Contrasting Evolutionary Pathways of Anadromy in Euteleostean Fishes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Environment Agency
Coarse Fish Migration Occurrence, Causes and Implications Research and Development Technical Report WI52 ENVIRONMENT AGENCY All pulps used in production of this paper is sourced from sustainable managed forests and are elemental chlorine free and wood free Coarse Fish Migration Occurrence, Causes and: Implications: Technical Report W 152.. MC Lucas (1): T J Thorn (l), A Duncan (2), 0 Slavik (3) (1) Department of Biological Sciences, University of Durham (2) Royal Holloway. Institute of Environmental Research, University-of London (3) Water Research Institute, Prague Research Contractor:. University of Durham Further copies of thii report are available from: Environment Agency R&D Dissemination Centre, c/o WRc, Frankland Road, Swindon, Wilts SN5 SYF ? WC tel: 01793-865000 fax: 01793-514562 e-mail: [email protected] Publishing Organisation: Environment Agency Rio House Waterside Drive Aztec West Almondsbury Bristol BS32 4UD Tel: 01454 624400 Fax: 01454 624409 ISBNNW-06/98-65-B-BCOA 0 Environment Agency 1998 All rights reserved. No part of this document may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical,. photocopying, recording or otherwise without the prior permission of the Environment Agency. The views expressed in this document are not necessarily those of the Environment Agency. Its officers, servant or agents accept no liability whatsoever for any loss or damage arising from the interpretation or use of the information, or reliance upon views contained herein. Dissemination status Internal: Released to Regions External: Released to the Public Domain Statement of use This report summarises the findings of aliterature reveiw of the occurrence, causes and implications of coarse fish migration in UK rivers. -
Volume Lviii, 1928-1929
BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY VOLUME LVIII, 1928-1929 BOONE BRADLEY AND BEQUAERT CHAPMAN NICHOLS CURRAN NOBLE ELFTMAN STUNKARD GUDGER WATERMAN NEW YORK PUBLISHED BY ORDER OF THE TRUSTEES 1929 EDITED BY ETHEL J. TIMONIER B U LLETI N OF THE AMERICAN MUSEUM OF NATURAL HISTORY VOLUME LVIII, 1928 59.7,5 (51) Article 1.-CHINESE FRESH-WATER FISHES IN THE AMERICAN MUSEUM OF NATURAL HISTORY'S COLLECTIONS' A PROVISIONAL CHECK-LIST OF THE FRESH-WATER FISHES OF CHINA2 BY J. T. NICHOLS Incident to study of the Museum's recently acquired Asiatic collec- tions, a number of new species and races of Chinese fresh-water fishes have been described. A somewhat more complete report on Chinese material to hand may now appropriately be made by listing all the species examined. Much more study is necessary before an authoritative check- list of the fishes of this area can be drawn up, but it should be helpful to others working to that end to list, with species contained in our collec- tions, those encountered in the literature which offhand appear to be valid. The asterisk (*) signifies a specimen in The American Museum of Natural History. Only strictly fresh-water fishes are included in this list, marine forms, the occurrence of which in fresh water is fortuitous, are not included; nor are representatives of essentially marine groups, even when such species occur regularly in fresh as well as in salt water. The area is restricted to old China from the outer limits of Chihli Province on the northeast to the outer. -
Vii Fishery-At-A-Glance Night Smelt Scientific Name: Spirinchus Starksi Range
Fishery-at-a-Glance Night Smelt Scientific Name: Spirinchus starksi Range: Night Smelt are distributed coast-wide from southeast Alaska to Point Arguello, Santa Barbara County. Habitat: Night Smelt occur in the surf and in depths from the surface to approximately 400 feet (122 meters). Size (length and weight): Night Smelt measure less than 6 inches total length (140 millimeters) weighing to 11 grams. Males are slightly longer and heavier than females. Life span: Night Smelt are short lived and believed to reach a maximum of 2 to 3 years. Reproduction: Spawning occurs in the surf along open coast coarse sand beaches from January to September. Eggs are fertilized in the wash of the surf, adhere to sand grains, and sink. Hatching occurs in approximately 2 weeks. Prey: Night Smelt feed on small crustaceans—primarily gammarid amphipods and mysid shrimp. Predators: Night Smelt provide forage for a wide range of predators, including Striped Bass, Redtail Surfperch, salmon, Harbor Seals, California Sea Lions, terns, gulls, and cormorants. Fishery: Commercial and recreational fisheries are shore-based. Area fished: Historically, fishing occurred from Moss Landing, Monterey County to the Oregon border. Currently, fishing occurs from San Mateo County to Del Norte County. Fishing season: Fishing occurs during the spawning season—January to September. Fishing gear: Fishermen fish from shore using A-frame dip nets. Market(s): Landed fish are sold for human consumption and aquarium food. Current stock status: No formal stock assessments exist for Night Smelt. Although catch rates have increased on average since the early 2000s, it is undetermined if this increase in the index is due to increased abundance or changes in fishermen behavior. -
Hypomesus Nipponensis) Stock Trajectory in Lake Kasumigaura and Kitaura
Open Journal of Marine Science, 2015, 5, 210-225 Published Online April 2015 in SciRes. http://www.scirp.org/journal/ojms http://dx.doi.org/10.4236/ojms.2015.52017 Factors Affecting Japanese Pond Smelt (Hypomesus nipponensis) Stock Trajectory in Lake Kasumigaura and Kitaura Ashneel Ajay Singh1, Noriyuki Sunoh2, Shintaro Niwa2, Fumitaka Tokoro2, Daisuke Sakamoto1, Naoki Suzuki1, Kazumi Sakuramoto1* 1Department of Ocean Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan 2Freshwater Branch Office, Ibaraki Fisheries Research Institute, Ibaraki, Japan Email: *[email protected] Received 5 February 2015; accepted 26 March 2015; published 30 March 2015 Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract The Japanese pond smelt (Hypomesus nipponensis) stock has been observed to fluctuate quite ri- gorously over the years with sustained periods of low catch in Lake Kasumigaura and Kitaura of the Ibaraki prefecture, Japan which would adversely affect the socioeconomic livelihood of the lo- cal fishermen and fisheries industry. This study was aimed at determining the factors affecting the stock fluctuation of the pond smelt through the different years in the two lakes. Through explora- tory analysis it was found that the pond smelt had significant relationship with total phosphorus (TP) level in both lakes. The global mean land and ocean temperature index (LOTI) was also found to be indirectly related to the pond smelt stock in lake Kasumigaura and Kitaura at the latitude band of 24˚N to 90˚N (l). -
Evolutionary Genomics of a Plastic Life History Trait: Galaxias Maculatus Amphidromous and Resident Populations
EVOLUTIONARY GENOMICS OF A PLASTIC LIFE HISTORY TRAIT: GALAXIAS MACULATUS AMPHIDROMOUS AND RESIDENT POPULATIONS by María Lisette Delgado Aquije Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Dalhousie University Halifax, Nova Scotia August 2021 Dalhousie University is located in Mi'kma'ki, the ancestral and unceded territory of the Mi'kmaq. We are all Treaty people. © Copyright by María Lisette Delgado Aquije, 2021 I dedicate this work to my parents, María and José, my brothers JR and Eduardo for their unconditional love and support and for always encouraging me to pursue my dreams, and to my grandparents Victoria, Estela, Jesús, and Pepe whose example of perseverance and hard work allowed me to reach this point. ii TABLE OF CONTENTS LIST OF TABLES ............................................................................................................ vii LIST OF FIGURES ........................................................................................................... ix ABSTRACT ...................................................................................................................... xii LIST OF ABBREVIATION USED ................................................................................ xiii ACKNOWLEDGMENTS ................................................................................................ xv CHAPTER 1. INTRODUCTION ....................................................................................... 1 1.1 Galaxias maculatus .................................................................................................. -
Coexistence of Resident and Anadromous Pond Smelt, Hypomesus Nipponensis, in Lake Ogawara
33 Coexistence of resident and anadromous pond smelt, Hypomesus nipponensis, in Lake Ogawara SATOSHIKATAYAMA Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan (katayama@bios. tohoku. ac.jp) SUMMARY. Pond smelt, Hypomesus nipponensis, inhabit fresh, brackish, and oceanic waters, and support substantial commercial fisheries in Japanese lakes. Pond smelt in Lake Ogawara, northern Japan, display a bimodal body length distribution during the spawning season, despite being 0+ fish. Analyses of otolith microstructure and microchemistry were utilized to discriminate anadromous from resident individuals, and revealed that individuals smaller than 60 mm SL were resident, those between 60-80 mm were mixed resident and anadromous, and those larger than 80 mm were anadromous. Intensive research on the reproductive ecology identified spawning localities in the lake and inflowing rivers. Although only anadromous fish spawned in inflowing rivers, spawners in the lake were a mixture of anadromous and resident individuals, suggesting that anadromous and resident spawning groups share a common spawning ground. These fish spawn during almost the same period from mid March to early May. Therefore, reproductive isolation does not appear to occur, and genetic differentiation has not been found through isozyme and mtDNA analyses. The anadromous and resident life history styles appear to be ecological variations within a single population. Lastly, qualitative and quantitative contributions of migratory and non-migratory pond smelts to the next generation were examined and heterogeneity in the life history of this population was discussed. KEYWORDS: residence, anadromy, pond smelt, alternative life history styles INTRODUCTION throughout the year and all over the take. 2,3) Anadromous migration has been studied mainly for salmonids. -
First Records of the Night Smelt, Spirinchus Starksi, in the Salish Sea
First Records of the Night Smelt, Spirinchus starksi, in the Salish Sea, Washington Author(s): Melanie M Paquin , Anna N Kagley , Kurt L Fresh , and James W Orr Source: Northwestern Naturalist, 95(1):40-43. 2014. Published By: Society for Northwestern Vertebrate Biology DOI: http://dx.doi.org/10.1898/NWN13-05.1 URL: http://www.bioone.org/doi/full/10.1898/NWN13-05.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/ page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non- commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. 40 NORTHWESTERN NATURALIST 95(1) NORTHWESTERN NATURALIST 95:40–43 SPRING 2014 FIRST RECORDS OF THE NIGHT SMELT, SPIRINCHUS STARKSI, IN THE SALISH SEA, WASHINGTON MELANIE MPAQUIN,ANNA NKAGLEY,KURT LFRESH, AND JAMES WORR Key words: COI, distribution, genetics, (frozen or preserved in ethanol) from 11 S. starksi Longfin Smelt, Night Smelt, Osmeridae, Spir- and 5 S. thaleichthys were obtained from the inchus starksi, Spirinchus thaleichthys, Washing- Northwest Fisheries Science Center (NWFSC) ton and the University of Washington Fish Collec- tion (UW). -
Diet of the Zooplanktivorous Icefish Neosalanx Pseudotaihuensis
Iranian Journal of Fisheries Sciences 12(3) 561-576 2013 Seasonal changes in icefish diel feeding patterns in Lake Chaohu, a large shallow eutrophic lake of China Guo, L.*; Xie, P.; Deng, D.; Yang, H.; Zhou, Q. Received: March 2012 Accepted: July 2012 Abstract Seasonal changes in the diel feeding patterns of the zooplanktivorous icefish (Neosalanx taihuensis), which is an endemic species of China, were studied in the large, shallow eutrophic Lake Chaohu of China during the autumn of 2002 and summer of 2003. The results of the diel feeding rhythm indicate that icefish is a visual particulate feeder. There were large differences in diet composition and the selection indices of certain prey by icefish. In general, icefish fed more on calanoids than on cyclopoids, and fed more on larger cladocerans (i.e., Daphnia, Moina, Leptodora) than smaller cladocerans (i.e., Bosmina, Ceriodaphnia). Icefish is highly selective of individual food items, with prey selection also being dependent on fish size. There was no significant difference in the prey selection between male and female icefish. This study provides the first report of diel feeding rhythm in icefish, and is the first comparative study on prey selection between male and female icefish. Keywords: Icefish, Diel feeding patterns, Diet composition, Prey selection, Zooplankton, Lake Chaohu _______________ Donghu Experimental Station of Lake Ecosystems, State Key Laboratory for Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China * Corresponding author’s email: [email protected] 562 Guo et al.,Seasonal changes in icefish diel feeding patterns… Introduction rivers in China (Wu, 1979; Li and Chen, The diet of fish usually changes as they 1984; Xie and Xie, 1997). -
The Biology of Fish Migration
Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use. This article was originally published in Encyclopedia of Fish Physiology: From Genome to Environment, published by Elsevier, and the attached copy is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial Binder T.R., Cooke S.J., and Hinch S.G. (2011) The Biology of Fish Migration. In: Farrell A.P., (ed.), Encyclopedia of Fish Physiology: From Genome to Environment, volume 3, pp. 1921–1927. San Diego: Academic Press. ª 2011 Elsevier Inc. All rights reserved. Author's personal copy PHYSIOLOGICAL SPECIALIZATIONS OF DIFFERENT FISH GROUPS Fish Migrations Contents The Biology of Fish Migration Tracking Oceanic Fish Eel Migrations Pacific Salmon Migration: Completing the Cycle The Biology of Fish Migration TR Binder, Hammond Bay Biological Station, Millersburg, MI, USA SJ Cooke, Carleton University, Ottawa, ON, Canada SG Hinch, University of British Columbia, Vancouver, BC, Canada ª 2011 Elsevier Inc. All rights reserved. What is Migration? Environmental Factors That Influence Migration Classifying Migrations Anthropogenic Impacts on Migration Orientation and Navigation Further Reading Energetics of Migration Glossary Fluvial Relating to a river, stream, or other flowing Amphidromy An uncommon subcategory of water. -
The Influence of Light on the Diel Vertical Migration of Young-Of-The-Year Burbot Lota Lota in Lake Constance
The influence of light on the diel vertical migration of young-of-the-year burbot Lota lota in Lake Constance W. N. PROBST* AND R. ECKMANN Limnological Institute, University of Konstanz, 78457 Konstanz, Germany (Received 14 May 2008, Accepted 6 October 2008) The diel vertical distribution of young-of-the-year (YOY) burbot Lota lota in the pelagic zone of Lake Constance was compared to light intensity at the surface and to the light intensity at their mean depth. Lota lota larvae inhabited the pelagic zone of Lake Constance from the beginning of May until the end of August. From early June, after the stratification of the water column, fish performed diel vertical migrations (DVM) between the hypolimnion and epilimnion. The amplitude of DVM increased constantly during the summer and reached 70 m by the end of August. Lota lota started their ascent to the surface after sunset and descended into the hypolimnion after sunrise. As the YOY fish grew from May to August, they experienced decreasing diel maximum light intensities: in May and early June L. lota spent the day at light intensities >40 W mÀ2, but they never experienced light intensities >0Á1WmÀ2 after the end of June. From this time, L. lota experienced the brightest light intensities during dusk and dawn, suggesting feeding opportunities at crepuscular hours. The present study implies, that YOY L. lota in the pelagic zone of Lake Constance increased their DVM amplitude during the summer to counteract a perceived predation risk related to body size and pigmentation. Key words: gadoid; hydroacoustics; larvae; ontogeny; pelagic; predator evasion. -
Marine Mammals of the Columbia River Estuary
Marine mammals of the Columbia River estuary Item Type monograph Authors Jeffries, Steven Publisher Washington Department of Game Download date 01/10/2021 09:29:55 Link to Item http://hdl.handle.net/1834/40552 NOAA LISD SEA LE MARINE MAMMALS OF THE COLUMBIA RIVER ESTUARY I QH 541.5 ==============:::!J • E8 M35 cop.2 [I D 0 [] Final Report on the Marine Mammals Work Unit of the Columbia River Estuary Data Development Program tl MARINE MAMMALS n OF THE u COLUMBIA RIVER ESTUARY ] [] D Contractor: Washington Department of Game 600 N. Capitol Way Olympia, Washington 98504 Principal Investigator: [l Steven Jeffries Washington Department of Game Marine Mammal Investigations ] 53 Portway Street Astoria, Oregon 97103 (503) 325-8241 [l n i . Lj January 1984 ] D ] 7 ~I ,----- • __ J ,----- ,----- D D 0 D WASHINGTON DEPARTMENT OF GAME □ MARINE MAMMAL INVESTIGATIONS D PROJECT LEADER ~ Steven J. Jeffries □ WILDLIFE BIOLOGIST RESEARCH ANALYST Stephen D. Treacy Anne C. Geiger TYPIST Lynda Stansberry WORD PROCESSING Elizabeth Rummell [] lJ u [] iii J J J J J J ] J ] ] J J J J .J .J □ D D PREFACE The Columbia River Estuary Data Development Program This document is one of a set of publications and other materials [1 produced by the Columbia River Estuary, Data Development Program (CREDDP). CREDDP has two purposes: to increase understanding of the ecology of the Columbia River Estuary and to provide information useful J in making land and water use decisions. The program was initiated by local governments and citizens who saw a need for a better information base for use in managing natural resources and in planning for development. -
Aquatic Ecology of the Montagu River Catchment
Aquatic Ecology of the Montagu River Catchment A Report Forming Part of the Requirements for State of Rivers Reporting David Horner Water Assessment and Planning Branch Water Resources Division DPIWE. December, 2003 State of Rivers Aquatic Ecology of the Montagu Catchment Copyright Notice: Material contained in the report provided is subject to Australian copyright law. Other than in accordance with the Copyright Act 1968 of the Commonwealth Parliament, no part of this report may, in any form or by any means, be reproduced, transmitted or used. This report cannot be redistributed for any commercial purpose whatsoever, or distributed to a third party for such purpose, without prior written permission being sought from the Department of Primary Industries, Water and Environment, on behalf of the Crown in Right of the State of Tasmania. Disclaimer: Whilst DPIWE has made every attempt to ensure the accuracy and reliability of the information and data provided, it is the responsibility of the data user to make their own decisions about the accuracy, currency, reliability and correctness of information provided. The Department of Primary Industries, Water and Environment, its employees and agents, and the Crown in the Right of the State of Tasmania do not accept any liability for any damage caused by, or economic loss arising from, reliance on this information. Preferred Citation: DPIWE (2003). State of the River Report for the Montagu River Catchment. Water Assessment and Planning Branch, Department of Primary Industries, Water and Environment, Hobart. Technical Report No. WAP 03/09 ISSN: 1449-5996 The Department of Primary Industries, Water and Environment The Department of Primary Industries, Water and Environment provides leadership in the sustainable management and development of Tasmania’s resources.