Traffic Analysis and Device Management Based on Netflow Data in MREN Best Practice Document

Total Page:16

File Type:pdf, Size:1020Kb

Traffic Analysis and Device Management Based on Netflow Data in MREN Best Practice Document Traffic Analysis and Device Management based on NetFlow data in MREN Best Practice Document Produced by the MREN-led working group on campus networking Authors: M. Čabak (MREN), V. Gazivoda (MREN), B. Krstajić (MREN) April 2015 © GÉANT Association, 2015. All rights reserved. Document No: Version/ date: April 2015 Source language: Montenegrin Original title: “Analiza saobraćaja i upravljanje uređajima na osnovu netflow podataka u AMUCG” Original version/ date: Version 1 / 28 April 2014 Contact: Milan Čabak, [email protected]; Vladimir Gazivoda, [email protected]; Božo Krstajić, [email protected] MREN/Centar Informacionog Sistema is responsible for the contents of this document. The document was developed by the MREN- led working group on campus networking with the purpose of implementing joint activities on the development and dissemination of documents encompassing technical guidelines and recommendations for network services in higher education and research institutions in Montenegro. Parts of the report may be freely copied, unaltered, provided that the original source is acknowledged and copyright preserved. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 605243, relating to the project 'Multi-Gigabit European Research and Education Network and Associated Services (GN3plus)'. Best Practice Document: Traffic Analysis and Device ii Management based on NetFlow data in MREN Table of Contents Executive Summary 1 1 Introduction 1 2 Network Traffic Analysis 2 2.1 Flow technologies 2 2.2 NetFlow Network Analysis 2 3 FNF Exporter Configuration 4 3.1 FNF Records Configuration 4 3.2 Defining the FNF Exporter 5 3.3 Creating the flow monitor 5 3.4 Flow monitor activation and deactivation 6 3.5 Displaying and removing the FNF record from the exporter 6 4 FNF collector installation and configuration 8 5 Example of Network Device Management in MREN 15 5.1 Management process 15 5.1.1 Flow collector 16 5.1.2 NMS/Trap collector 18 5.1.3 Management mechanisms 20 5.1.4 Exporter 22 6 Application of proposed solution for management in MREN 23 7 Conclusion 25 References 27 Glossary 29 Best Practice Document: Traffic Analysis and Device iii Management based on NetFlow data in MREN Table of Figures Figure 4.1: Reviewing network traffic 9 Figure 4.2: Reviewing established connections for the selected host 9 Figure 4.3: Created IP Groups 10 Figure 4.4: Interfaces on devices performing data export 11 Figure 4.5: Most frequently used protocols 11 Figure 4.6: Most frequently used applications 12 Figure 4.7: Top network host conversations 12 Figure 4.8: Creating profiles for data display 13 Figure 4.9: Data display using filters 13 Figure 5.1: Schematic overview of the Network Device Management process 15 Figure 5.2: Information flow display for the selected IP Group 16 Figure 5.3: Creating the warning action for exceeding the threshold value 17 Figure 5.4: Alert for exceeding the threshold value 17 Figure 5.5: Trap collector interface with received trap messages 18 Figure 5.6: Received trap message 19 Figure 5.7: Trap message with OID values 19 Figure 5.8: Alert definition for the received trap message 20 Figure 5.9: Exporter (router) ACL list 22 Best Practice Document: Traffic Analysis and Device iv Management based on NetFlow data in MREN Executive Summary This document describes the monitoring and management methods for computer networks. The quality and availability of computer network services depends on the performance of the monitoring system, as well as the control system. This document presents the flow collector for assembling and analysing data on generated network traffic data obtained from network device exporters. A solution for network traffic analysis will be presented and used for implementing a network devices management system based on the qualitative analysis of network traffic. Some of the basic techniques for computer network management will also be analysed. The proposed solution sends warnings and automatic actions for changing the configuration of network devices, based on data obtained from qualitative network traffic analysis. Best Practice Document: Traffic Analysis and Device 1 Management based on NetFlow data in MREN 1 Introduction The complexity of today's computer networks is reflected in the variety of network types, media, technologies, services, and a large number of users. Network administrators require automated tools that will collect information about network elements and successfully manage this complex system. The need for tools which perform qualitative analysis of network traffic is becoming more prominent in order to have a better insight into the traffic passing through network links. In today's networks we cannot rely only on the information about the quantity of traffic, i.e. availability of links. Information about who or what uses the network resources, and when and how the resources are used, is also necessary. Network monitoring is a complex and challenging task of great importance for network administrators. Monitoring represents collection and analysis of data about network traffic. Specific mechanisms, which will manage network devices and the system in general, can be activated based on the collected data. Best Practice Document: Traffic Analysis and Device 1 Management based on NetFlow data in MREN 2 Network Traffic Analysis In modern computer networks, it is of great importance to possess the tools for network traffic analysis. A qualitative analysis of network traffic can be obtained from collection of data contained in flow exporters, as well as answers to questions about who or what, when and how uses the network resources. This knowledge is important for network administrators in terms of making the right decisions that can contribute to the whole organisation. There are different methods, and this document will provide a description of a flow-oriented software solution that uses distributed techniques for data collection. Unlike hardware monitoring devices, flow-oriented software techniques have advantages in terms of lower investment, easier installation and achieving results in a short period of time. 2.1 Flow technologies When selecting technologies, one should take into account which versions of flow technologies are supported by the network devices in a computer network. Implementation of flow-oriented technology requires devices which support flow technology in their specifications. Various manufacturers are developing different versions of flow technologies that are mainly variations of the same technology. Therefore, our NetFlow technology is supported mostly by Cisco devices [1], sFlow by Allied Telesis, and others such as JFlow by Juniper, Netstream by Huawei and IPFIX by Nortel network devices. Selection of the flow technology depends on the types of devices in the network and technologies. These technologies are quite different, but one should take these small differences into account because different software used for collection of this kind of data support one or more different flow technologies. Flow technologies from different manufacturers are not compatible with each other, although efforts are being made to standardise them. 2.2 NetFlow Network Analysis Each IP packet forwarded by a network device (i.e. an exporter), is examined in order to find the set of IP data. These data are IP packet identifiers and determine whether a packet is unique or part of a set of packets transmitted over a network. The IP packet header consists of a set of 5-7 attributes. IP address Best Practice Document: Traffic Analysis and Device 2 Management based on NetFlow data in MREN attributes used in NetFlow technology are: source IP address, destination IP address, source port, destination port, type of service (ToS field), and network device interface. Flow information is very useful in understanding the network behaviour. The source address enables an understanding of who creates traffic; the destination address provides information to whom the traffic is intended; the port indicates which application performs the communication; the type of service determines the priority of the traffic, while grouped packets and data show the amount of generated traffic. The flow also includes the following additional information: the time used for understanding communication duration and packet computing, next hop and the subnet mask of source and destination IP addresses prefix calculations. Best Practice Document: Traffic Analysis and Device 3 Management based on NetFlow data in MREN 3 FNF Exporter Configuration An ‘exporter’ is a network device with active NetFlow service. An exporter monitors packets passing through a device (i.e interfaces which are monitored) and creates a flow of these packages. Collected information is exported to the NetFlow collector in the form of flow records. Flexible NetFlow (FNF), unlike Traditional NetFlow (TNF), has several additional fields, which allows the organisation to oversee more specific information, so that the total amount of information that is exported is reduced, enabling improved scalability and aggregation. 3.1 FNF Records Configuration Flexible NetFlow (FNF) requires explicit configuration of flow records with all necessary and optional fields. The following configuration examples refer to the Cisco ASR 1002 network devices [2]. Basic and additional FNF fields on a network device are defined as follows: flow record [record name] description [record description]
Recommended publications
  • Ngenius Collector Appliance Scalable, High-Capacity Appliance for Collection of Cisco Netflow and Other Flow Data
    l DATA SHEET l nGenius Collector Appliance Scalable, High-Capacity Appliance for Collection of Cisco NetFlow and Other Flow Data Product Overview HIGHLIGHTS Deployed at key traffic aggregation locations, nGenius® Collectors extend the reach of the nGeniusONE® Service Assurance solution and are used primarily to generate flow‑based • Measure service responsiveness across statistics (metadata) in memory for specific traffic types. This NETSCOUT data source collects the network with up to 500 Cisco IP SLA metadata on IP SLA and IPPING protocols, flow data from NetFlow routers, link‑level statistics, synthetic transaction tests and utilization data from MIB‑II routers. • Scalable collection of up to 2 million Cisco NetFlow, IPFIX, Juniper J-Flow, Huawei® Listening passively on an Ethernet wire, nGenius Collectors examine specific traffic collected NetStream and sFlow flows per minute from flow‑enabled routers and switches (e.g., Cisco® NetFlow, Juniper® J-Flow, sFlow®, ® • Captures and stores Flow datagrams for NetStream ) and from IP SLA test results to generate a variety of statistics. In addition, Collectors historical deep-dive analysis can be configured to capture datagrams from Flow‑enabled routers and analyze them via datagram capture, which allows users to perform in‑depth capture and filtering. • Collects Flow data from up to 5,000 flow‑enabled router or switch interfaces Metrics from nGenius Collectors are retrieved through a managing nGenius for Flows Server per appliance for analysis, enabling display of utilization metrics, quality of service (QoS) breakdowns, and • Supports both IPv4 and IPv6 environments application breakdowns in nGenius for Flows and other tools in the nGeniusONE Service • Purpose-built hardware and virtual Assurance Solution.
    [Show full text]
  • Netflow Traffic Analyzer Real-Time Network Utilization and Bandwidth Monitoring
    DATASHEET NetFlow Traffic Analyzer Real-Time Network Utilization and Bandwidth Monitoring An add-on to Network Performance Monitor (NPM), SolarWinds® NetFlow DOWNLOAD FREE TRIAL Traffic Analyzer (NTA) is a multi-vendor flow analysis tool designed to proactively reduce network downtime. NTA delivers actionable insights Fully Functional to help IT pros troubleshoot and optimize spend on bandwidth by better for 30 Days understanding the who, what, and where of traffic consumption. Solve practical operational infrastructure problems with actionable insights and save money with informed network investments. WHY CHOOSE NETFLOW TRAFFIC ANALYZER? • NTA collects and analyzes flow data from multiple vendors, including NetFlow v5 and v9, Juniper® J-Flow™, sFlow®, Huawei® NetStream™, and IPFIX. • NTA alerts you to changes in application traffic or if a device stops sending flow data. • NTA supports advanced application recognition with Cisco® NBAR2. • NTA shows pre- and post-policy CBQoS class maps, so you can optimize your CBQoS policies. • NTA can help you identify malicious or malformed traffic with port 0 monitoring. • NTA includes WLC network traffic analysis so you can see what’s using your wireless bandwidth. • NTA supplements Network Performance Monitor by helping to identify the cause of high bandwidth. Built on the Orion® Platform, NTA provides the ability to purchase and fully integrate with additional network monitoring modules (config management, WAN management, VoIP, device tracking, IP address management), as well as systems, storage, and virtualization management in a single web console. page 1 DATASHEET: NETFLOW TRAFFIC ANALYZER FEATURES New! VMware vSphere Distributed Switch (VDS) Support Comprehensive support for the VMware VDS, providing visibility within the switch fabric to your east-west VM traffic to help IT pros avoid service impacts when moving workloads.
    [Show full text]
  • Netflow Optimizer™
    NetFlow Optimizer™ Installation and Administration Guide Version 2.4.7 (Build 2.4.7.0.23) January 2017 © Copyright 2013-2017 NetFlow Logic Corporation. All rights reserved. Patents both issued and pending. Contents Overview ....................................................................................................................................................................... 3 How NetFlow Optimizer Works .................................................................................................................................. 3 How NFO Updater Works .......................................................................................................................................... 3 NetFlow Optimizer Installation Guide ......................................................................................................................... 4 Before You Install NFO ................................................................................................................................................ 4 Pre-Installation Checklist ........................................................................................................................................... 4 Minimum Requirements ............................................................................................................................................. 4 Supported Platforms .............................................................................................................................................. 4 Virtual Hardware
    [Show full text]
  • Flow-Tools Tutorial
    Flow-tools Tutorial SANOG 6 Bhutan Agenda • Network flows • Cisco / Juniper implementation – NetFlow • Cisco / Juniper Configuration • flow-tools programs overview and examples from Abilene and Ohio- Gigapop Network Flows • Packets or frames that have a common attribute. • Creation and expiration policy – what conditions start and stop a flow. • Counters – packets,bytes,time. • Routing information – AS, network mask, interfaces. Network Flows • Unidirectional or bidirectional. • Bidirectional flows can contain other information such as round trip time, TCP behavior. • Application flows look past the headers to classify packets by their contents. • Aggregated flows – flows of flows. Unidirectional Flow with Source/Destination IP Key % telnet 10.0.0.2 10.0.0.1 login: 10.0.0.2 Active Flows Flow Source IP Destination IP 1 10.0.0.1 10.0.0.2 2 10.0.0.2 10.0.0.1 Unidirectional Flow with Source/Destination IP Key % telnet 10.0.0.2 % ping 10.0.0.2 login: 10.0.0.1 10.0.0.2 ICMP echo reply Active Flows Flow Source IP Destination IP 1 10.0.0.1 10.0.0.2 2 10.0.0.2 10.0.0.1 Unidirectional Flow with IP, Port,Protocol Key % telnet 10.0.0.2 % ping 10.0.0.2 login: 10.0.0.1 10.0.0.2 ICMP echo reply Active Flows Flow Source IP Destination IP prot srcPort dstPort 1 10.0.0.1 10.0.0.2 TCP 32000 23 2 10.0.0.2 10.0.0.1 TCP 23 32000 3 10.0.0.1 10.0.0.2 ICMP 0 0 4 10.0.0.2 10.0.0.1 ICMP 0 0 Bidirectional Flow with IP, Port,Protocol Key % telnet 10.0.0.2 % ping 10.0.0.2 login: 10.0.0.1 10.0.0.2 ICMP echo reply Active Flows Flow Source IP Destination IP prot srcPort
    [Show full text]
  • Brocade Vyatta Network OS Data Sheet
    DATA SHEET Brocade Vyatta Network OS HIGHLIGHTS A Network Operating System for the Way Forward • Offers a proven, modern network The Brocade® Vyatta® Network OS lays the foundation for a flexible, easy- operating system that accelerates the adoption of next-generation to-use, and high-performance network services architecture capable of architectures meeting current and future network demands. The operating system was • Creates an open, programmable built from the ground up to deliver robust network functionality that can environment to enhance be deployed virtually or as an appliance, and in concert with solutions differentiation, service quality, and from a large ecosystem of vendors, to address various Software-Defined competitiveness Networking (SDN) and Network Functions Virtualization (NFV) use cases. • Supports a broad ecosystem for With the Brocade Vyatta Network OS, organizations can bridge the gap optimal customization and service between traditional and new architectures, as well as leverage existing monetization investments and maximize operational efficiencies. Moreover, they can • Simplifies and automates network compose and deploy unique, new services that will drive differentiation functions to improve time to service, increase operational efficiency, and and strengthen competitiveness. reduce costs • Delivers breakthrough performance flexibility, performance, and operational and scale to meet the needs of any A Proven, Modern Operating efficiency, helping organizations create deployment System The Brocade Vyatta Network OS new service offerings and value. Since • Provides flexible deployment options separates the control and data planes in 2012, the benefits of this operating to support a wide variety of use cases software to fit seamlessly within modern system have been proven by the Brocade SDN and NFV environments.
    [Show full text]
  • Introduction to Netflow
    Introduction to Netflow Campus Network Design & Operations Workshop These materials are licensed under the Creative Commons Attribution-NonCommercial 4.0 International license (http://creativecommons.org/licenses/by-nc/4.0/) Last updated 14th December 2018 Agenda • Netflow – What it is and how it works – Uses and applications • Generating and exporting flow records • Nfdump and NfSen – Architecture – Usage • Lab What is a Network Flow • A set of related packets • Packets that belong to the same transport connection. e.g. – TCP, same src IP, src port, dst IP, dst port – UDP, same src IP, src port, dst IP, dst port – Some tools consider "bidirectional flows", i.e. A->B and B->A as part of the same flow http://en.wikipedia.org/wiki/Traffic_flow_(computer_networking) Simple flows = Packet belonging to flow X = Packet belonging to flow Y Cisco IOS Definition of a Flow • Unidirectional sequence of packets sharing: – Source IP address – Destination IP address – Source port for UDP or TCP, 0 for other protocols – Destination port for UDP or TCP, type and code for ICMP, or 0 for other protocols – IP protocol – Ingress interface (SNMP ifIndex) – IP Type of Service IOS: which of these six packets are in the same flows? Src IP Dst IP Protocol Src Port Dst Port A 1.2.3.4 5.6.7.8 6 (TCP) 4001 22 B 5.6.7.8 1.2.3.4 6 (TCP) 22 4001 C 1.2.3.4 5.6.7.8 6 (TCP) 4002 80 D 1.2.3.4 5.6.7.8 6 (TCP) 4001 80 E 1.2.3.4 8.8.8.8 17 (UDP) 65432 53 F 8.8.8.8 1.2.3.4 17 (UDP) 53 65432 IOS: which of these six packets are in the same flows? Src IP Dst IP Protocol Src Port Dst Port A 1.2.3.4 5.6.7.8 6 (TCP) 4001 22 B 5.6.7.8 1.2.3.4 6 (TCP) 22 4001 C 1.2.3.4 5.6.7.8 6 (TCP) 4002 80 D 1.2.3.4 5.6.7.8 6 (TCP) 4001 80 E 1.2.3.4 8.8.8.8 17 (UDP) 65432 53 F 8.8.8.8 1.2.3.4 17 (UDP) 53 65432 What about packets “C” and “D”? Flow Accounting • A summary of all the packets seen in a flow (so far): – Flow identification: protocol, src/dst IP/port..
    [Show full text]
  • Conntrack, Netfilter, Netflow and NAT Under Linux
    Xurble conntrack, Netfilter, NetFlow and NAT under Linux Oliver Gorwits 9th February 2010 Milton Keynes Perl Mongers 1 “Policy Compliance” • We have legal obligations • Avoiding the courts ✔ • Avoiding the newspapers ✔ 2 (alleged) Copyright Violations Subject: File-sharing of unauthorised content owned by Twentieth Century Fox From: [email protected] Dear Oxford University: Twentieth Century Fox Film Corporation, located in Los Angeles, and its affiliated companies (collectively, 'Fox') own intellectual property rights, including exclusive rights protected under copyright laws, in many motion pictures, television programs and other audio-visual works, including the motion picture AVATAR (collectively, the 'Fox Titles'). Fox conducted an online check by scanning public networks and discovered that your Oxford University internet account was used to access and distribute an unauthorised copy of AVATAR. By distributing Fox content without Fox's permission, you infringed Fox's copyright. Here is the information Fox obtained from the online check: Timestamp of report: 07 Feb 2010 23:12:44 GMT Title details: Avatar (2009) PROPER TS XviD-MAXSPEED IP address: 163.1.xxx.yyy Port ID: 30854 Protocol used: BitTorrent - L5 Please respond to Fox and identify what steps you have taken to resolve this matter by contacting Fox at [email protected] 3 The Process • So, given: ○Timestamp with Time Zone ○IP address ○TCP port number • We need: ○User’s identity • Usually via: ○Network log-in logs, and DHCP logs 4 Linux network subsystems Kernel conntrack netfilter iptables pietroizzo 5 Network Address/Port Translation O’Reilly 6 State Tracking User Firewall Internet 1 A ✔ 2 B pre-NAT post-NAT • Traditional loggers run two packet captures and correlate the timestamps.
    [Show full text]
  • Ipv6-Security Monitoring
    Security Monitoring ITU/APNIC/MICT IPv6 Security Workshop 23rd – 27th May 2016 Bangkok Last updated 22 July 2014 1 Managing and Monitoring IPv6 Networks p SNMP Monitoring p IPv6-Capable SNMP Management Tools p NetFlow Analysis p Syslog p Keeping accurate time p Intrusion Detection p Managing the Security Configuration 2 Using SNMP for Managing IPv6 Networks 3 What is SNMP? p SNMP – Simple Network Management Protocol p Industry standard, hundreds of tools exist to exploit it p Present on any decent network equipment p Query/response based: GET / SET p Monitoring generally uses GET p Object Identifiers (OIDs) p Keys to identify each piece of data p Concept of MIB (Management Information Base) p Defines a collection of OIDs What is SNMP? p Typical queries n Bytes In/Out on an interface, errors n CPU load n Uptime n Temperature or other vendor specific OIDs p For hosts (servers or workstations) n Disk space n Installed software n Running processes n ... p Windows and UNIX have SNMP agents What is SNMP? p UDP protocol, port 161 p Different versions n v1 (1988) – RFC1155, RFC1156, RFC1157 p Original specification n v2 – RFC1901 ... RFC1908 + RFC2578 p Extends v1, new data types, better retrieval methods (GETBULK) p Used is version v2c (simple security model) n v3 – RFC3411 ... RFC3418 (w/security) p Typically we use SNMPv2 (v2c) SNMP roles p Terminology: n Manager (the monitoring station) n Agent (running on the equipment/server) How does it work? p Basic commands n GET (manager → agent) p Query for a value n GET-NEXT (manager → agent) p Get next value (e.g.
    [Show full text]
  • White Paper Netflow Generation Security Value Proposition
    WHITE PAPER Leveraging NetFlow Generation for Maximum Security Value Overview This kind of sparse traffic record is enough to establish trends for network and application performance, but it’s a non-starter for Cisco introduced NetFlow in 1996 as a way to monitor packets security analytics. Advanced persistent threats (APTs) can operate as they enter and exit networking device interfaces. The aim is low and slow on the network, moving laterally and communicating to gain insight and resolve congestion. Typical information in a with command and control sites over long periods of time (days, NetFlow record reveals traffic source and destination, as well months or longer). The key to spotting anomalous traffic is looking as protocol or application, time stamps, and number of packets. for hard-to-spot patterns over the complete network activity Although NetFlow was initially not on a standards track, it has picture. Naturally, looking at a fraction of packet records severely been superseded by the Internet Protocol Flow Information hampers the breadth and accuracy of the analysis. eXport (IPFIX), which is based on the NetFlow Version 9 implementation, and is on the IETF standards track with RFC 5101, Here are the drawbacks of generating NetFlow records using RFC 5102. networking gear: As organizations refocus network security efforts on insider 1. NetFlow generation can degrade router and switch threats and detection of compromise, NetFlow provides rich and performance important contextual information about the traffic, augmenting 2. To manage the impact on performance, networking devices analysis in order to determine where compromise has occurred. may give sampled NetFlow or just drop packets This takes NetFlow out of the traditional realm of use for 3.
    [Show full text]
  • Netflow Overview
    Network Monitoring and Management NetFlow Overview These materials are licensed under the Creative Commons Attribution-Noncommercial 3.0 Unported license (http://creativecommons.org/licenses/by-nc/3.0/) Agenda 1. Netflow - What it is and how it works - Uses and applications 2. Generating and exporting flow records 3. Nfdump and Nfsen - Architecture - Usage 4. Lab What is a Network Flow? • A set of related packets • Packets that belong to the same transport connection. e.g. - TCP, same src IP, src port, dst IP, dst port - UDP, same src IP, src port, dst IP, dst port - Some tools consider "bidirectional flows", i.e. A->B and B->A as part of the same flow http://en.wikipedia.org/wiki/Traffic_flow_(computer_networking) Simple flows = Packet belonging to flow X = Packet belonging to flow Y Cisco IOS Definition of a Flow Unidirectional sequence of packets sharing: 1. Source IP address 2. Destination IP address 3. Source port for UDP or TCP, 0 for other protocols 4. Destination port for UDP or TCP, type and code for ICMP, or 0 for other protocols 5. IP protocol 6. Ingress interface (SNMP ifIndex) 7. IP Type of Service IOS: which of these six packets are in the same flows? Src IP Dst IP Protocol Src Port Dst Port A 1.2.3.4 5.6.7.8 6 (TCP) 4001 80 B 5.6.7.8 1.2.3.4 6 (TCP) 80 4001 C 1.2.3.4 5.6.7.8 6 (TCP) 4002 80 D 1.2.3.4 5.6.7.8 6 (TCP) 4001 80 E 1.2.3.4 8.8.8.8 17 (UDP) 65432 53 F 8.8.8.8 1.2.3.4 17 (UDP) 53 65432 IOS: which of these six packets are in the same flows? Src IP Dst IP Protocol Src Port Dst Port A 1.2.3.4 5.6.7.8 6 (TCP) 4001 80 B 5.6.7.8 1.2.3.4 6 (TCP) 80 4001 C 1.2.3.4 5.6.7.8 6 (TCP) 4002 80 D 1.2.3.4 5.6.7.8 6 (TCP) 4001 80 E 1.2.3.4 8.8.8.8 17 (UDP) 65432 53 F 8.8.8.8 1.2.3.4 17 (UDP) 53 65432 What about packets “C” and “D”? Flow Accounting A summary of all the packets seen in a flow (so far): - Flow identification: protocol, src/dst IP/port..
    [Show full text]
  • Configuring Netflow
    CHAPTER 63 Configuring NetFlow This chapter describes how to configure NetFlow statistics collection in Cisco IOS Release 12.2SX. Note For complete syntax and usage information for the commands used in this chapter, see these publications: http://www.cisco.com/en/US/docs/ios/netflow/command/reference/nf_book.html Tip For additional information about Cisco Catalyst 6500 Series Switches (including configuration examples and troubleshooting information), see the documents listed on this page: http://www.cisco.com/en/US/products/hw/switches/ps708/tsd_products_support_series_home.html Participate in the Technical Documentation Ideas forum This chapter contains the following sections: • Understanding NetFlow, page 63-1 • Default NetFlow Configuration, page 63-4 • NetFlow Restrictions, page 63-4 • Configuring NetFlow, page 63-9 Understanding NetFlow • NetFlow Overview, page 63-2 • NetFlow on the PFC, page 63-2 • NetFlow on the RP, page 63-3 • NetFlow Features, page 63-3 Cisco IOS Software Configuration Guide, Release 12.2SX OL-13013-06 63-1 Chapter 63 Configuring NetFlow Understanding NetFlow NetFlow Overview The NetFlow feature collects traffic statistics about the packets that flow through the switch and stores the statistics in the NetFlow table. The NetFlow table on the route processor (RP) captures statistics for flows routed in software and the NetFlow table on the PFC (and on each DFC) captures statistics for flows routed in hardware. Several features use the NetFlow table. Features such as network address translation (NAT) use NetFlow to modify the forwarding result; other features (such as QoS microflow policing) use the statistics from the NetFlow table to apply QoS policies. The NetFlow Data Export (NDE) feature provides the ability to export the statistics to an external device (called a NetFlow collector).
    [Show full text]
  • Network Monitoring Based on IP Data Flows Best Practice Document
    Network Monitoring Based on IP Data Flows Best Practice Document Produced by CESNET led working group on Network monitoring (CBPD131) Authors: Martin Žádník March 2010 © TERENA 2010. All rights reserved. Document No: GN3-NA3-T4-CBPD131 Version / date: 24.03.2010 Original language : Czech Original title: “NETWORK MONITORING BASED ON IP DATA FLOWS” Original version / date: 1.2 of 3.12. 2009 Contact: [email protected] CESNET bears responsibility for the content of this document. The work has been carried out by a CESNET led working group on Network monitoring as part of a joint-venture project within the HE sector in Czech Republic. Parts of the report may be freely copied, unaltered, provided that the original source is acknowledged and copyright preserved. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 238875, relating to the project 'Multi-Gigabit European Research and Education Network and Associated Services (GN3)'. 2 Table of Contents Table of Contents 3 Executive Summary 4 1 Approaches Used for Network Monitoring 5 2 NetFlow Architecture 6 3 NetFlow Agent 7 3.1 Agent Parameters and Configuration 7 4 Collector 9 4.1 Collector Parameters and Configuration 9 5 NetFlow Protocol 11 6 NetFlow Data Analysis 12 7 Usage 14 8 Ethical Perspective of NetFlow 17 9 Available Solutions 18 10 Future Outlook 20 11 Conclusion 21 12 List of Figures 22 3 Executive Summary Do you monitor your network? Try to answer the following questions. Which users and which services use the most network bandwidth, and do they exceed authorised limits? Do users use only the permitted services, or do they occasionally "chat" with friends during work hours? Is my network scanned or assaulted by attackers? NetFlow will answer these and other questions.
    [Show full text]