of phlogiston demonstrates how Stahlian phlogiston was appropriated into the burgeoning field of affinity theory. However, this new French con- ception of phlogiston was destabilized by the introduction of Boerhaave’s thermometrics. By extending this story through 1790, I will show that British pneumatic chemists integrated new understandings of heat with an affinity based operational definition of phlogiston and thereby stabilized the concept. What resulted was a new and very different phlogiston. Keywords: Eighteenth-century chemistry, Chemical Revolution, historical ontolo- gy, Richard Kirwan, phlogiston, fire . 1. Introduction Phlogiston has long been regarded as the paradigmatic concept in eighteenth- century chemistry. In his classic work, A Short History of Chemistry (1939), J. R. Partington attributed the development of phlogiston to the German met- allurgical chemists Johann Joachim Becher (1635-1682) and Georg Ernst Stahl (1660-1734). This phlogiston was analogous to Aristotle’s elemental fire in its roles in creating heat, light, and fire. Though conceptions of phlo- giston changed over the course of the century, it could generally be defined operationally as that which “escapes from burning bodies in a rapid whirling motion, and is contained in all combustible bodies and also in metals” (Kuhn 1962, p. 87). The roasting or calcination of metals was explained as the sepa- ration of phlogiston from the metallic calx. By 1720, French chemist Étienne- François Geoffroy (1672-1731) had appropriated phlogiston, identifying it with Homberg’s sulfurous principle (Kim 2008, pp.
    [Show full text]
  • The Controversy Between Leibniz and Stahl on the Theory of Chemistry
    The Controversy Between Leibniz and Stahl on the Theory of Chemistry Alexis Smets* During the early modern period, the relation between chemistry and the other disciplines was in a state of flux. Aristotle’s matter theories presented in De gene- ratione et corruptione and in the Meteorologica had been embedded in his overall hylemorphic system. With the breakdown of the Aristotelian system, it became unclear where chemistry belonged and whether it had to borrow its principles from another science or had to establish them by itself. The situation was rende- red even more delicate as chemistry could be divided into a theoretical part, which was strongly related to natural philosophy, and a practical part, which qualified more as an art than as a science. Seventeenth-century textbooks of chemistry usually opened with a theoretical account of matter; but indeed, they very often defined chemistry as an art, not as a purely deductive science in the manner of the Cartesian project.1 However, as Leibniz often pointed out, building theories in a deductive fashion was useful, since it permitted to capture and organise elements of knowledge that would otherwise remain scattered.2 In other words, deduction allowed finding general principles under which elements of knowledge were to be structured.3 Thus, in spite of the eventual difficulty of erecting chemistry on its own principles, there existed a real need, internal to chemistry itself, for a theory that gave a solid account of practice.4 The existence of this tension between chemical and physical theories, and betwe- en practice and theory, is the reason why the controversy that arose between Gottfried Wilhelm Leibniz (1646–1716) and Georg Ernst Stahl (1660–1734) is so interesting.
    [Show full text]
  • Herman Boerhaave
    Herman Boerhaave History of Science and Scholarship in the Netherlands, volume â The series History of Science and Scholarship in the Netherlands presents studies on a variety of subjects in the history of science, scholarship and academic institu- tions in the Netherlands. Titles in this series ". Rienk Vermij, The Calvinist Copernicans. The reception of the new astronomy in the Dutch Republic, "äæä^"æäò. áòòá, isbn ñò-åñðã-âãò-ã á. Gerhard Wiesenfeldt, Leerer Raum in Minervas Haus. Experimentelle Natur- lehre an der Universita« t Leiden, "åæä^"æ"ä.áòòá,isbn ñò-åñðã-ââñ-ò â. Rina Knoeff, Herman Boerhaave ,"ååð^"æâð). Calvinist chemist and physician. áòòá, isbn ñò-åñðã-âãá-ò ã. Johanna Levelt Sengers, How fluids unmix. Discoveries by the School of Van der Waals and Kamerlingh Onnes. áòòá, isbn ñò-åñðã-âäæ-ñ Editorial Board K. van Berkel, University of Groningen W.Th.M. Frijhoff, Free University of Amsterdam A. van Helden, Utrecht University W.E. Krul, University of Groningen A. de Swaan, Amsterdam School of Sociological Research R.P.W. Visser, Utrecht University Herman Boerhaave 7"ååð-"æâð) Calvinist chemist and physician Rina Knoeff Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam áòòá ß áòòá Royal Netherlands Academy of Arts and Sciences No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopy- ing, recording or otherwise, without the prior written permission of the pub- lisher. Edita knaw, P.O. Box "ñ"á", "òòò gc Amsterdam, the Netherlands [email protected], www.knaw.nl/edita isbn ñò-åñðã-âãá-ò The paper in this publication meets the requirements of *? iso-norm ñæòå 7"ññã) for permanence For my parents Every man's work, whether it be literature or music or pictures or architecture or anything else, is always a portrait of himself, and the more he tries to conceal himself the more clearly will his character appear in spite of him.
    [Show full text]
  • The Problem of Combustion S
    EHIND B TH Y E R The Problem of Combustion S O C T I E S Explanation and Phlogiston N E C H E T Georg Ernst Stahl Much early thinking about combustion sought to ! explain its observable impact. The flickering flames Teaching and learning contemporary well- and rising smoke, for example, were interpreted as established science ideas without periodically something escaping from the burning material. examining how those ideas were developed and Furthermore, combustion of rigid and heavy logs left became accepted can create misconceptions behind a much lighter and less substantial ash. Many regarding the nature of science. As this story observers claimed that an 'inflammable principle' was regarding the problem of combustion illustrates, escaping during combustion. Thus, when the fire science research is an intense puzzle-solving extinguished, this was due to the inflammable principle endeavor with no answer-key. Scientists must departing from its original vessel into the air. The develop ideas to make sense of nature and objective of many 17th and 18 th century chemists was to assess the viability of those ideas. As you read, identify the nature of this 'inflammable principle.' keep in mind that the efforts to understand the problem of combustion and uncertainty By the mid-18th century, most chemists referred to the regarding conservation of mass were occurring 'inflammable principle' asphlogiston — the agent of at the same time (see the related story “The combustibility. This thinking, originating in the German Development and Acceptance of the lands, went against the mechanical worldview that Conservation of Mass Law”). prevailed in science at the time.
    [Show full text]
  • ACTA UNIVERSITATIS UPSALIENSIS Uppsala Studies in History of Ideas 48
    ACTA UNIVERSITATIS UPSALIENSIS Uppsala Studies in History of Ideas 48 ANDREAS RYDBERG Inner Experience An Analysis of Scientific Experience in Early Modern Germany Dissertation presented at Uppsala University to be publicly examined in Geijersalen (Eng6-1023), Engelska Parken, Humanistiskt centrum, Thunbergsvägen 3P, Uppsala, Friday, 9 June 2017 at 10:00 for the degree of Doctor of Philosophy. The examination will be conducted in Swedish. Faculty examiner: Kristiina Savin (Lunds universitet, Institutionen för kulturvetenskaper). Abstract Rydberg, A. 2017. Inner Experience. An Analysis of Scientific Experience in Early Modern Germany. Uppsala Studies in History of Ideas 48. 245 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9926-6. In the last decades a number of studies have shed light on early modern scientific experience. While some of these studies have focused on how new facts were forced out of nature in so-called experimental situations, others have charted long-term transformations. In this dissertation I explore a rather different facet of scientific experience by focusing on the case of the Prussian university town Halle in the period from the late seventeenth till the mid-eighteenth century. At this site philosophers, theologians and physicians were preoccupied with categories such as inner senses , inner experience, living experience, psychological experiments and psychometrics. In the study I argue that these hitherto almost completely overlooked categories take us away from observations of external things to the internal organisation of experience and to entirely internal objects of experience. Rather than seeing this internal side of scientific experience as mere theory and epistemology, I argue that it was an integral and central part of what has been referred to as the cultura animi tradition, that is, the philosophical and medical tradition of approaching the soul as something in need of cultivation, education, disciplination and cure.
    [Show full text]
  • Chemistry Qualities Vs. Quantities Quantities Only, Please…
    Chemistry The Science of Matter: A development in the later part of the Scientific Revolution SC/STS 3760, XVII 1 Qualities vs. Quantities Chemical properties seem qualitative. – Alchemy was almost entirely qualitative. – Colour, consistency, taste, odour, hardness, what combines with what. – Chemical change is a change of quality. Terminology: – “Virtues” – “Active principles” All ancient precepts SC/STS 3760, XVII 2 Quantities only, please… The new science, since Newton, required that all facets of the physical world be describable with measurable quantities. – Everything is to be understood as matter and motion. SC/STS 3760, XVII 3 1 Phlogiston Theory Phlogiston theory was the first workable chemical theory that was conceived entirely on mechanist principles. – Its origin was from alchemy. SC/STS 3760, XVII 4 A Biblical interpretation J. J. Becher was a German scientist/philosopher of the mid 17th century, the son of a Lutheran minister. – He noted that the book of Genesis spoke only of organic materials, and concluded that they were the sole basis of creation. – Metals, he concluded, were byproducts of organic matter. SC/STS 3760, XVII 5 Terra Pinguis Becher believed that there were three principles of compound bodies: – Vitreous – Mercury – Terra Pinguis (fatty earth). Terra pinguis is what gave bodies their properties of taste, odour, and combustibility. SC/STS 3760, XVII 6 2 Phlogiston Georg Ernst Stahl (1660-1734), a German physician, took the notion of terra pinguis as an essential explanatory principle. He changed its name to phlogiston, the fire principle. – Through phlogiston, Stahl endeavoured to explain all of chemistry. SC/STS 3760, XVII 7 Phlogiston’s properties Phlogiston is released when: – Wood burns.
    [Show full text]
  • Conclusion the Brothers De La Court and The
    CONCLUSION THE BROTHERS DE LA COURT AND THE COMMERCIAL REPUBLICAN TRADITION History has not been generous to the brothers De la Court. In 1702, the London bookseller John Darby published an English translation of their work under the name “John de Witt, and other Great Men in Holland”, in which he praised how “many nice and curious Subjects, as well Religious as Civil and Political, are accurately handled”.1 This erroneous attribution certainly made the work of the De la Courts appeal to a wider audience, yet it also caused the brothers themselves to fall into utter oblivion. New English editions of their work appeared in 1743 and 1746, again under the authorship of De Witt, while a 1709 French translation was issued under the resounding title Mémoires de Jean de Wit, Grand Pensionnaire de Hollande. Among the last to remember the name of the true author was the famous German philosopher Gottfried Leibniz. In 1676, Leibniz paid De la Court a visit when he was on his way to meet Spinoza in The Hague, a visit he recalled in his Essais de Théodicée of 1710. Referring to the recent French translation of De la Court’s work, Leibniz deplored that it had been attributed to De Witt, “as if the thoughts of an individual who was efffectively of De Witt’s party, and habile, yet who did not have sufffijicient knowledge of public afffairs, nor sufffijicient capacity to write like that great Minister of State, could pass for the production of one of the prime men of his age”.2 With this posthumous blow, the reputation of De la Court was sealed – and before long his name submerged entirely in the scrapheap of history.
    [Show full text]
  • HISTOIRE DES SCIENCES ET DES SAVOIRS Dans La Même Série
    HISTOIRE DES SCIENCES ET DES SAVOIRS dans la même série Histoire des sciences et des savoirs sous la direction de Dominique Pestre tome 1 De la Renaissance aux Lumières sous la direction de Stéphane Van Damme tome 2 Modernité et globalisation sous la direction de Kapil Raj et H. Otto Sibum tome 3 Le siècle des technosciences sous la direction de Christophe Bonneuil et Dominique Pestre Sous la direction de Dominique Pestre HISTOIRE DES SCIENCES ET DES SAVOIRS 1. DE LA RENAISSANCE AUX LUMIÈRES Sous la direction de Stéphane Van Damme R. Bertrand, J.-M. Besse, M.-N. Bourguet, P. Brioist, L. Daston, P. Dear, N. Dew, M.P. Donato, L. Hilaire-Pérez, I. Laboulais, P.-Y. Lacour, R. Mandressi, N. Muchnik, G. Quenet, F. Regourd, A. Romano, N. Safier, J.-F. Schaub, S. Sebastiani, J.B. Shank, M. Thébaud-Sorger, J. Waley-Cohen Traductions de l’anglais par Agnès Muller et Bruno Poncharal ÉDITIONS DU SEUIL 25, bd Romain-Rolland, Paris XIVe isbn 978-2-02-129810-9 © Éditions du Seuil, octobre 2015 Le Code de la propriété intellectuelle interdit les copies ou reproductions destinées à une utilisation collective. Toute représentation ou reproduction intégrale ou partielle faite par quelque procédé que ce soit, sans le consentement de l’auteur ou de ses ayants cause, est illicite et constitue une contrefaçon sanctionnée par les articles L.355-2 et suivants du Code de propriété intellectuelle. www.seuil.com OUVERTURE GÉNÉRALE Écrire une Histoire des sciences et des savoirs de longue durée DOMINIQUE PESTRE L’Histoire des sciences et des savoirs que nous proposons ici ambitionne d’éclairer les cinq derniers siècles.
    [Show full text]