(Sub)Millimeter Observations and Disk Modeling of Substellar Objects: Understanding Their Formation Processes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Complete Abstract Booklet
First Light Science with the GTC Program and Abstracts Organizing Committees LOC – Local Organizing Committee Chris Packham (co-Chair), University of Florida Rafael Guzman (co-Chair), University of Florida Anthony Gonzalez, University of Florida Vicki Sarajedini, University of Florida Stanley Dermott, University of Florida SOC – Scientific Organizing Committee Rafael Guzman (Chair), UF, USA Jose Alberto Lopez, IAUNAM, Mexico Charles Telesco, UF, USA Elizabeth Lada, UF, USA Francisco Garzon, IAC, Spain Francisco Sanchez, IAC, Spain Itziar Aretxaga, INAOE, Mexico Jesus Gallego, UCM, Spain Jesus Gonzalez, IA-UNAM, Mexico Jian Ge, UF, USA Jordi Cepa, IAC, Spain Jose Franco, IA-UNAM, Mexico Jose Guichard, INAOE, Mexico Jose M. R. Espinosa, GTC project office, Spain Luis Colina. IEM-CSIC, Spain Marc Balcells, IAC, Spain Mariano Moles, IAA, Spain Marisa Garcia, GTC project office, Spain Stanley Dermott, UF, USA Steve Eikenberry, UF, USA Xavier Barcons, CSIC, Spain First Light Science with the GTC Sponsors First Light Science with the GTC would like to thank these organizations for their support of this meeting. Research & Graduate Programs First Light Science with the GTC General Information Date: Main Conference: Wednesday, June 28 - Friday, June 30, 2006 Post Conference Workshops: Saturday, July 1 - Tuesday, July 4, 2006 Site of the Meeting: The Biltmore Hotel 1200 Anastasia Avenue Coral Gables, FL 33134 Tel: (305) 445-1926 FAX: (305) 913-3159 Web Site: http://www.biltmorehotel.com Oral Presentations: Merrick & Stoneman Douglas (simulcast) Poster Presentations: Tuttle, Flagler & Deering Lunch: Alhambra Notice to Speakers: The speakers are requested to bring their Power Point presentation to the session room 30 minutes be- fore their sessions. -
A Search for Pre- and Proto-Brown Dwarfs in the Dark Cloud Barnard 30 with ALMA N
A&A 597, A17 (2017) Astronomy DOI: 10.1051/0004-6361/201628510 & c ESO 2016 Astrophysics A search for pre- and proto-brown dwarfs in the dark cloud Barnard 30 with ALMA N. Huélamo1, I. de Gregorio-Monsalvo2; 3, A. Palau4, D. Barrado1, A. Bayo5; 6, M. T. Ruiz7, L. Zapata4, H. Bouy1, O. Morata8, M. Morales-Calderón1, C. Eiroa9, and F. Ménard10 1 Dpto. Astrofísica, Centro de Astrobiología (INTA-CSIC); ESAC campus, Camino bajo del Castillo s/n, Urb. Villafranca del Castillo, 28692 Villanueva de la Cañada, Spain e-mail: [email protected] 2 European Southern Observatory, 3107 Alonso de Córdova, Vitacura, Santiago, Chile 3 Joint ALMA office, 3107 Alonso de Córdova, Vitacura, Casilla 19001, Santiago 19, Chile 4 Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, PO Box 3-72, 58090 Morelia, Michoacán, México 5 Departamento de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso, Av. Gran Bretaña 1111, 5030 Casilla, Valparaíso, Chile 6 ICM nucleus on protoplanetary disks, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaíso, Chile 7 Dpto. de Astronomía, Universidad de Chile, 1515 Camino del Observatorio, Santiago, Chile 8 Institute of Astronomy and Astrophysics, Academia Sinica, 11F of Astronomy-Mathematics Building, AS/NTU. No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan 9 Unidad Asociada Astro-UAM, UAM, Unidad Asociada CSIC, Universidad Autónoma de Madrid, Ctra. Colmenar km 15, 28049 Madrid, Spain 10 Institut de Planétologie et d’Astrophysique de Grenoble, UMR 5274, BP 53, 38041 Grenoble, Cedex 9, France Received 14 March 2016 / Accepted 21 September 2016 ABSTRACT Context. -
Arxiv:0808.3207V1 [Astro-Ph] 23 Aug 2008 Nfgr .Nwonsaswr Rtdrcl Icvrdi C in Discovered Directly H first Were and Surroun Stars Variability Area Newborn the of 4
Handbook of Star Forming Regions Vol. II Astronomical Society of the Pacific, 2008 Bo Reipurth, ed. Chamaeleon Kevin L. Luhman Department of Astronomy and Astrophysics The Pennsylvania State University University Park, PA 16802, USA Abstract. The dark clouds in the constellation of Chamaeleon have distances of 160-180pc from the Sun and a total mass of ∼5000 M⊙. The three main clouds, Cha I, II, and III, have angular sizes of a few square degrees and maximum extinctions of AV ∼ 5-10. Most of the star formation in these clouds is occurring in Cha I, with the remainder in Cha II. The current census of Cha I contains 237 known members, 33 of which have spectral types indicative of brown dwarfs (>M6). Approximately 50 members of Cha II have been identified, including a few brown dwarfs. When interpreted with the evolutionary models of Chabrier and Baraffe, the H-R diagram for Cha I exhibits a median age of ∼2 Myr, making it coeval with IC 348 and slightly older than Taurus (∼1 Myr). TheIMF ofChaI reachesa maximumat a massof0.1-0.15 M⊙, and thus closely resembles the IMFs in IC 348 and the Orion Nebula Cluster. The disk fraction in Cha I is roughly constant at ∼ 50% from 0.01 to 0.3 M⊙ and increases to ∼ 65% at higher masses. In comparison, IC 348 has a similar disk fraction at low masses but a much lower disk fraction at M ∼> 1 M⊙, indicating that solar-type stars have longer disk lifetimes in Cha I. 1. Introduction The southern constellation of Chamaeleon contains one of the nearest groups of dark clouds to the Sun (d ∼ 160-180 pc). -
Why Do Hydrogen and Helium Migrate from Some Planets and Smaller
Why do Hydrogen and Helium Migrate from Some Planets and Smaller Objects? Author Weitter Duckss Independent Researcher, Zadar, Croatia mail: [email protected] Project: https://www.svemir-ipaksevrti.com/ Abstract This article analyzes the processes through measuring the material incoming from the outer space onto Earth, through migrating of hydrogen and helium from our atmosphere and from other objects and through inability to detect the radioactive effects on stars and objects with melted interiorities. Habitable periods on such objects are determined through the processes. 1. Introduction The goal of the article is to give arguments, based on the existing data bases, that a constant growth of space objects, as well as their rotation and tidal forces, cause their warming up and radiation emissions, therefore making radioactive processes of fission and fusion – which are not detected on stars and other objects anyway – unnecessary. The article gives evidence of hydrogen and helium migrating towards the objects that have more mass and of temperature levels of stars being directly related to their chemical compositions and the objects in their orbits. The argumentation to support a habitable period will be derived from the natural processes of constant growth and matter gathering. 2. Why there is no radioactive emission, derived from the processes of fission and fusion, inside stars? All data bases indicate that astronomic research (or, evidence) support the existence of a constant (monotonous), omnipresent, slow gathering of matter. The processes are "more accelerated" in such part of the Universe where there is more matter gathered (in the form of nebulae, molecular clouds, etc.) during a long period of time, but gathering takes place constantly in the whole volume of the Universe as well. -
Mapping Young Stellar Populations Towards Orion with Gaia DR1 E
Astronomy & Astrophysics manuscript no. draft_2cols c ESO 2018 November 9, 2018 Mapping young stellar populations towards Orion with Gaia DR1 E. Zari1?, A. G. A. Brown1, J. de Bruijne2, C. F. Manara2; 3 & P. T. de Zeeuw1; 3 1 Leiden Observatory, Niels Bohrweg 2, 2333 CA Leiden, the Netherlands; 2 Scientific Support Office, Directorate of Science, European Space Research and Technology Center (ESA/ESTEC), Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands; 3 ESO, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany November 9, 2018 ABSTRACT In this work we use the first data release of the Gaia mission to explore the three dimensional arrangement and the age ordering of the many stellar groups towards the Orion OB association, aiming at a new classification and characterization of the stellar population not embedded in the Orion A and B molecular clouds. We make use of the parallaxes and proper motions provided in the Tycho Gaia Astrometric Solution (TGAS) sub-set of the Gaia catalogue, and of the combination of Gaia and 2MASS photometry. In TGAS, we find evidence for the presence of a young population, at a parallax $ ∼ 2:65 mas, loosely distributed around some known clusters: 25 Ori, Ori and σ Ori, and NGC 1980 (ι Ori) and the Orion Nebula Cluster (ONC). The low mass counterpart of this population is visible in the color-magnitude diagrams constructed by combining Gaia G photometry and 2MASS. We study the density distribution of the young sources in the sky, using a Kernel Density Estimation (KDE). We find the same groups as in TGAS, and also some other density enhancements that might be related to the recently discovered Orion X group, the Orion dust ring, and to the λ Ori complex. -
Exoplanet Atmosphere Measurements from Direct Imaging
Exoplanet Atmosphere Measurements from Direct Imaging Beth A. Biller and Mickael¨ Bonnefoy Abstract In the last decade, about a dozen giant exoplanets have been directly im- aged in the IR as companions to young stars. With photometry and spectroscopy of these planets in hand from new extreme coronagraphic instruments such as SPHERE at VLT and GPI at Gemini, we are beginning to characterize and classify the at- mospheres of these objects. Initially, it was assumed that young planets would be similar to field brown dwarfs, more massive objects that nonetheless share sim- ilar effective temperatures and compositions. Surprisingly, young planets appear considerably redder than field brown dwarfs, likely a result of their low surface gravities and indicating much different atmospheric structures. Preliminarily, young free-floating planets appear to be as or more variable than field brown dwarfs, due to rotational modulation of inhomogeneous surface features. Eventually, such inho- mogeneity will allow the top of atmosphere structure of these objects to be mapped via Doppler imaging on extremely large telescopes. Direct imaging spectroscopy of giant exoplanets now is a prelude for the study of habitable zone planets. Even- tual direct imaging spectroscopy of a large sample of habitable zone planets with future telescopes such as LUVOIR will be necessary to identify multiple biosigna- tures and establish habitability for Earth-mass exoplanets in the habitable zones of nearby stars. Introduction Since 1995, more than 3000 exoplanets have been discovered, mostly via indirect means, ushering in a completely new field of astronomy. In the last decade, about a dozen planets have been directly imaged, including archetypical systems such as arXiv:1807.05136v1 [astro-ph.EP] 13 Jul 2018 Beth A. -
A Library of Near-Infrared Integral Field Spectra of Young M–L Dwarfs⋆⋆⋆
A&A 562, A127 (2014) Astronomy DOI: 10.1051/0004-6361/201118270 & c ESO 2014 Astrophysics A library of near-infrared integral field spectra of young M–L dwarfs?;?? M. Bonnefoy1, G. Chauvin2;1, A.-M. Lagrange2, P. Rojo3, F. Allard4, C. Pinte2, C. Dumas5, and D. Homeier4 1 Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany e-mail: [email protected] 2 UJF-Grenoble 1/CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble 38041, France 3 Departamento de Astronomia, Universidad de Chile, 36-D Casilla, Santiago, Chile 4 CRAL-ENS, 46 allée d’Italie, 69364 Lyon Cedex 7, France 5 European Southern Observatory, Casilla 19001, 19 Santiago, Chile Received 13 October 2011 / Accepted 13 June 2013 ABSTRACT Context. At young ages, low surface gravity affects the atmospheric properties of ultracool dwarfs. The impact on medium-resolution near-infrared (NIR) spectra has only been slightly investigated at the M–L transition so far. Aims. We present a library of NIR (1.1–2.45 µm) medium-resolution (R ∼ 1500–2000) integral field spectra of 15 young M6−L0 dwarfs. We aim at deriving updated NIR spectral type, luminosity, and physical parameters (Teff , log g, M, L=L ) for each source. This work also aims at testing the latest generation of BT-SETTL atmospheric models. Methods. We estimated spectral types using spectral indices and the spectra of young objects classified in the optical. We used the 2010 and 2012 releases of the BT-SETTL synthetic spectral grid and cross-checked the results with the DRIFT-PHOENIX models to derive the atmospheric properties of the sources. -
The Coolest'stars' Are Free-Floating Planets
18th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun Proceedings of Lowell Observatory (9-13 June 2014) Edited by G. van Belle & H. Harris The coolest 'stars' are free-floating planets V. Joergens1;2, M. Bonnefoy3, Y. Liu4 A. Bayo1, S. Wolf5 1Max-Planck Institut f¨urAstronomie, K¨onigstuhl 17, 69117 Heidelberg, Germany 2 Institut f¨urTheoretische Astrophysik, Zentrum f¨urAstronomie der Universit¨atHeidelberg, Albert-Ueberle-Str. 2, 69120 Heidelberg, Germany 3 Institut de Plan´etologie et d'Astrophysique de Grenoble, UMR 5274, Grenoble, 38041, France 4 Purple Mountain Observatory & Key Laboratory for Radio Astronomy, Chinese Academy of Sciences, Nanjing 210008, China 5 Institut f¨urTheoretische Physik und Astrophysik, Universit¨atKiel, Leibnizstr. 15, 24118 Kiel, Germany Abstract. We show that the coolest known object that is probably formed in a star-like mode is a free-floating planet. We discovered recently that the free-floating planetary mass object OTS 44 (M9.5, ∼12 Jupiter masses, age ∼2 Myr) has significant accretion and a substantial disk. This demonstrates that the processes that characterize the canonical star-like mode of formation apply to isolated objects down to a few Jupiter masses. We detected in VLT/SINFONI spectra that OTS 44 has strong, broad, and variable Paschen β emission. This is the first evidence for active accretion of a free-floating planet. The object allows us to study accretion and disk physics at the extreme and can be seen as free-floating analog of accreting planets that orbit stars. Our analysis of OTS 44 shows that the mass-accretion rate decreases continuously from stars of several solar masses down to free-floating planets. -
March 7 MEETING
IO – March 2005 Issue # 2005-03 www.eugeneastro.org Eugene Astronomical Society, Annual Club Dues $25, President: AC Illig, Treasurer: Rossco Wright, Secretary Alicia McGraw Guy Prouty ([email protected] 463-7641, Richard Boyd (BOD Members); IO editor, Sam Pitts, [email protected] 688-7330: Io (EYE-oh) is nearest to Jupiter and fastest orbiting of the four Galilean moons EAS is a Proud Member of: MMoonnddaayy-- MMaarrcchh 77th MMEEEETTIINNGG EUGENE ASTRONOMICAL SOCIETY At The Science Factory Planetarium The meeting will begin at 7:00 PM in the Planetarium. Come early and help others learn about their scopes. Those of you, who are new or not sure about your equipment, show up early and some of our members will assist you in understanding your equipment better. If you are planning on getting a scope please come out and ask questions, we’re glad to assist you in making a good solid choice to maximize your viewing pleasure. The Science Factory is at 2300 Leo Harris Parkway, behind Autzen Stadium. Check EAS WEB site for up to the minute Information March 3 March 10 March 17 March 25 Last Quarter New Moon First Quarter Full Moon Sunset: 6:06 PM Sunset: 6:12 PM Sunset: 6:21 PM Sunset: 6:31 PM Sunrise 6:46 AM Sunrise 6:34 AM Sunrise 6:21 AM Sunrise 6:07 AM Jupiter Rise 8:55 PM Jupiter Rise 8:21 PM Jupiter Rise 7:50 PM Jupiter Rise 7:13 PM Mars Rise 4:16 AM Mars Rise 4:07 AM Mars Rise 3:57 AM Mars Rise 3:45 AM All times are for Eugene, Oregon Latitude 44º 3’ 8” Longitude 123º 5’ 8” Magazine subscriptions go to Richard Boyd: [email protected] Join the user List! Keep in-touch with Members and Events! http://lists.cmc.net/cgi-bin/mailman/listinfo/eugeneastro 1 IO – March 2005 www .eugeneastro.org What’s Out This Month Transits of Jupiter’s Moons Straight over head are the two bright Stars Caster (west) & Pollux, forming the head of Gemini. -
Deep Sky Explorer Atlas
Deep Sky Explorer Atlas Reference manual Star charts for the southern skies Compiled by Auke Slotegraaf and distributed under an Attribution-Noncommercial 3.0 Creative Commons license. Version 0.20, January 2009 Deep Sky Explorer Atlas Introduction Deep Sky Explorer Atlas Reference manual The Deep Sky Explorer’s Atlas consists of 30 wide-field star charts, from the south pole to declination +45°, showing all stars down to 8th magnitude and over 1 000 deep sky objects. The design philosophy of the Atlas was to depict the night sky as it is seen, without the clutter of constellation boundary lines, RA/Dec fiducial markings, or other labels. However, constellations are identified by their standard three-letter abbreviations as a minimal aid to orientation. Those wishing to use charts showing an array of invisible lines, numbers and letters will find elsewhere a wide selection of star charts; these include the Herald-Bobroff Astroatlas, the Cambridge Star Atlas, Uranometria 2000.0, and the Millenium Star Atlas. The Deep Sky Explorer Atlas is very much for the explorer. Special mention should be made of the excellent charts by Toshimi Taki and Andrew L. Johnson. Both are free to download and make ideal complements to this Atlas. Andrew Johnson’s wide-field charts include constellation figures and stellar designations and are highly recommended for learning the constellations. They can be downloaded from http://www.cloudynights.com/item.php?item_id=1052 Toshimi Taki has produced the excellent “Taki’s 8.5 Magnitude Star Atlas” which is a serious competitor for the commercial Uranometria atlas. His atlas has 149 charts and is available from http://www.asahi-net.or.jp/~zs3t-tk/atlas_85/atlas_85.htm Suggestions on how to use the Atlas Because the Atlas is distributed in digital format, its pages can be printed on a standard laser printer as needed. -
SPITZER: Accretion in Low Mass Stars and Brown Dwarfs in the Lambda
SPITZER: Accretion in Low Mass Stars and Brown Dwarfs in the Lambda Orionis Cluster1 David Barrado y Navascu´es Laboratorio de Astrof´ısica Espacial y F´ısica Fundamental, LAEFF-INTA, P.O. Box 50727, E-28080 Madrid, SPAIN [email protected] John R. Stauffer Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 Mar´ıaMorales-Calder´on, Amelia Bayo Laboratorio de Astrof´ısica Espacial y F´ısica Fundamental, LAEFF-INTA, P.O. Box 50727, E-28080 Madrid, SPAIN Giovanni Fazzio, Tom Megeath, Lori Allen Harvard Smithsonian Center for Astrophysics, Cambridge, MA 02138 Lee W. Hartmann, Nuria Calvet Department of Astronomy, University of Michigan ABSTRACT We present multi-wavelength optical and infrared photometry of 170 previously known low mass stars and brown dwarfs of the 5 Myr Collinder 69 cluster (Lambda Orionis). The new photometry supports cluster membership for most of them, with less than 15% of the previous candidates identified as probable non-members. The near infrared photometry allows us to identify stars with IR excesses, and we find that the Class II population is very large, around arXiv:0704.1963v1 [astro-ph] 16 Apr 2007 25% for stars (in the spectral range M0 - M6.5) and 40% for brown dwarfs, down to 0.04 M⊙, despite the fact that the Hα equivalent width is low for a significant fraction of them. In addition, there are a number of substellar objects, classified as Class III, that have optically thin disks. The Class II members are distributed in an inhomogeneous way, lying preferentially in a filament running toward the south-east. -
3 the Generalised Schrödinger Equation
Editorial Board Editor in Chief Mark Zilberman, MSc, Shiny World Corporation, Toronto, Canada Scientific Editorial Board Viktor Andrushhenko, PhD, Professor, Academician of the Academy of Pedagogical Sciences of Ukraine, President of the Association of Rectors of pedagogical universities in Europe John Hodge, MSc, retired, USA Petr Makuhin, PhD, Associate Professor, Philosophy and Social Communications faculty of Omsk State Technical University, Russia Miroslav Pardy, PhD, Associate Professor, Department of Physical Electronics, Masaryk University, Brno, Czech Republic Lyudmila Pet'ko, Executive Editor, PhD, Associate Professor, National Pedagogical Dragomanov University, Kiev, Ukraine Volume 8, Number 2 Publisher : Shiny World Corp. Address : 9200 Dufferin Street P.O. Box 20097 Concord, Ontario L4K 0C0 Canada E-mail : [email protected] Web Site : www.IntellectualArchive.com Series : Journal Frequency : Every 3 months Month : April - June 2019 ISSN : 1929-4700 DOI : 10.32370/IA_2019_02 Trademark © 2019 Shiny World Corp. All Rights Reserved. No reproduction allowed without permission. Copyright and moral rights of all articles belong to the individual authors. Physics M. Pardy The Complex Mass from Henstock-Kurzweil-Feynman-Pardy Integral ……………. 1 John C. Hodge STOE beginnings ……………………………………………………………….…………. 11 John C. Hodge STOE Explains "Planet 9" ………………………………………………………………… 13 John C. Hodge STOE Explanation for the ``Ether wind" ………………………………………………… 15 V. Litvinenko , A. Shapovalov, Low Inductive and Resistance Energy Capacitor …….………….………………….… 19 A. Ovsyannik Astronomy W. Duckss Why do Hydrogen and Helium Migrate from Some Planets and Smaller Objects? ... 24 Technics Modern Reading of the 40 Principles of TIPS Using the Example of the Technology V. Korobov for Activation of Fuel Mixtures ……………………………………………………………. 32 Computer Science A. Kravchenko The Practical Side of IoT Implementation in Smart Cities …………………………....