Achim Blumensath [email protected] Is Document

Total Page:16

File Type:pdf, Size:1020Kb

Achim Blumensath Blumens@Fi.Muni.Cz Is Document Achim Blumensath blumens@fi.muni.cz tis documentwas last updated --. te latest version can be found at www.fi.muni.cz/~blumens C Achim Blumensath tiswork is licensed under the Creative Commons Attri- bution . International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/./. Contents A. Setteory Basic set theory Sets and classes............................ Stages and histories ......................... te cumulative hierarchy...................... Relations Relations and functions....................... Products and unions ........................ Graphs and partial orders ..................... Fixed points and closure operators ................ Ordinals Well-orders.............................. Ordinals................................ Induction and fixed points..................... Ordinal arithmetic .......................... Zermelo-Fraenkelset theory te Axiom of Choice ........................ Cardinals............................... Cardinal arithmetic ......................... Cofinality ............................... , -- — © v Contents te Axiom of Replacement..................... Stationary sets ............................ Conclusion .............................. B. General Algebra Structures and homomorphisms Structures............................... Homomorphisms .......................... Categories .............................. Congruences and quotients .................... Trees and lattices Trees.................................. Lattices ................................ Ideals and filters........................... Prime ideals and ultrafilters .................... Atomic lattices and partition rank ................. Universal constructions Terms and term algebras ...................... Direct and reduced products.................... Directed limits and colimits .................... Equivalent diagrams......................... Links and dense functors...................... Accessible categories Filtered limits and inductive completions ............ Extensions of diagrams....................... Presentable objects ......................... Accessible categories ........................ vi Contents Topology Open and closed sets ........................ Continuous functions........................ Hausdorff spaces and compactness ................ te Product topology ........................ Dense sets and isolated points................... Spectra and Stoneduality ...................... Stone spaces and Cantor-Bendixson rank ............ Classical Algebra Groups ................................ Group actions ............................ Rings ................................. Modules................................ Fields ................................. Ordered fields ............................ C. First-Order Logicand its Extensions First-order logic Infinitary first-order logic ..................... Axiomatisations ........................... teories................................ Normal forms ............................ Translations ............................. Extensions of first-order logic ................... Elementary substructures and embeddings Homomorphisms and embeddings................ Elementary embeddings ...................... te teorem of Löwenheim and Skolem ............. vii Contents te Compactness teorem .................... Amalgamation ............................ Types and type spaces Types ................................. Type spaces.............................. Retracts................................ Local type spaces .......................... Stable theories ............................ Back-and-forth equivalence Partial isomorphisms........................ Hintikka formulae .......................... Ehrenfeucht-Fraïssé games..................... κ-complete back-and-forth systems................ te theorems of Hanf and Gaifman ................ General model theory Classifying logical systems..................... Hanf and Löwenheim numbers .................. te teorem of Lindström ..................... Projective classes........................... Interpolation ............................. Fixed-point logics.......................... D. Axiomatisation and Definability Quantifier elimination Preservation theorems ....................... Quantifier elimination ....................... Existentially closed structures ................... Abeliangroups............................ viii Contents Fields ................................. Products and varieties Ultraproducts ............................ te theoremofKeisler and Shelah ................ Reduced products and Horn formulae .............. Quasivarieties ............................ te teoremofFeferman and Vaught .............. O-minimal structures Ordered topological structures .................. O-minimalgroups and rings.................... Cell decompositions......................... E. Classical Model teory Saturation Homogeneous structures...................... Saturated structures......................... Projectively saturated structures.................. Pseudo-saturated structures .................... Definability and automorphisms Definability in projectively saturated models .......... Imaginary elements and canonical parameters ......... Galois bases ............................. Elimination of imaginaries..................... Weak elimination of imaginaries ................. ix Contents Prime models Isolated types............................. te Omitting Typesteorem ................... Prime and atomic models ..................... Constructible models........................ -categorical theories ℵ -categorical theories and automorphisms........... Bacℵ k-and-forth arguments in accessible categories....... Fraïssé limits............................. Zero-one laws ............................ Indiscernible sequences Ramsey teory ........................... Ramsey teory for trees ...................... Indiscernible sequences....................... te independence and strict order properties.......... Functors and embeddings Localfunctors ............................ Word constructions......................... Ehrenfeucht-Mostowski models.................. Abstract elementary classes Abstract elementary classes .................... Amalgamation and saturation ................... Limits of chains ........................... Categoricity and stability ...................... F. Independence and Forking x Contents Geometries Dependence relations........................ Matroids and geometries...................... Modular geometries......................... Strongly minimal sets........................ Vaughtian pairs and the teorem of Morley ........... Ranks and forking Morley rank and ∆-rank ...................... Independence relations....................... Preforking relations......................... Forking relations........................... Simple theories Dividing and forking ........................ Simple theories and the tree property ............... teories without the independence property Honest definitions.......................... Lascar invariant types........................ »i -Morley sequences ........................ Dp-rank ................................ teories without the array property te array property .......................... Forking anddividing ........................ te Independence teorem .................... G. Geometric Model teory xi Contents Stable theories Definable types............................ Forking in stable theories...................... Stationary types ........................... te multiplicity of a type ...................... Morley sequences in stable theories................ te stability spectrum ....................... Models of stable theories Isolation relations .......................... Constructions ............................ Prime models ............................ at»-constructible models...................... Strongly independent stratifications................ Representations ........................... Recommended Literature Symbol Index Index xii Part A. Set teory . Basic set theory . Sets and classes In mathematics there are basically two ways to define the objects under consideration. On the one hand, one can explicitly construct themfrom already known objects. For instance, the rational numbers and the real numbers are usually introduced in this way. On the other hand, one can take the axiomatic approach, that is, one compiles a list of desired prop- erties and one investigates any object meeting these requirements. Some well known examples are groups, fields, vector spaces, and topological spaces. Since set theory is meant as foundation of mathematics there are no more basic objects available in terms of which we could define sets. terefore, we will follow the axiomatic approach. We will present a list of six axioms and any object satisfying all of them will be called a model of set theory. Such a model consists of two parts: () a collection S of objects that we will call sets, and () some method which, given two sets a and b, tells us whether a is an element of b. We will not care what exactly the objects in S are or how this method looks like. For example, one could imagine a model of set theory
Recommended publications
  • LINEAR ALGEBRA METHODS in COMBINATORICS László Babai
    LINEAR ALGEBRA METHODS IN COMBINATORICS L´aszl´oBabai and P´eterFrankl Version 2.1∗ March 2020 ||||| ∗ Slight update of Version 2, 1992. ||||||||||||||||||||||| 1 c L´aszl´oBabai and P´eterFrankl. 1988, 1992, 2020. Preface Due perhaps to a recognition of the wide applicability of their elementary concepts and techniques, both combinatorics and linear algebra have gained increased representation in college mathematics curricula in recent decades. The combinatorial nature of the determinant expansion (and the related difficulty in teaching it) may hint at the plausibility of some link between the two areas. A more profound connection, the use of determinants in combinatorial enumeration goes back at least to the work of Kirchhoff in the middle of the 19th century on counting spanning trees in an electrical network. It is much less known, however, that quite apart from the theory of determinants, the elements of the theory of linear spaces has found striking applications to the theory of families of finite sets. With a mere knowledge of the concept of linear independence, unexpected connections can be made between algebra and combinatorics, thus greatly enhancing the impact of each subject on the student's perception of beauty and sense of coherence in mathematics. If these adjectives seem inflated, the reader is kindly invited to open the first chapter of the book, read the first page to the point where the first result is stated (\No more than 32 clubs can be formed in Oddtown"), and try to prove it before reading on. (The effect would, of course, be magnified if the title of this volume did not give away where to look for clues.) What we have said so far may suggest that the best place to present this material is a mathematics enhancement program for motivated high school students.
    [Show full text]
  • Sunflower Theorems and Convex Codes
    Sunflower Theorems and Convex Codes Amzi Jeffs University of Washington, Seattle UC Davis Algebra & Discrete Mathematics Seminar April 6th 2020 Part I: Place Cells and Convex Codes Place Cells 1971: O'Keefe and Dostrovsky describe place cells in the hippocampus of rats. 2019 video: https://youtu.be/puCV1grkdJA Main idea: Each place cell fires in a particular region. They \know" where the rat is. How much do they know? Mathematical Model of Place Cells 2013: Curto et al introduce convex neural codes. Index your place cells (neurons) by [n] def= f1; 2; : : : ; ng. d Each neuron i 2 [n] fires when rat is in convex open Ui in R . As rat moves, multiple neurons may fire at same time. Write down all the sets of neurons that fire together and get a convex neural code C ⊆ 2[n]. Example with 3 neurons in R2: Formal Definitions Definition A code is any subset of 2[n]. Elements of a code are codewords. Definition d Let U = fU1;:::;Ung be a collection of convex open sets in R . The code of U is def d code(U) = σ ⊆ [n] There is p 2 R with p 2 Ui , i 2 σ : The collection U is called a convex realization. Codes that have convex realizations are called convex. Notice! If the Ui correspond to place cells, we can compute code(U) from the brain directly (if the rat explores sufficiently...) Terminology in Practice Below, U = fU1;U2;U3g is a convex realization of C = f123; 12; 23; 2; 3; ;g. Therefore C is a convex code.
    [Show full text]
  • An Epsilon of Room, II: Pages from Year Three of a Mathematical Blog
    An Epsilon of Room, II: pages from year three of a mathematical blog Terence Tao This is a preliminary version of the book An Epsilon of Room, II: pages from year three of a mathematical blog published by the American Mathematical Society (AMS). This preliminary version is made available with the permission of the AMS and may not be changed, edited, or reposted at any other website without explicit written permission from the author and the AMS. Author's preliminary version made available with permission of the publisher, the American Mathematical Society Author's preliminary version made available with permission of the publisher, the American Mathematical Society To Garth Gaudry, who set me on the road; To my family, for their constant support; And to the readers of my blog, for their feedback and contributions. Author's preliminary version made available with permission of the publisher, the American Mathematical Society Author's preliminary version made available with permission of the publisher, the American Mathematical Society Contents Preface ix A remark on notation x Acknowledgments xi Chapter 1. Expository articles 1 x1.1. An explicitly solvable nonlinear wave equation 2 x1.2. Infinite fields, finite fields, and the Ax-Grothendieck theorem 8 x1.3. Sailing into the wind, or faster than the wind 15 x1.4. The completeness and compactness theorems of first-order logic 24 x1.5. Talagrand's concentration inequality 43 x1.6. The Szemer´edi-Trotter theorem and the cell decomposition 50 x1.7. Benford's law, Zipf's law, and the Pareto distribution 58 x1.8. Selberg's limit theorem for the Riemann zeta function on the critical line 70 x1.9.
    [Show full text]
  • The Axiom of Choice and Its Implications
    THE AXIOM OF CHOICE AND ITS IMPLICATIONS KEVIN BARNUM Abstract. In this paper we will look at the Axiom of Choice and some of the various implications it has. These implications include a number of equivalent statements, and also some less accepted ideas. The proofs discussed will give us an idea of why the Axiom of Choice is so powerful, but also so controversial. Contents 1. Introduction 1 2. The Axiom of Choice and Its Equivalents 1 2.1. The Axiom of Choice and its Well-known Equivalents 1 2.2. Some Other Less Well-known Equivalents of the Axiom of Choice 3 3. Applications of the Axiom of Choice 5 3.1. Equivalence Between The Axiom of Choice and the Claim that Every Vector Space has a Basis 5 3.2. Some More Applications of the Axiom of Choice 6 4. Controversial Results 10 Acknowledgments 11 References 11 1. Introduction The Axiom of Choice states that for any family of nonempty disjoint sets, there exists a set that consists of exactly one element from each element of the family. It seems strange at first that such an innocuous sounding idea can be so powerful and controversial, but it certainly is both. To understand why, we will start by looking at some statements that are equivalent to the axiom of choice. Many of these equivalences are very useful, and we devote much time to one, namely, that every vector space has a basis. We go on from there to see a few more applications of the Axiom of Choice and its equivalents, and finish by looking at some of the reasons why the Axiom of Choice is so controversial.
    [Show full text]
  • The Sunflower Lemma of Erdős and Rado
    The Sunflower Lemma of Erdős and Rado René Thiemann March 1, 2021 Abstract We formally define sunflowers and provide a formalization ofthe sunflower lemma of Erdős and Rado: whenever a set ofsize-k-sets has a larger cardinality than (r − 1)k · k!, then it contains a sunflower of cardinality r. 1 Sunflowers Sunflowers are sets of sets, such that whenever an element is contained in at least two of the sets, then it is contained in all of the sets. theory Sunflower imports Main HOL−Library:FuncSet begin definition sunflower :: 0a set set ) bool where sunflower S = (8 x: (9 AB: A 2 S ^ B 2 S ^ A 6= B ^ x 2 A ^ x 2 B) −! (8 A: A 2 S −! x 2 A)) lemma sunflower-subset: F ⊆ G =) sunflower G =) sunflower F hproof i lemma pairwise-disjnt-imp-sunflower: pairwise disjnt F =) sunflower F hproof i lemma card2-sunflower: assumes finite S and card S ≤ 2 shows sunflower S hproof i lemma empty-sunflower: sunflower fg hproof i lemma singleton-sunflower: sunflower fAg hproof i 1 lemma doubleton-sunflower: sunflower fA;Bg hproof i lemma sunflower-imp-union-intersect-unique: assumes sunflower S and x 2 (S S) − (T S) shows 9 ! A: A 2 S ^ x 2 A hproof i lemma union-intersect-unique-imp-sunflower: V S T assumes x: x 2 ( S) − ( S) =) 9 ≤1 A: A 2 S ^ x 2 A shows sunflower S hproof i lemma sunflower-iff-union-intersect-unique: sunflower S ! (8 x 2 S S − T S: 9 ! A: A 2 S ^ x 2 A) (is ?l = ?r) hproof i lemma sunflower-iff-intersect-Uniq: T sunflower S ! (8 x: x 2 S _ (9 ≤1 A: A 2 S ^ x 2 A)) (is ?l = ?r) hproof i If there exists sunflowers whenever all elements are sets of thesame cardinality r, then there also exists sunflowers whenever all elements are sets with cardinality at most r.
    [Show full text]
  • The Equivalents of Axiom of Choice
    The Equivalents of Axiom of Choice 1. Axiom of Choice. The Cartesian product of a nonempty family of nonempty sets is nonempty. 2. Choice Function for Subsets. Let X be a nonempty set. Then for each nonempty subset S Í X it is possible to choose some element s Î S. That is, there exists a function f which assigns to each nonempty set S Í X some representative element f(S) Î S. 3. Set of Representatives. Let {Xl : l Î L} be a nonempty set of nonempty sets which are pairwise disjoint. Then there exists a set C containing exactly one element from each Xl. 4. Nonempty Products. If {Xl : l Î L} is a nonempty set of nonempty sets, then the Cartesian product Õ Xl is nonempty. That is, there exists a lÎL function f : L ® U Xl satisfying f(l) Î Xl for each l. lÎL 5. Well-Ordering Principle (Zermelo). Every set can be well ordered. 6. Finite Character Principle (Tukey, Teichmuller). Let X be a set, and let F be a collection of subsets of X. Suppose that F has finite character (i.e., a set is a member of F if and only if each finite subset of that set is a member of F). Then any member of F is a subset of some Í-maximal member of F. 7. Maximal Chain Principle (Hausdorff). Let (X, p_) be a partially ordered set. Then any p_-chain in X is included in a Í-maximal p_-chain. 8. Zorn’s Lemma (Hausdorff, Kuratowski, Zorn, others).
    [Show full text]
  • Coding for Sunflowers
    Coding for Sunflowers Anup Rao University of Washington [email protected] January 8, 2020 Abstract A sunflower is a family of sets that have the same pairwise intersections. We simplify a recent result of Alweiss, Lovett, Wu and Zhang that gives an upper bound on the size of every family of sets of size k that does not contain a sunflower. We show how to use the converse of Shannon's noiseless coding theorem to give a cleaner proof of a similar bound. 1 Introduction A p-sunflower is a family of p sets whose pairwise intersections are identical. How large can a family of sets of size k be if the family does not contain a p-sunflower? Erd}osand Rado [ER60] were the first to pose and answer this question. They showed that any family with more than (p−1)k ·k! sets of size k must contain a p-sunflower. This fundamental fact has many applications in mathematics and computer science [ES92, Raz85, FMS97, GM07, GMR13, Ros14, RR18, LZ19, LSZ19]. After nearly 60 years, the correct answer to this question is still not known. There is a family of (p−1)k sets of size k that does not contain a p-sunflower, and Erd}osand Rado conjectured that their lemma could be improved to show that this is essentially the extremal example. Recently, Alweiss, Lovett, Wu and Zhang [ALWZ19] made substantial progress towards resolving the conjecture. They showed that (log k)k · (p log log k)O(k) sets ensure the presence of a p-sunflower.
    [Show full text]
  • On Sunflowers and Matrix Multiplication
    On Sunflowers and Matrix Multiplication Noga Alon ∗ Amir Shpilka y Christopher Umans z Abstract We present several variants of the sunflower conjecture of Erdos˝ and Rado [ER60] and discuss the relations among them. We then show that two of these conjectures (if true) imply negative answers to questions of Cop- persmith and Winograd [CW90] and Cohn et al [CKSU05] regarding possible approaches for obtaining fast matrix multiplication algorithms. Specifically, we show that the Erdos-Rado˝ sunflower conjecture (if true) implies a negative answer to the “no three disjoint equivoluminous subsets” question of Copper- Zn smith and Winograd [CW90]; we also formulate a “multicolored” sunflower conjecture in 3 and show that (if true) it implies a negative answer to the “strong USP” conjecture of [CKSU05] (although it does not seem to impact a second conjecture in [CKSU05] or the viability of the general group-theoretic ap- proach). A surprising consequence of our results is that the Coppersmith-Winograd conjecture actually implies the Cohn et al. conjecture. Zn The multicolored sunflower conjecture in 3 is a strengthening of the well-known (ordinary) sun- Zn flower conjecture in 3 , and we show via our connection that a construction from [CKSU05] yields a lower bound of (2:51 :::)n on the size of the largest multicolored 3-sunflower-free set, which beats the current best known lower bound of (2:21 :::)n [Edel04] on the size of the largest 3-sunflower-free set in Zn 3 . ∗Sackler School of Mathematics and Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel and Institute for Advanced Study, Princeton, New Jersey, 08540, USA.
    [Show full text]
  • Axioms of Set Theory and Equivalents of Axiom of Choice Farighon Abdul Rahim Boise State University, [email protected]
    Boise State University ScholarWorks Mathematics Undergraduate Theses Department of Mathematics 5-2014 Axioms of Set Theory and Equivalents of Axiom of Choice Farighon Abdul Rahim Boise State University, [email protected] Follow this and additional works at: http://scholarworks.boisestate.edu/ math_undergraduate_theses Part of the Set Theory Commons Recommended Citation Rahim, Farighon Abdul, "Axioms of Set Theory and Equivalents of Axiom of Choice" (2014). Mathematics Undergraduate Theses. Paper 1. Axioms of Set Theory and Equivalents of Axiom of Choice Farighon Abdul Rahim Advisor: Samuel Coskey Boise State University May 2014 1 Introduction Sets are all around us. A bag of potato chips, for instance, is a set containing certain number of individual chip’s that are its elements. University is another example of a set with students as its elements. By elements, we mean members. But sets should not be confused as to what they really are. A daughter of a blacksmith is an element of a set that contains her mother, father, and her siblings. Then this set is an element of a set that contains all the other families that live in the nearby town. So a set itself can be an element of a bigger set. In mathematics, axiom is defined to be a rule or a statement that is accepted to be true regardless of having to prove it. In a sense, axioms are self evident. In set theory, we deal with sets. Each time we state an axiom, we will do so by considering sets. Example of the set containing the blacksmith family might make it seem as if sets are finite.
    [Show full text]
  • A Sunflower Anti-Ramsey Theorem and Its Applications
    A SUNFLOWER ANTI-RAMSEY THEOREM AND ITS APPLICATIONS LEONARDO MART´INEZ-SANDOVAL, MIGUEL RAGGI, AND EDGARDO ROLDAN-PENSADO´ Abstract. A h-sunflower in a hypergraph is a family of edges with h vertices in common. We show that if we colour the edges of a complete hypergraph in such a way that any monochromatic h-sunflower has at most λ petals, then it contains a large rainbow complete subhypergraph. This extends a theorem by Lefmann, R¨odland Wysocka, but this version can be applied to problems in geometry and algebra. We also give an infinite version of the theorem. 1. Introduction Let Kk(V ) = (V; E) be the complete k-hypergraph on V . In other words, V V let V be a set and E = k , where k represents the family of subsets of size k of V . A colouring of Kk(V ) is simply a function ∆ : E ! N. We think of each i 2 N as a colour, so e has colour i if ∆(e) = i. If ∆ : E ! [c], then we call 0 V 0 it a c-colouring. A subset V of V is monochromatic if ∆( k ) = fig for some i 2 [c], and it is rainbow if ∆(e1) 6= ∆(e2) for every pair of distinct elements V 0 e1; e2 2 k . Ramsey's theorem [Ram30] guarantees the existence of monochromatic sub- sets in sufficiently large structures. There is a quote by Motzkin [Pr¨o05] that describes this behaviour: \Complete disorder is impossible." arXiv:1505.05170v1 [math.CO] 19 May 2015 |T. Motzkin. The precise statement of the theorem is as follows.
    [Show full text]
  • Math 800 Foundations of Mathematics Jt Smith Outline 24 Spring 2008
    MATH 800 FOUNDATIONS OF MATHEMATICS JT SMITH OUTLINE 24 SPRING 2008 1. In class, Maximal Principles unit a. Routine exercise 1: the axiom of choice implies the Teichmüller–Tukey lemma. i. Let F, a family of subsets of a set X, have finite character. ii. To prove: F has a maximal member. iii. Strategy: Verify that the partially ordered set <F,f> satisfies the hypotheses of the Kuratowski–Zorn principle, and use that to get a maximal member. iv. So, consider a chain C f F. v. To prove: C has an upper bound. vi. This will follow if it’s shown that ^C 0 F. vii. And that follows if it’s shown that E 0 F whenever E is a finite subset of ^C. viii. But such an E is a subset of some member C of C because C is a chain; thus E 0 F because C 0 F. b. Substantial problem 1: the Teichmüller–Tukey lemma implies the axiom of choice. i. Given a set I and a nonempty set Ai for each i 0 I. ii. To find m : I 6 ^i 0 I Ai such that mi 0 Ai for each i 0 I. iii. Let F be the family of all injections m f I × ^i 0 I Ai such that mi 0 Ai for each i 0 Dom m. iv. Show that F has finite character. I’ll leave out some details here. v. The Teichmüller–Tukey lemma implies that F has a maximal member m. vi. If there existed i 0 I – Dom m, then there would exist a 0 Ai.
    [Show full text]
  • The Sunflower Problem
    The Sunflower Problem Tolson Bell Suchakree Chueluecha Lutz Warnke Georgia Tech Lehigh University Georgia Tech (! Carnegie Mellon) (! University of Virginia) June 2021 https://arxiv.org/abs/2009.09327 Bell{Chueluecha{Warnke The Sunflower Problem June 2021 1 / 10 Sunflowers in Combinatorics Let F be a k-uniform family of subsets of X , i.e., jSj = k and S ⊆ X for all S 2 F F is a sunflower with p petals if jFj = p and there exists Y ⊆ X with Y = Si \ Sj for all distinct Si ; Sj 2 F Y is the core and Si n Y are the petals Note that p disjoint sets forms a sunflower with p petals and empty core. Sunflower with k = 7 and p = 5 Applications Sunflowers have many uses in algorithmic analysis: Fast algorithms for matrix multiplication Lower bounds on circuitry Cryptography Data structure efficiency Pseudorandomness Random approximations Bell{Chueluecha{Warnke The Sunflower Problem June 2021 2 / 10 Basic Results Research Question What is the smallest r = r(p; k) such that every k-uniform family with at least r k sets must contain a sunflower with p petals? Erd}os{Rado(1960) (a) r = pk is sufficient to guarantee a sunflower: every family with more than (pk)k > k!(p − 1)k sets contains a sunflower (b) r > p − 1 is necessary to guarantee a sunflower: there is a family of (p − 1)k sets without a sunflower Erd}osconjectured r = r(p) is sufficient (no k dependency), offered $1000 reward Until 2018, best known upper bound on r was still k1−o(1) with respect to k \[The sunflower problem] has fascinated me greatly { I really do not see why this question is so difficult." {Paul
    [Show full text]