Modules, Splitting Sequences, and Direct Sums
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Classification of Finite Abelian Groups
Math 317 C1 John Sullivan Spring 2003 Classification of Finite Abelian Groups (Notes based on an article by Navarro in the Amer. Math. Monthly, February 2003.) The fundamental theorem of finite abelian groups expresses any such group as a product of cyclic groups: Theorem. Suppose G is a finite abelian group. Then G is (in a unique way) a direct product of cyclic groups of order pk with p prime. Our first step will be a special case of Cauchy’s Theorem, which we will prove later for arbitrary groups: whenever p |G| then G has an element of order p. Theorem (Cauchy). If G is a finite group, and p |G| is a prime, then G has an element of order p (or, equivalently, a subgroup of order p). ∼ Proof when G is abelian. First note that if |G| is prime, then G = Zp and we are done. In general, we work by induction. If G has no nontrivial proper subgroups, it must be a prime cyclic group, the case we’ve already handled. So we can suppose there is a nontrivial subgroup H smaller than G. Either p |H| or p |G/H|. In the first case, by induction, H has an element of order p which is also order p in G so we’re done. In the second case, if ∼ g + H has order p in G/H then |g + H| |g|, so hgi = Zkp for some k, and then kg ∈ G has order p. Note that we write our abelian groups additively. Definition. Given a prime p, a p-group is a group in which every element has order pk for some k. -
BLECHER • All Numbers Below Are Integers, Usually Positive. • Read Up
MATH 4389{ALGEBRA `CHEATSHEET'{BLECHER • All numbers below are integers, usually positive. • Read up on e.g. wikipedia on the Euclidean algorithm. • Diophantine equation ax + by = c has solutions iff gcd(a; b) doesn't divide c. One may find the solutions using the Euclidean algorithm (google this). • Euclid's lemma: prime pjab implies pja or pjb. • gcd(m; n) · lcm(m; n) = mn. • a ≡ b (mod m) means mj(a − b). An equivalence relation (reflexive, symmetric, transitive) on the integers. • ax ≡ b (mod m) has a solution iff gcd(m; a)jb. • Division Algorithm: there exist unique integers q and r with a = bq + r and 0 ≤ r < b; so a ≡ r (mod b). • Fermat's theorem: If p is prime then ap ≡ a (mod p) Also, ap−1 ≡ 1 (mod p) if p does not divide a. • For definitions for groups, rings, fields, subgroups, order of element, etc see Algebra fact sheet" below. • Zm = f0; 1; ··· ; m−1g with addition and multiplication mod m, is a group and commutative ring (= Z =m Z) • Order of n in Zm (i.e. smallest k s.t. kn ≡ 0 (mod m)) is m=gcd(m; n). • hai denotes the subgroup generated by a (the smallest subgroup containing a). For example h2i = f0; 2; 2+2 = 4; 2 + 2 + 2 = 6g in Z8. (In ring theory it may be the subring generated by a). • A cyclic group is a group that can be generated by a single element (the group generator). They are abelian. • A finite group is cyclic iff G = fg; g + g; ··· ; g + g + ··· + g = 0g; so G = hgi. -
Cohomology Theory of Lie Groups and Lie Algebras
COHOMOLOGY THEORY OF LIE GROUPS AND LIE ALGEBRAS BY CLAUDE CHEVALLEY AND SAMUEL EILENBERG Introduction The present paper lays no claim to deep originality. Its main purpose is to give a systematic treatment of the methods by which topological questions concerning compact Lie groups may be reduced to algebraic questions con- cerning Lie algebras^). This reduction proceeds in three steps: (1) replacing questions on homology groups by questions on differential forms. This is accomplished by de Rham's theorems(2) (which, incidentally, seem to have been conjectured by Cartan for this very purpose); (2) replacing the con- sideration of arbitrary differential forms by that of invariant differential forms: this is accomplished by using invariant integration on the group manifold; (3) replacing the consideration of invariant differential forms by that of alternating multilinear forms on the Lie algebra of the group. We study here the question not only of the topological nature of the whole group, but also of the manifolds on which the group operates. Chapter I is concerned essentially with step 2 of the list above (step 1 depending here, as in the case of the whole group, on de Rham's theorems). Besides consider- ing invariant forms, we also introduce "equivariant" forms, defined in terms of a suitable linear representation of the group; Theorem 2.2 states that, when this representation does not contain the trivial representation, equi- variant forms are of no use for topology; however, it states this negative result in the form of a positive property of equivariant forms which is of interest by itself, since it is the key to Levi's theorem (cf. -
Lecture 1.3: Direct Products and Sums
Lecture 1.3: Direct products and sums Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 8530, Advanced Linear Algebra M. Macauley (Clemson) Lecture 1.3: Direct products and sums Math 8530, Advanced Linear Algebra 1 / 5 Overview In previous lectures, we learned about vectors spaces and subspaces. We learned about what it meant for a subset to span, to be linearly independent, and to be a basis. In this lecture, we will see how to create new vector spaces from old ones. We will see several ways to \multiply" vector spaces together, and will learn how to construct: the complement of a subspace the direct sum of two subspaces the direct product of two vector spaces M. Macauley (Clemson) Lecture 1.3: Direct products and sums Math 8530, Advanced Linear Algebra 2 / 5 Complements and direct sums Theorem 1.5 (a) Every subspace Y of a finite-dimensional vector space X is finite-dimensional. (b) Every subspace Y has a complement in X : another subspace Z such that every vector x 2 X can be written uniquely as x = y + z; y 2 Y ; z 2 Z; dim X = dim Y + dim Z: Proof Definition X is the direct sum of subspaces Y and Z that are complements of each other. More generally, X is the direct sum of subspaces Y1;:::; Ym if every x 2 X can be expressed uniquely as x = y1 + ··· + ym; yi 2 Yi : We denote this as X = Y1 ⊕ · · · ⊕ Ym. M. Macauley (Clemson) Lecture 1.3: Direct products and sums Math 8530, Advanced Linear Algebra 3 / 5 Direct products Definition The direct product of X1 and X2 is the vector space X1 × X2 := (x1; x2) j x1 2 X1; x2 2 X2 ; with addition and multiplication defined component-wise. -
The Exchange Property and Direct Sums of Indecomposable Injective Modules
Pacific Journal of Mathematics THE EXCHANGE PROPERTY AND DIRECT SUMS OF INDECOMPOSABLE INJECTIVE MODULES KUNIO YAMAGATA Vol. 55, No. 1 September 1974 PACIFIC JOURNAL OF MATHEMATICS Vol. 55, No. 1, 1974 THE EXCHANGE PROPERTY AND DIRECT SUMS OF INDECOMPOSABLE INJECTIVE MODULES KUNIO YAMAGATA This paper contains two main results. The first gives a necessary and sufficient condition for a direct sum of inde- composable injective modules to have the exchange property. It is seen that the class of these modules satisfying the con- dition is a new one of modules having the exchange property. The second gives a necessary and sufficient condition on a ring for all direct sums of indecomposable injective modules to have the exchange property. Throughout this paper R will be an associative ring with identity and all modules will be right i?-modules. A module M has the exchange property [5] if for any module A and any two direct sum decompositions iel f with M ~ M, there exist submodules A\ £ At such that The module M has the finite exchange property if this holds whenever the index set I is finite. As examples of modules which have the exchange property, we know quasi-injective modules and modules whose endomorphism rings are local (see [16], [7], [15] and for the other ones [5]). It is well known that a finite direct sum M = φj=1 Mt has the exchange property if and only if each of the modules Λft has the same property ([5, Lemma 3.10]). In general, however, an infinite direct sum M = ®i&IMi has not the exchange property even if each of Λf/s has the same property. -
Arxiv:1909.05807V1 [Math.RA] 12 Sep 2019 Cs T
MODULES OVER TRUSSES VS MODULES OVER RINGS: DIRECT SUMS AND FREE MODULES TOMASZ BRZEZINSKI´ AND BERNARD RYBOLOWICZ Abstract. Categorical constructions on heaps and modules over trusses are con- sidered and contrasted with the corresponding constructions on groups and rings. These include explicit description of free heaps and free Abelian heaps, coprod- ucts or direct sums of Abelian heaps and modules over trusses, and description and analysis of free modules over trusses. It is shown that the direct sum of two non-empty Abelian heaps is always infinite and isomorphic to the heap associated to the direct sums of the group retracts of both heaps and Z. Direct sum is used to extend a given truss to a ring-type truss or a unital truss (or both). Free mod- ules are constructed as direct sums of a truss. It is shown that only free rank-one modules are free as modules over the associated truss. On the other hand, if a (finitely generated) module over a truss associated to a ring is free, then so is the corresponding quotient-by-absorbers module over this ring. 1. Introduction Trusses and skew trusses were defined in [3] in order to capture the nature of the distinctive distributive law that characterises braces and skew braces [12], [6], [9]. A (one-sided) truss is a set with a ternary operation which makes it into a heap or herd (see [10], [11], [1] or [13]) together with an associative binary operation that distributes (on one side or both) over the heap ternary operation. If the specific bi- nary operation admits it, a choice of a particular element could fix a group structure on a heap in a way that turns the truss into a ring or a brace-like system (which becomes a brace provided the binary operation admits inverses). -
Arxiv:2007.07508V1 [Math.GR] 15 Jul 2020 Re H Aoia Eopstosaeapplied
CANONICAL DECOMPOSITIONS OF ABELIAN GROUPS PHILL SCHULTZ Abstract. Every torsion–free abelian group of finite rank has two essentially unique complete direct decompositions whose summands come from specific classes of groups. 1. Introduction An intriguing feature of abelian group theory is that torsion–free groups, even those of finite rank, may fail to have unique complete decompositions; see for ex- ample [Fuchs, 2015, Chapter 12, §5] or [Mader and Schultz, 2018]). Therefore it is interesting to show that every such group has essentially unique complete de- compositions with summands from certain identifiable classes. For example, it was shown in [Mader and Schultz, 2018] that every finite rank torsion–free group G has a Main Decomposition, G = Gcd ⊕ Gcl where Gcd is completely decomposable and Gcl has no rank 1 direct summand; Gcd is unique up to isomorphism and Gcl unique up to near isomorphism. Let G be the class of torsion–free abelian groups of finite rank and let G ∈ G. The aim of this paper is to show that: • G = Gsd ⊕Gni where Gsd is a direct sum of strongly indecomposable groups and Gni has no strongly indecomposable direct summand. Gsd is unique up to isomorphism and Gni up to near isomorphism. • G = G(fq) ⊕ G(rq) ⊕ G(dq), where G(fq) is an extension of a completely decomposable group by a finite group, G(rq) is an extension of a completely decomposable group by an infinite reduced torsion group, and G(dq) is an extension of a completely decomposable group by an infinite torsion group which has a divisible summand. -
Chapter 3 Direct Sums, Affine Maps, the Dual Space, Duality
Chapter 3 Direct Sums, Affine Maps, The Dual Space, Duality 3.1 Direct Products, Sums, and Direct Sums There are some useful ways of forming new vector spaces from older ones. Definition 3.1. Given p 2vectorspacesE ,...,E , ≥ 1 p the product F = E1 Ep can be made into a vector space by defining addition⇥···⇥ and scalar multiplication as follows: (u1,...,up)+(v1,...,vp)=(u1 + v1,...,up + vp) λ(u1,...,up)=(λu1,...,λup), for all ui,vi Ei and all λ R. 2 2 With the above addition and multiplication, the vector space F = E E is called the direct product of 1 ⇥···⇥ p the vector spaces E1,...,Ep. 151 152 CHAPTER 3. DIRECT SUMS, AFFINE MAPS, THE DUAL SPACE, DUALITY The projection maps pr : E E E given by i 1 ⇥···⇥ p ! i pri(u1,...,up)=ui are clearly linear. Similarly, the maps in : E E E given by i i ! 1 ⇥···⇥ p ini(ui)=(0,...,0,ui, 0,...,0) are injective and linear. It can be shown (using bases) that dim(E E )=dim(E )+ +dim(E ). 1 ⇥···⇥ p 1 ··· p Let us now consider a vector space E and p subspaces U1,...,Up of E. We have a map a: U U E 1 ⇥···⇥ p ! given by a(u ,...,u )=u + + u , 1 p 1 ··· p with u U for i =1,...,p. i 2 i 3.1. DIRECT PRODUCTS, SUMS, AND DIRECT SUMS 153 It is clear that this map is linear, and so its image is a subspace of E denoted by U + + U 1 ··· p and called the sum of the subspaces U1,...,Up. -
Semisimple Categories
Semisimple Categories James Bailie June 26, 2017 1 Preamble: Representation Theory of Categories A natural generalisation of traditional representation theory is to study the representation theory of cate- gories. The idea of representation theory is to take some abstract algebraic object and study it by mapping it into a well known structure. With this mindset, a representation is simply a functor from the category we want to study to a familiar category. For example, consider a group G as a one object category where every morphism is invertible. A rep- resentation of G is typically a group homomorphism from G into End(V ), where V is some vector space. Notice that this is exactly a functor G ! Vec. Now consider a homomorphism between representations. We require such a map to commute with the actions on representations. Such a condition is exactly saying that the homomorphism is a natural transformation between the two representations. Thus, the most general theory of representations amounts to studying functors and natural transforma- tions. Unfortunately, in this general setting, there isn't too much we can say. To `get some more meat on the bones', we might ask that our categories have extra structure. For example, we might want our categories to be monoidal, linear, abelian or semisimple. If you wish, you can justify these extra structures by appealing to the fact that most categories that arise in physics automatically come with them. This report will focus on what we mean by a semisimple category. Note that we have already studied semisimple representations and semisimple algebras (c.f. -
Group Theory
Algebra Math Notes • Study Guide Group Theory Table of Contents Groups..................................................................................................................................................................... 3 Binary Operations ............................................................................................................................................................. 3 Groups .............................................................................................................................................................................. 3 Examples of Groups ......................................................................................................................................................... 4 Cyclic Groups ................................................................................................................................................................... 5 Homomorphisms and Normal Subgroups ......................................................................................................................... 5 Cosets and Quotient Groups ............................................................................................................................................ 6 Isomorphism Theorems .................................................................................................................................................... 7 Product Groups ............................................................................................................................................................... -
WHEN IS ∏ ISOMORPHIC to ⊕ Introduction Let C Be a Category
WHEN IS Q ISOMORPHIC TO L MIODRAG CRISTIAN IOVANOV Abstract. For a category C we investigate the problem of when the coproduct L and the product functor Q from CI to C are isomorphic for a fixed set I, or, equivalently, when the two functors are Frobenius functors. We show that for an Ab category C this happens if and only if the set I is finite (and even in a much general case, if there is a morphism in C that is invertible with respect to addition). However we show that L and Q are always isomorphic on a suitable subcategory of CI which is isomorphic to CI but is not a full subcategory. If C is only a preadditive category then we give an example to see that the two functors can be isomorphic for infinite sets I. For the module category case we provide a different proof to display an interesting connection to the notion of Frobenius corings. Introduction Let C be a category and denote by ∆ the diagonal functor from C to CI taking any object I X to the family (X)i∈I ∈ C . Recall that C is an Ab category if for any two objects X, Y of C the set Hom(X, Y ) is endowed with an abelian group structure that is compatible with the composition. We shall say that a category is an AMon category if the set Hom(X, Y ) is (only) an abelian monoid for every objects X, Y . Following [McL], in an Ab category if the product of any two objects exists then the coproduct of any two objects exists and they are isomorphic. -
Clifford Algebras
Preprint typeset in JHEP style - HYPER VERSION Chapter 10:: Clifford algebras Abstract: NOTE: THESE NOTES, FROM 2009, MOSTLY TREAT CLIFFORD ALGE- BRAS AS UNGRADED ALGEBRAS OVER R OR C. A CONCEPTUALLY SUPERIOR VIEWPOINT IS TO TREAT THEM AS Z2-GRADED ALGEBRAS. SEE REFERENCES IN THE INTRODUCTION WHERE THIS SUPERIOR VIEWPOINT IS PRESENTED. April 3, 2018 -TOC- Contents 1. Introduction 1 2. Clifford algebras 1 3. The Clifford algebras over R 3 3.1 The real Clifford algebras in low dimension 4 3.1.1 C`(1−) 4 3.1.2 C`(1+) 5 3.1.3 Two dimensions 6 3.2 Tensor products of Clifford algebras and periodicity 7 3.2.1 Special isomorphisms 9 3.2.2 The periodicity theorem 10 4. The Clifford algebras over C 14 5. Representations of the Clifford algebras 15 5.1 Representations and Periodicity: Relating Γ-matrices in consecutive even and odd dimensions 18 6. Comments on a connection to topology 20 7. Free fermion Fock space 21 7.1 Left regular representation of the Clifford algebra 21 7.2 The Exterior Algebra as a Clifford Module 22 7.3 Representations from maximal isotropic subspaces 22 7.4 Splitting using a complex structure 24 7.5 Explicit matrices and intertwiners in the Fock representations 26 8. Bogoliubov Transformations and the Choice of Clifford vacuum 27 9. Comments on Infinite-Dimensional Clifford Algebras 28 10. Properties of Γ-matrices under conjugation and transpose: Intertwiners 30 10.1 Definitions of the intertwiners 31 10.2 The charge conjugation matrix for Lorentzian signature 31 10.3 General Intertwiners for d = r + s even 32 10.3.1 Unitarity properties 32 10.3.2 General properties of the unitary intertwiners 33 10.3.3 Intertwiners for d = r + s odd 35 10.4 Constructing Explicit Intertwiners from the Free Fermion Rep 35 10.5 Majorana and Symplectic-Majorana Constraints 36 { 1 { 10.5.1 Reality, or Majorana Conditions 36 10.5.2 Quaternionic, or Symplectic-Majorana Conditions 37 10.5.3 Chirality Conditions 38 11.