Generalized Central Limit Theorem and Extreme Value Statistics Ariel Amir, 9/2017
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Power-Law Distributions in Empirical Data
Power-law distributions in empirical data Aaron Clauset,1, 2 Cosma Rohilla Shalizi,3 and M. E. J. Newman1, 4 1Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA 2Department of Computer Science, University of New Mexico, Albuquerque, NM 87131, USA 3Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213, USA 4Department of Physics and Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109, USA Power-law distributions occur in many situations of scientific interest and have significant conse- quences for our understanding of natural and man-made phenomena. Unfortunately, the empirical detection and characterization of power laws is made difficult by the large fluctuations that occur in the tail of the distribution. In particular, standard methods such as least-squares fitting are known to produce systematically biased estimates of parameters for power-law distributions and should not be used in most circumstances. Here we review statistical techniques for making ac- curate parameter estimates for power-law data, based on maximum likelihood methods and the Kolmogorov-Smirnov statistic. We also show how to tell whether the data follow a power-law dis- tribution at all, defining quantitative measures that indicate when the power law is a reasonable fit to the data and when it is not. We demonstrate these methods by applying them to twenty- four real-world data sets from a range of different disciplines. Each of the data sets has been conjectured previously to follow a power-law distribution. In some cases we find these conjectures to be consistent with the data while in others the power law is ruled out. -
Black Swans, Dragons-Kings and Prediction
Black Swans, Dragons-Kings and Prediction Professor of Entrepreneurial Risks Didier SORNETTE Professor of Geophysics associated with the ETH Zurich Department of Earth Sciences (D-ERWD), ETH Zurich Professor of Physics associated with the Department of Physics (D-PHYS), ETH Zurich Professor of Finance at the Swiss Finance Institute Director of the Financial Crisis Observatory co-founder of the Competence Center for Coping with Crises in Socio-Economic Systems, ETH Zurich (http://www.ccss.ethz.ch/) Black Swan (Cygnus atratus) www.er.ethz.ch EXTREME EVENTS in Natural SYSTEMS •Earthquakes •Volcanic eruptions •Hurricanes and tornadoes •Landslides, mountain collapses •Avalanches, glacier collapses •Lightning strikes •Meteorites, asteroid impacts •Catastrophic events of environmental degradations EXTREME EVENTS in SOCIO-ECONOMIC SYSTEMS •Failure of engineering structures •Crashes in the stock markets •Social unrests leading to large scale strikes and upheavals •Economic recessions on regional and global scales •Power blackouts •Traffic gridlocks •Social epidemics •Block-busters •Discoveries-innovations •Social groups, cities, firms... •Nations •Religions... Extreme events are epoch changing in the physical structure and in the mental spaces • Droughts and the collapse of the Mayas (760-930 CE)... and many others... • French revolution (1789) and the formation of Nation states • Great depression and Glass-Steagall act • Crash of 19 Oct. 1987 and volatility smile (crash risk) • Enron and Worldcom accounting scandals and Sarbanes-Oxley (2002) • Great Recession 2007-2009: consequences to be4 seen... The Paradox of the 2007-20XX Crisis (trillions of US$) 2008 FINANCIAL CRISIS 6 Jean-Pierre Danthine: Swiss monetary policy and Target2-Securities Introductory remarks by Mr Jean-Pierre Danthine, Member of the Governing Board of the Swiss National Bank, at the end-of-year media news conference, Zurich, 16 December 2010. -
Extreme Value Theory and Backtest Overfitting in Finance
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bowdoin College Bowdoin College Bowdoin Digital Commons Honors Projects Student Scholarship and Creative Work 2015 Extreme Value Theory and Backtest Overfitting in Finance Daniel C. Byrnes [email protected] Follow this and additional works at: https://digitalcommons.bowdoin.edu/honorsprojects Part of the Statistics and Probability Commons Recommended Citation Byrnes, Daniel C., "Extreme Value Theory and Backtest Overfitting in Finance" (2015). Honors Projects. 24. https://digitalcommons.bowdoin.edu/honorsprojects/24 This Open Access Thesis is brought to you for free and open access by the Student Scholarship and Creative Work at Bowdoin Digital Commons. It has been accepted for inclusion in Honors Projects by an authorized administrator of Bowdoin Digital Commons. For more information, please contact [email protected]. Extreme Value Theory and Backtest Overfitting in Finance An Honors Paper Presented for the Department of Mathematics By Daniel Byrnes Bowdoin College, 2015 ©2015 Daniel Byrnes Acknowledgements I would like to thank professor Thomas Pietraho for his help in the creation of this thesis. The revisions and suggestions made by several members of the math faculty were also greatly appreciated. I would also like to thank the entire department for their support throughout my time at Bowdoin. 1 Contents 1 Abstract 3 2 Introduction4 3 Background7 3.1 The Sharpe Ratio.................................7 3.2 Other Performance Measures.......................... 10 3.3 Example of an Overfit Strategy......................... 11 4 Modes of Convergence for Random Variables 13 4.1 Random Variables and Distributions...................... 13 4.2 Convergence in Distribution.......................... -
Parametric (Theoretical) Probability Distributions. (Wilks, Ch. 4) Discrete
6 Parametric (theoretical) probability distributions. (Wilks, Ch. 4) Note: parametric: assume a theoretical distribution (e.g., Gauss) Non-parametric: no assumption made about the distribution Advantages of assuming a parametric probability distribution: Compaction: just a few parameters Smoothing, interpolation, extrapolation x x + s Parameter: e.g.: µ,σ population mean and standard deviation Statistic: estimation of parameter from sample: x,s sample mean and standard deviation Discrete distributions: (e.g., yes/no; above normal, normal, below normal) Binomial: E = 1(yes or success); E = 0 (no, fail). These are MECE. 1 2 P(E ) = p P(E ) = 1− p . Assume N independent trials. 1 2 How many “yes” we can obtain in N independent trials? x = (0,1,...N − 1, N ) , N+1 possibilities. Note that x is like a dummy variable. ⎛ N ⎞ x N − x ⎛ N ⎞ N ! P( X = x) = p 1− p , remember that = , 0!= 1 ⎜ x ⎟ ( ) ⎜ x ⎟ x!(N x)! ⎝ ⎠ ⎝ ⎠ − Bernouilli is the binomial distribution with a single trial, N=1: x = (0,1), P( X = 0) = 1− p, P( X = 1) = p Geometric: Number of trials until next success: i.e., x-1 fails followed by a success. x−1 P( X = x) = (1− p) p x = 1,2,... 7 Poisson: Approximation of binomial for small p and large N. Events occur randomly at a constant rate (per N trials) µ = Np . The rate per trial p is low so that events in the same period (N trials) are approximately independent. Example: assume the probability of a tornado in a certain county on a given day is p=1/100. -
Handbook on Probability Distributions
R powered R-forge project Handbook on probability distributions R-forge distributions Core Team University Year 2009-2010 LATEXpowered Mac OS' TeXShop edited Contents Introduction 4 I Discrete distributions 6 1 Classic discrete distribution 7 2 Not so-common discrete distribution 27 II Continuous distributions 34 3 Finite support distribution 35 4 The Gaussian family 47 5 Exponential distribution and its extensions 56 6 Chi-squared's ditribution and related extensions 75 7 Student and related distributions 84 8 Pareto family 88 9 Logistic distribution and related extensions 108 10 Extrem Value Theory distributions 111 3 4 CONTENTS III Multivariate and generalized distributions 116 11 Generalization of common distributions 117 12 Multivariate distributions 133 13 Misc 135 Conclusion 137 Bibliography 137 A Mathematical tools 141 Introduction This guide is intended to provide a quite exhaustive (at least as I can) view on probability distri- butions. It is constructed in chapters of distribution family with a section for each distribution. Each section focuses on the tryptic: definition - estimation - application. Ultimate bibles for probability distributions are Wimmer & Altmann (1999) which lists 750 univariate discrete distributions and Johnson et al. (1994) which details continuous distributions. In the appendix, we recall the basics of probability distributions as well as \common" mathe- matical functions, cf. section A.2. And for all distribution, we use the following notations • X a random variable following a given distribution, • x a realization of this random variable, • f the density function (if it exists), • F the (cumulative) distribution function, • P (X = k) the mass probability function in k, • M the moment generating function (if it exists), • G the probability generating function (if it exists), • φ the characteristic function (if it exists), Finally all graphics are done the open source statistical software R and its numerous packages available on the Comprehensive R Archive Network (CRAN∗). -
Time-Varying Volatility and the Power Law Distribution of Stock Returns
Finance and Economics Discussion Series Divisions of Research & Statistics and Monetary Affairs Federal Reserve Board, Washington, D.C. Time-varying Volatility and the Power Law Distribution of Stock Returns Missaka Warusawitharana 2016-022 Please cite this paper as: Warusawitharana, Missaka (2016). “Time-varying Volatility and the Power Law Distribution of Stock Returns,” Finance and Economics Discussion Se- ries 2016-022. Washington: Board of Governors of the Federal Reserve System, http://dx.doi.org/10.17016/FEDS.2016.022. NOTE: Staff working papers in the Finance and Economics Discussion Series (FEDS) are preliminary materials circulated to stimulate discussion and critical comment. The analysis and conclusions set forth are those of the authors and do not indicate concurrence by other members of the research staff or the Board of Governors. References in publications to the Finance and Economics Discussion Series (other than acknowledgement) should be cleared with the author(s) to protect the tentative character of these papers. Time-varying Volatility and the Power Law Distribution of Stock Returns Missaka Warusawitharana∗ Board of Governors of the Federal Reserve System March 18, 2016 JEL Classifications: C58, D30, G12 Keywords: Tail distributions, high frequency returns, power laws, time-varying volatility ∗I thank Yacine A¨ıt-Sahalia, Dobislav Dobrev, Joshua Gallin, Tugkan Tuzun, Toni Whited, Jonathan Wright, Yesol Yeh and seminar participants at the Federal Reserve Board for helpful comments on the paper. Contact: Division of Research and Statistics, Board of Governors of the Federal Reserve System, Mail Stop 97, 20th and C Street NW, Washington, D.C. 20551. [email protected], (202)452-3461. -