Adversarial Policy Training Against Deep Reinforcement Learning

Total Page:16

File Type:pdf, Size:1020Kb

Adversarial Policy Training Against Deep Reinforcement Learning Adversarial Policy Training against Deep Reinforcement Learning 1 1 1 1 Xian Wu ∗, Wenbo Guo ∗, Hua Wei ∗, Xinyu Xing 1The Pennsylvania State University xkw5132, wzg13, hzw77, xxing @ist.psu.edu f g Abstract the machine learning community designs various deep rein- forcement learning algorithms [29, 43, 53] and demonstrates Reinforcement learning is a set of goal-oriented learning al- their great success in a variety of applications, ranging from gorithms, through which an agent could learn to behave in defeating world champions of Go [45] to mastering a wide an environment, by performing certain actions and observing variety of Atari games [30]. the reward which it gets from those actions. Integrated with Different from conventional deep learning, deep reinforce- deep neural networks, it becomes deep reinforcement learn- ment learning (DRL) refers to goal-oriented algorithms, ing, a new paradigm of learning methods. Recently, deep through which one could train an agent to learn how to attain reinforcement learning demonstrates great potential in many a complex objective or, in other words, maximize the reward applications such as playing video games, mastering GO com- it can collect over many steps (actions). Like a dog incen- petition, and even performing autonomous pilot. However, tivized by petting and intimidation, reinforcement learning coming together with these great successes is adversarial at- algorithms penalize the agent when it takes the wrong action tacks, in which an adversary could force a well-trained agent and reward when the agent takes the right ones. to behave abnormally by tampering the input to the agent’s policy network or training an adversarial agent to exploit the In light of the promising results in many reinforcement weakness of the victim. learning tasks, researchers recently devoted their energies In this work, we show existing adversarial attacks against to investigating the security risk of reinforcement learning reinforcement learning either work in an impractical setting algorithms. For example, early research has proposed various or perform less effectively when being launched in a two- methods to manipulate the environment that an agent interacts e.g., agent competitive game. Motivated by this, we propose a new with ( [4, 18, 21]). Their rationale behind such a kind of method to train adversarial agents. Technically speaking, our attack is as follows. In a reinforcement learning task, an agent approach extends the Proximal Policy Optimization (PPO) al- usually takes as input the observation of the environment. By gorithm and then utilizes an explainable AI technique to guide manipulating the environment, an attacker could influence the an attacker to train an adversarial agent. In comparison with agent observation as well as its decision (action), and thus e.g., the adversarial agent trained by the state-of-the-art technique, mislead the agent to behave abnormally ( subtly changing we show that our adversarial agent exhibits a much stronger some pixel values of the sky in the Super Mario game, or capability in exploiting the weakness of victim agents. Be- injecting noise into the background canvas of the Pong game). sides, we demonstrate that our adversarial attack introduces In many recent research works, attacks through environ- less variation in the training process and exhibits less sensi- ment manipulation have demonstrated great success in failing tivity to the selection of initial states. a well-trained agent to complete a certain task (e.g., [18,19]). However, such attacks are not practical in the real world. For example, in the application of online video games, the input 1 Introduction of a pre-trained master agent is the snapshot of the current game scenes. From the attackers’ perspective, it is difficult With the recent breakthroughs of deep neural networks (DNN) for them to hack into the game server, obtain the permission in problems like computer vision, machine translation, and of manipulating the environment, influence arbitrary pixels in time series prediction, we have witnessed a great advance that input image, and thus launch an adversarial attack as they in the area of reinforcement learning (RL). By integrating expect. As a result, recent research proposes a new method to deep neural networks into reinforcement learning algorithms, attack a well-trained agent [10]. ∗Equal Contribution. Different from attacks through environment manipulation, the new attack is designed specifically for the two-agent com- agent to take the action that could influence the action of the petitive game – where two participant agents compete with opponent agent the most. each other – and the goal of this attack is to fail one well- In this paper, we do not claim that our proposed technique trained agent in the game by manipulating the behaviors of is the first method for attacking reinforcement learning. How- the other. In comparison with the environment manipulation ever, we argue that this is the first work that can effectively methods, the new attack against RL is more practical because, exploit the weakness of victim agents without the manipula- to trigger the weakness of the victim agent, this attack does tion of the environment. Using MuJoCo [50] and roboschool not assume full control over the environment nor that over Pong [33] games, we show that our method has a stronger the observation of the victim agent. Rather, it assumes only capability of attacking a victim agent than the state-of-the-art the free access of the adversarial agent (i.e., the agent that the method [10] (an average of 60% vs. 50% winning rate for attacker trains to compete with his opponent’s agent). MuJoCo game and 100% vs. 90% for the Pong game). In In [10], researchers have already shown that the method of addition, we demonstrate that, in comparison with the state- attacking through an adversarial agent could be used for an of-the-art method of training an adversarial policy [10], our alternative, practical approach to attack a well-trained agent proposed method could construct an adversarial agent with a in reinforcement learning tasks. However, as we will demon- 50% winning rate in fewer training cycles (11 million vs. 20 strate in Section6, this newly proposed attack usually ex- million iterations for MuJoCo game, and 1.0 million vs. 1.3 hibits a relatively low success rate of failing the opponent (or million iterations for Pong game). Last but not least, we also in other words victim) agent.1 This is because the attack is show that using our proposed method to train an adversarial a simple application of the state-of-the-art Proximal Policy agent, it usually introduces fewer variations in the training Optimization (PPO) algorithm [43] and, by design, the PPO process. We argue this is a very beneficial characteristic algorithm does not train an agent for exploiting the weakness because this could make our algorithm less sensitive to the of the opponent agent. selection of initial states. We released the game environment, Inspired by this discovery, we propose a new technique to victim agents, source code, and our adversarial agents. 2 train an adversarial agent and thus exploit the weakness of In summary, the paper makes the following contributions. the opponent (victim) agent. First, we arm the adversarial agent with the ability to observe the attention of the victim • We design a new practical attack mechanism that trains agent while it plays with our adversarial agent. By using this an adversarial agent to exploit the weakness of the oppo- attention, the adversarial agent can easily figure out at which nent in an effective and efficient fashion. time step the opponent agent pays more attention to the ad- versary. Second, under the guidance of the victim’s attention, • We demonstrate that an explainable AI technique can the adversary subtly varies its actions. With this practice, as be used to facilitate the search of the adversarial policy we will show and elaborate in Section4 and5, the adversarial network and thus the construction of the corresponding agent could trick a well-trained opponent agent into taking adversarial agents. sub-optimal actions and thus influence the corresponding re- • We evaluate our proposed attack by using representative ward that the opponent is supposed to receive. simulated robotics games – MuJoCo and roboschool Technically speaking, to develop the attack method men- Pong – and compare our evaluation results with that tioned above, we first approximate the policy network as well obtained from the state-of-the-art attack mechanism [10]. as the state-transition model of the opponent agent. Using the approximated network and model, we can determine the The rest of this paper is organized as follows. Section2 attention of the opponent agent by using an explainable AI describes the problem scope and assumption of this research. technique. Besides, we can predict the action of the opponent Section3 describes the background of deep reinforcement agent when our adversarial agent takes a specific action. learning. Section4 and5 specifies how we design our attack With the predicted action in hand, our attack method then mechanism to train adversarial agents. Section6 summa- extends the PPO algorithm by introducing a weighted term rizes the evaluation results of our proposed attack mechanism. into its objective function. As we will specify in Section5, Section7 provides the discussion of related work, followed the newly introduced term measures the action deviation of by the discussion of some related issues and future work in the opponent agent with and without the influence of our ad- Section8. Finally, we conclude the work in Section9. versarial agent. The weight is the output of the explainable AI technique, which indicates by how much the opponent agent pays its attention to the adversarial agent. By maximizing 2 Problem Statement and Assumption the weighted deviation together with the advantage function in the objective function of PPO, we can train an adversarial Problem statement.
Recommended publications
  • Elements of DSAI: Game Tree Search, Learning Architectures
    Introduction Games Game Search Evaluation Fns AlphaGo/Zero Summary Quiz References Elements of DSAI AlphaGo Part 2: Game Tree Search, Learning Architectures Search & Learn: A Recipe for AI Action Decisions J¨orgHoffmann Winter Term 2019/20 Hoffmann Elements of DSAI Game Tree Search, Learning Architectures 1/49 Introduction Games Game Search Evaluation Fns AlphaGo/Zero Summary Quiz References Competitive Agents? Quote AI Introduction: \Single agent vs. multi-agent: One agent or several? Competitive or collaborative?" ! Single agent! Several koalas, several gorillas trying to beat these up. BUT there is only a single acting entity { one player decides which moves to take (who gets into the boat). Hoffmann Elements of DSAI Game Tree Search, Learning Architectures 3/49 Introduction Games Game Search Evaluation Fns AlphaGo/Zero Summary Quiz References Competitive Agents! Quote AI Introduction: \Single agent vs. multi-agent: One agent or several? Competitive or collaborative?" ! Multi-agent competitive! TWO players deciding which moves to take. Conflicting interests. Hoffmann Elements of DSAI Game Tree Search, Learning Architectures 4/49 Introduction Games Game Search Evaluation Fns AlphaGo/Zero Summary Quiz References Agenda: Game Search, AlphaGo Architecture Games: What is that? ! Game categories, game solutions. Game Search: How to solve a game? ! Searching the game tree. Evaluation Functions: How to evaluate a game position? ! Heuristic functions for games. AlphaGo: How does it work? ! Overview of AlphaGo architecture, and changes in Alpha(Go) Zero. Hoffmann Elements of DSAI Game Tree Search, Learning Architectures 5/49 Introduction Games Game Search Evaluation Fns AlphaGo/Zero Summary Quiz References Positioning in the DSAI Phase Model Hoffmann Elements of DSAI Game Tree Search, Learning Architectures 6/49 Introduction Games Game Search Evaluation Fns AlphaGo/Zero Summary Quiz References Which Games? ! No chance element.
    [Show full text]
  • ELF: an Extensive, Lightweight and Flexible Research Platform for Real-Time Strategy Games
    ELF: An Extensive, Lightweight and Flexible Research Platform for Real-time Strategy Games Yuandong Tian1 Qucheng Gong1 Wenling Shang2 Yuxin Wu1 C. Lawrence Zitnick1 1Facebook AI Research 2Oculus 1fyuandong, qucheng, yuxinwu, [email protected] [email protected] Abstract In this paper, we propose ELF, an Extensive, Lightweight and Flexible platform for fundamental reinforcement learning research. Using ELF, we implement a highly customizable real-time strategy (RTS) engine with three game environ- ments (Mini-RTS, Capture the Flag and Tower Defense). Mini-RTS, as a minia- ture version of StarCraft, captures key game dynamics and runs at 40K frame- per-second (FPS) per core on a laptop. When coupled with modern reinforcement learning methods, the system can train a full-game bot against built-in AIs end- to-end in one day with 6 CPUs and 1 GPU. In addition, our platform is flexible in terms of environment-agent communication topologies, choices of RL methods, changes in game parameters, and can host existing C/C++-based game environ- ments like ALE [4]. Using ELF, we thoroughly explore training parameters and show that a network with Leaky ReLU [17] and Batch Normalization [11] cou- pled with long-horizon training and progressive curriculum beats the rule-based built-in AI more than 70% of the time in the full game of Mini-RTS. Strong per- formance is also achieved on the other two games. In game replays, we show our agents learn interesting strategies. ELF, along with its RL platform, is open sourced at https://github.com/facebookresearch/ELF. 1 Introduction Game environments are commonly used for research in Reinforcement Learning (RL), i.e.
    [Show full text]
  • Improved Policy Networks for Computer Go
    Improved Policy Networks for Computer Go Tristan Cazenave Universite´ Paris-Dauphine, PSL Research University, CNRS, LAMSADE, PARIS, FRANCE Abstract. Golois uses residual policy networks to play Go. Two improvements to these residual policy networks are proposed and tested. The first one is to use three output planes. The second one is to add Spatial Batch Normalization. 1 Introduction Deep Learning for the game of Go with convolutional neural networks has been ad- dressed by [2]. It has been further improved using larger networks [7, 10]. AlphaGo [9] combines Monte Carlo Tree Search with a policy and a value network. Residual Networks improve the training of very deep networks [4]. These networks can gain accuracy from considerably increased depth. On the ImageNet dataset a 152 layers networks achieves 3.57% error. It won the 1st place on the ILSVRC 2015 classifi- cation task. The principle of residual nets is to add the input of the layer to the output of each layer. With this simple modification training is faster and enables deeper networks. Residual networks were recently successfully adapted to computer Go [1]. As a follow up to this paper, we propose improvements to residual networks for computer Go. The second section details different proposed improvements to policy networks for computer Go, the third section gives experimental results, and the last section con- cludes. 2 Proposed Improvements We propose two improvements for policy networks. The first improvement is to use multiple output planes as in DarkForest. The second improvement is to use Spatial Batch Normalization. 2.1 Multiple Output Planes In DarkForest [10] training with multiple output planes containing the next three moves to play has been shown to improve the level of play of a usual policy network with 13 layers.
    [Show full text]
  • Unsupervised State Representation Learning in Atari
    Unsupervised State Representation Learning in Atari Ankesh Anand⇤ Evan Racah⇤ Sherjil Ozair⇤ Mila, Université de Montréal Mila, Université de Montréal Mila, Université de Montréal Microsoft Research Yoshua Bengio Marc-Alexandre Côté R Devon Hjelm Mila, Université de Montréal Microsoft Research Microsoft Research Mila, Université de Montréal Abstract State representation learning, or the ability to capture latent generative factors of an environment, is crucial for building intelligent agents that can perform a wide variety of tasks. Learning such representations without supervision from rewards is a challenging open problem. We introduce a method that learns state representations by maximizing mutual information across spatially and tem- porally distinct features of a neural encoder of the observations. We also in- troduce a new benchmark based on Atari 2600 games where we evaluate rep- resentations based on how well they capture the ground truth state variables. We believe this new framework for evaluating representation learning models will be crucial for future representation learning research. Finally, we com- pare our technique with other state-of-the-art generative and contrastive repre- sentation learning methods. The code associated with this work is available at https://github.com/mila-iqia/atari-representation-learning 1 Introduction The ability to perceive and represent visual sensory data into useful and concise descriptions is con- sidered a fundamental cognitive capability in humans [1, 2], and thus crucial for building intelligent agents [3]. Representations that concisely capture the true state of the environment should empower agents to effectively transfer knowledge across different tasks in the environment, and enable learning with fewer interactions [4].
    [Show full text]
  • Understanding & Generalizing Alphago Zero
    Under review as a conference paper at ICLR 2019 UNDERSTANDING &GENERALIZING ALPHAGO ZERO Anonymous authors Paper under double-blind review ABSTRACT AlphaGo Zero (AGZ) (Silver et al., 2017b) introduced a new tabula rasa rein- forcement learning algorithm that has achieved superhuman performance in the games of Go, Chess, and Shogi with no prior knowledge other than the rules of the game. This success naturally begs the question whether it is possible to develop similar high-performance reinforcement learning algorithms for generic sequential decision-making problems (beyond two-player games), using only the constraints of the environment as the “rules.” To address this challenge, we start by taking steps towards developing a formal understanding of AGZ. AGZ includes two key innovations: (1) it learns a policy (represented as a neural network) using super- vised learning with cross-entropy loss from samples generated via Monte-Carlo Tree Search (MCTS); (2) it uses self-play to learn without training data. We argue that the self-play in AGZ corresponds to learning a Nash equilibrium for the two-player game; and the supervised learning with MCTS is attempting to learn the policy corresponding to the Nash equilibrium, by establishing a novel bound on the difference between the expected return achieved by two policies in terms of the expected KL divergence (cross-entropy) of their induced distributions. To extend AGZ to generic sequential decision-making problems, we introduce a robust MDP framework, in which the agent and nature effectively play a zero-sum game: the agent aims to take actions to maximize reward while nature seeks state transitions, subject to the constraints of that environment, that minimize the agent’s reward.
    [Show full text]
  • Combining Tactical Search and Deep Learning in the Game of Go
    Combining tactical search and deep learning in the game of Go Tristan Cazenave PSL-Universite´ Paris-Dauphine, LAMSADE CNRS UMR 7243, Paris, France [email protected] Abstract Elaborated search algorithms have been developed to solve tactical problems in the game of Go such as capture problems In this paper we experiment with a Deep Convo- [Cazenave, 2003] or life and death problems [Kishimoto and lutional Neural Network for the game of Go. We Muller,¨ 2005]. In this paper we propose to combine tactical show that even if it leads to strong play, it has search algorithms with deep learning. weaknesses at tactical search. We propose to com- Other recent works combine symbolic and deep learn- bine tactical search with Deep Learning to improve ing approaches. For example in image surveillance systems Golois, the resulting Go program. A related work [Maynord et al., 2016] or in systems that combine reasoning is AlphaGo, it combines tactical search with Deep with visual processing [Aditya et al., 2015]. Learning giving as input to the network the results The next section presents our deep learning architecture. of ladders. We propose to extend this further to The third section presents tactical search in the game of Go. other kind of tactical search such as life and death The fourth section details experimental results. search. 2 Deep Learning 1 Introduction In the design of our network we follow previous work [Mad- Deep Learning has been recently used with a lot of success dison et al., 2014; Tian and Zhu, 2015]. Our network is fully in multiple different artificial intelligence tasks.
    [Show full text]
  • (CMPUT) 455 Search, Knowledge, and Simulations
    Computing Science (CMPUT) 455 Search, Knowledge, and Simulations James Wright Department of Computing Science University of Alberta [email protected] Winter 2021 1 455 Today - Lecture 22 • AlphaGo - overview and early versions • Coursework • Work on Assignment 4 • Reading: AlphaGo Zero paper 2 AlphaGo Introduction • High-level overview • History of DeepMind and AlphaGo • AlphaGo components and versions • Performance measurements • Games against humans • Impact, limitations, other applications, future 3 About DeepMind • Founded 2010 as a startup company • Bought by Google in 2014 • Based in London, UK, Edmonton (from 2017), Montreal, Paris • Expertise in Reinforcement Learning, deep learning and search 4 DeepMind and AlphaGo • A DeepMind team developed AlphaGo 2014-17 • Result: Massive advance in playing strength of Go programs • Before AlphaGo: programs about 3 levels below best humans • AlphaGo/Alpha Zero: far surpassed human skill in Go • Now: AlphaGo is retired • Now: Many other super-strong programs, including open source Image source: • https://www.nature.com All are based on AlphaGo, Alpha Zero ideas 5 DeepMind and UAlberta • UAlberta has deep connections • Faculty who work part-time or on leave at DeepMind • Rich Sutton, Michael Bowling, Patrick Pilarski, Csaba Szepesvari (all part time) • Many of our former students and postdocs work at DeepMind • David Silver - UofA PhD, designer of AlphaGo, lead of the DeepMind RL and AlphaGo teams • Aja Huang - UofA postdoc, main AlphaGo programmer • Many from the computer Poker group
    [Show full text]
  • Arxiv:1611.08903V1 [Cs.LG] 27 Nov 2016 20 Percent Increases in Cash Collections [20]
    Should I use TensorFlow? An evaluation of TensorFlow and its potential to replace pure Python implementations in Machine Learning Martin Schrimpf1;2;3 1 Augsburg University 2 Technische Universit¨atM¨unchen 3 Ludwig-Maximilians-Universit¨atM¨unchen Seminar \Human-Machine Interaction and Machine Learning" Supervisor: Elisabeth Andr´e Advisor: Dominik Schiller Abstract. Google's Machine Learning framework TensorFlow was open- sourced in November 2015 [1] and has since built a growing community around it. TensorFlow is supposed to be flexible for research purposes while also allowing its models to be deployed productively [7]. This work is aimed towards people with experience in Machine Learning consider- ing whether they should use TensorFlow in their environment. Several aspects of the framework important for such a decision are examined, such as the heterogenity, extensibility and its computation graph. A pure Python implementation of linear classification is compared with an im- plementation utilizing TensorFlow. I also contrast TensorFlow to other popular frameworks with respect to modeling capability, deployment and performance and give a brief description of the current adaption of the framework. 1 Introduction The rapidly growing field of Machine Learning has been gaining more and more attention, both in academia and in businesses that have realized the added value. For instance, according to a McKinsey report, more than a dozen European banks switched from statistical-modeling approaches to Machine Learning tech- niques and, in some cases, increased their sales of new products by 10 percent and arXiv:1611.08903v1 [cs.LG] 27 Nov 2016 20 percent increases in cash collections [20]. Intelligent machines are used in a variety of domains, including writing news articles [5], finding promising recruits given their CV [9] and many more.
    [Show full text]
  • Software-Defined Software: a Perspective of Machine Learning-Based Software Production
    2018 IEEE 38th International Conference on Distributed Computing Systems Software-defined Software: A Perspective of Machine Learning-based Software Production Rubao Lee, Hao Wang, and Xiaodong Zhang Department of Computer Science and Engineering, The Ohio State University {liru, wangh, zhang}@cse.ohio-state.edu Abstract—As the Moore’s Law is ending, and increasingly high have been hidden in the CPU-dominated computing era for two demand of software development continues in the human society, reasons. First, the Moore’s Law can automatically improve the we are facing two serious challenges in the computing field. execution performance by increasing the number of transistors First, the general-purpose computing ecosystem that has been developed for more than 50 years will have to be changed by in CPU chips to enhance the capabilities of on-chip caches and including many diverse devices for various specialties in high computing power. Thus, execution performance continues to performance. Second, human-based software development is not be improved without major software modifications. Second, sustainable to respond the requests from all the fields in the the development of CPU-dominated computing ecosystem for society. We envision that we will enter a time of developing high many years has created multilayer abstractions in a deep quality software by machines, and we name this as Software- defined Software (SDS). In this paper, we will elaborate our software stack, e.g. from IAS, to LLVM, to JAVA/C, and vision, the goals and its roadmap. to JavaScript/Python. This software stack promotes software productivity by connecting programmers at different layers to I.
    [Show full text]
  • Deep Learning for Go
    Research Collection Bachelor Thesis Deep Learning for Go Author(s): Rosenthal, Jonathan Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010891076 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Deep Learning for Go Bachelor Thesis Jonathan Rosenthal June 18, 2016 Advisors: Prof. Dr. Thomas Hofmann, Dr. Martin Jaggi, Yannic Kilcher Department of Computer Science, ETH Z¨urich Contents Contentsi 1 Introduction1 1.1 Overview of Thesis......................... 1 1.2 Jorogo Code Base and Contributions............... 2 2 The Game of Go5 2.1 Etymology and History ...................... 5 2.2 Rules of Go ............................. 6 2.2.1 Game Terms......................... 6 2.2.2 Legal Moves......................... 7 2.2.3 Scoring............................ 8 3 Computer Chess vs Computer Go 11 3.1 Available Resources......................... 11 3.2 Open Source Projects........................ 11 3.3 Branching Factor .......................... 12 3.4 Evaluation Heuristics........................ 13 3.5 Machine Learning.......................... 13 4 Search Algorithms 15 4.1 Minimax............................... 15 4.1.1 Iterative Deepening .................... 16 4.2 Alpha-Beta.............................. 17 4.2.1 Move Ordering Analysis.................. 18 4.2.2 History Heuristic...................... 18 4.3 Probability Based Search...................... 19 4.3.1 Performance......................... 20 4.4 Monte-Carlo Tree Search...................... 21 5 Evaluation Algorithms 23 i Contents 5.1 Heuristic Based........................... 23 5.1.1 Bouzy’s Algorithm..................... 24 5.2 Final Positions............................ 24 5.3 Monte-Carlo............................. 25 5.4 Neural Network........................... 25 6 Neural Network Architectures 27 6.1 Networks in Giraffe........................
    [Show full text]
  • Suggesting Moving Positions in Go-Game with Convolutional Neural Networks Trained Data
    International Journal of Hybrid Information Technology Vol.9, No.4 (2016), pp. 51-58 http://dx.doi.org/10.14257/ijhit.2016.9.4.05 Suggesting Moving Positions in Go-Game with Convolutional Neural Networks Trained Data *Hoang Huu Duc1, Lee Jihoon2 and *Jung Keechul3 Media department, Soongsil University, Seoul, Korea [email protected], [email protected], [email protected] Abstract Nowadays, machine learning and deep learning has been becoming popular and useful in applying to resolve people’s problem. Specially, in HCI (Human Computer Interaction) field like robots or automatic game programs. Go-Game (the game of Go) is still a challenge in coding to get the wisest moves each turn to achieve the winner at the end of a game. In our work, we suggest the next move based on Convolutional Neural Networks (CNNs) and make evaluations and comparisons to gamers separate in 3 ranks (levels). We train 5-layers CNNs by supervised learning from a database of human games using the board-states. The network suggests the move of the selected player and the others player can be helped or not- depend on playing option. The program can also play the game automatically without human interactions during all the game progress (Machine- Machine game). In the other way, our program can interact with a human-player and accept move commands from player (Human-Machine or Human-Human). This technique allows Go-game program play the game without searching as traditional program but trained by convolutional neural networks. In our tests, we separate in 3 levels and use totally 598,472 board-states for training data.
    [Show full text]
  • CSC 311: Introduction to Machine Learning Lecture 12 - Alphago and Game-Playing
    CSC 311: Introduction to Machine Learning Lecture 12 - AlphaGo and game-playing Roger Grosse Chris Maddison Juhan Bae Silviu Pitis University of Toronto, Fall 2020 Intro ML (UofT) CSC311-Lec12 1/59 Recap of different learning settings So far the settings that you've seen imagine one learner or agent. Supervised Unsupervised Reinforcement Learner predicts Learner organizes Agent maximizes labels. data. reward. Intro ML (UofT) CSC311-Lec12 2/59 Today We will talk about learning in the context of a two-player game. Game-playing This lecture only touches a small part of the large and beautiful literature on game theory, multi-agent reinforcement learning, etc. Intro ML (UofT) CSC311-Lec12 3/59 Game-playing in AI: Beginnings (1950) Claude Shannon proposes explains how games could • be solved algorithmically via tree search (1953) Alan Turing writes a chess program • (1956) Arthur Samuel writes a program that plays checkers • better than he does (1968) An algorithm defeats human novices at Go • slide credit: Profs. Roger Grosse and Jimmy Ba Intro ML (UofT) CSC311-Lec12 4/59 Game-playing in AI: Successes (1992) TD-Gammon plays backgammon competitively with • the best human players (1996) Chinook wins the US National Checkers Championship • (1997) DeepBlue defeats world chess champion Garry • Kasparov (2016) AlphaGo defeats Go champion Lee Sedol. • slide credit: Profs. Roger Grosse and Jimmy Ba Intro ML (UofT) CSC311-Lec12 5/59 Today Game-playing has always been at the core of CS. • Simple well-defined rules, but mastery requires a high degree • of intelligence. We will study how to learn to play Go.
    [Show full text]