Preface to the Special Issue on Electromagnetic Phenomena Related to Seismic and Volcanic Activities from EMSEV in 2016
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Statistical Significance of the Variability Minima of the Order
applied sciences Article On the Statistical Significance of the Variability Minima of the Order Parameter of Seismicity by Means of Event Coincidence Analysis Stavros-Richard G. Christopoulos 1,2 , Efthimios S. Skordas 2,3 and Nicholas V. Sarlis 2,3* 1 Faculty of Engineering, Environment and Computing, Coventry University, Priory Street, Coventry CV1 5FB, UK; [email protected] 2 Solid Earth Physics Institute, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, 157 84 Zografos, Greece; [email protected] 3 Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, 157 84 Zografos, Greece * Correspondence: [email protected]; Tel.: +30-210-7276736 Received: 20 December 2019; Accepted: 14 January 2020; Published: 17 January 2020 Abstract: Natural time analysis has led to the introduction of an order parameter for seismicity when considering earthquakes as critical phenomena. The study of the fluctuations of this order parameter has shown that its variability exhibits minima before strong earthquakes. In this paper, we evaluate the statistical significance of such minima by using the recent method of event coincidence analysis. Our study includes the variability minima identified before major earthquakes in Japan and Eastern Mediterranean as well as in global seismicity. Keywords: earthquake physics; natural time analysis; event coincidence analysis; Japan; Eastern Mediterranean; global seismicity 1. Introduction In many fields of science, and especially in the study of complex systems, a very important problem is the possible interconnection between two point processes. In simple words, when we have two event time-series how can we decide that they influence one another? To answer this crucial question, Donges et al. -
Subduction Front: Shannon Entropy and Mutability
1 1 Measuring the seismic risk along the Nazca-Southamerican subduction front: Shannon entropy and mutability 2 3 1;2 1 3;4 3 4 Eugenio E. Vogel , Felipe G. Brevis , Denisse Past´en , V´ıctorMu~noz , 5;6 7;8 5 Rodrigo A. Miranda , Abraham C.-L. Chian 6 1 7 Departamento de F´ısica,Universidad de La Frontera, Casilla 54-D, Temuco, Chile 2 8 Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile 3 9 Departamento de F´ısica,Facultad de Ciencias, Universidad de Chile, Santiago, Chile 4 10 Advanced Mining Technology Center (AMTC), Santiago, Chile 5 11 UnB-Gama Campus, University of Brasilia, Brasilia DF 70910-900, Brazil. 6 12 Plasma Physics Laboratory, Institute of Physics, University of Brasilia, Brasilia DF 70910-900, Brazil. 7 13 University of Adelaide, School of Mathematical Sciences, Adelaide, SA 5005, Australia. 8 14 National Institute for Space Research (INPE), Sao Jose dos Campos-SP 12227-010, Brazil 15 Correspondence to : [email protected] 16 17 18 Abstract. Four geographical zones are defined along the trench that is formed due to the subduction of the Nazca 19 Plate underneath the South American plate; they are denoted A, B, C and D from North to South; zones A, B 20 and D had a major earthquake after 2010 (Magnitude over 8:0), while zone C has not, thus offering a contrast for 21 comparison. For each zone a sequence of intervals between consecutive seisms with magnitudes ≥ 3:0 is set up and 22 then characterized by Shannon entropy and mutability. -
MW9 Tohoku Earthquake in 2011 in Japan: Precursors Uncovered by Natural Time Analysis
Earthq Sci DOI 10.1007/s11589-017-0189-0 RESEARCH PAPER MW9 Tohoku earthquake in 2011 in Japan: precursors uncovered by natural time analysis Panayiotis A. Varotsos . Nicholas V. Sarlis . Efthimios S. Skordas . Mary S. Lazaridou-Varotsos Received: 29 January 2017 / Accepted: 20 June 2017 Ó The Author(s) 2017. This article is an open access publication Abstract This paper reviews the precursory phenomena of 1 Introduction the 2011 MW9 Tohoku earthquake in Japan that emerge solely when we analyze the seismicity data in a new time Natural time analysis, introduced in the beginning of 2000s domain termed natural time. If we do not consider this (Varotsos et al. 2001b, 2002a, b, 2003a, b), uncovers analysis, important precursory changes cannot be identified unique dynamic features hidden behind the time series of and hence are missed. Natural time analysis has the priv- complex systems. It has found applications in a large ilege that enables the introduction of an order parameter of variety of diverse fields, and the relevant results have been seismicity. In this frame, we find that the fluctuations of compiled in a monograph (Varotsos et al. 2011c). In gen- this parameter exhibit an unprecedented characteristic eral, in the investigation of time series associated with change, i.e., an evident minimum, approximately two complex systems, the following two types of complexity months before Tohoku earthquake, which strikingly is measures are considered (Varotsos et al. 2011a): scale- almost simultaneous with unique anomalous geomagnetic specific and scale-independent measures. Upon employing field variations recorded mainly on the z component. This natural time analysis, it has been also found (Varotsos et al. -
Identifying the Occurrence Time of an Impending Mainshock: a Very Recent Case
Earthq Sci (2015) 28(3):215–222 DOI 10.1007/s11589-015-0122-3 RESEARCH PAPER Identifying the occurrence time of an impending mainshock: a very recent case Panayiotis A. Varotsos . Nicholas V. Sarlis . Efthimios S. Skordas . Stavros-Richard G. Christopoulos . Mary S. Lazaridou-Varotsos Received: 16 February 2015 / Accepted: 14 May 2015 / Published online: 16 June 2015 Ó The Author(s) 2015. This article is published with open access at Springerlink.com Abstract The procedure by means of which the occur- and Christopoulos 2012; Varotsos et al. 2011c, 2012). The rence time of an impending mainshock can be identified by observed earthquake scaling laws (Turcotte 1997) indicate analyzing in natural time the seismicity in the candidate the existence of phenomena closely associated with the area subsequent to the recording of a precursory seismic proximity of the system to a critical point, e.g., see Holli- electric signals (SES) activity is reviewed. Here, we report day et al. (2006), since scaling is a hallmark of criticality the application of this procedure to an MW 5.4 mainshock (Stanley 1999). Here, we take this view that mainshocks that occurred in Greece on 17 November 2014. This are (non-equilibrium) critical phenomena. mainshock (which is pretty rare since it is the strongest in Major EQs are preceded by transient changes of the that area for more than half a century) was preceded by an electric field of the Earth termed seismic electric signals SES activity recorded on 27 July 2014, and the results of (SES) (Varotsos and Alexopoulos 1984a, b). A series of such the natural time analysis reveal that the system approached signals recorded within a short time are called SES activities the critical point (mainshock occurrence) early in the (Varotsos and Lazaridou 1991; Varotsos et al. -
Nowcasting Earthquakes in Sulawesi Island, Indonesia
Nowcasting Earthquakes in Sulawesi Island, Indonesia Sumanta Pasari ( [email protected] ) Birla Institute of Technology and Science https://orcid.org/0000-0001-8498-8746 Andrean VH Simanjuntak Indonesian Agency for Climatology and Geophysics: Badan Meteorologi Klimatologi dan Geosika Yogendra Sharma Birla Institute of Technology and Science Research Letter Keywords: Natural times, nowcast scores, Sulawesi Island, probability models Posted Date: December 21st, 2020 DOI: https://doi.org/10.21203/rs.3.rs-128975/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Geoscience Letters on July 28th, 2021. See the published version at https://doi.org/10.1186/s40562-021-00197-5. Nowcasting Earthquakes in Sulawesi Island, Indonesia Sumanta Pasari1, Andrean VH Simanjuntak2, and Yogendra Sharma1 ABSTRACT Large devastating events such as earthquakes often display frequency-magnitude statistics that exhibit power-law distribution. In this study, we implement a new method of nowcasting (Rundle et al. 2016) to evaluate the current state of earthquake hazards in the seismic prone Sulawesi province, Indonesia. The nowcasting technique considers statistical behavior of small event counts, known as natural times, to infer the seismic progression of large earthquake cycles in a defined region. To develop natural time statistics in the Sulawesi Island, we employ four probability models, namely exponential, exponentiated exponential, -
Natural Time Analysis: the New View of Time
Springer Praxis Books Natural Time Analysis: The New View of Time Precursory Seismic Electric Signals, Earthquakes and other Complex Time Series Bearbeitet von Panayiotis Varotsos, Nicholas V. Sarlis, Efthimios S. Skordas 1. Auflage 2011. Buch. xxiv, 452 S. Hardcover ISBN 978 3 642 16448 4 Format (B x L): 16,8 x 24 cm Gewicht: 964 g Weitere Fachgebiete > Geologie, Geographie, Klima, Umwelt > Geologie > Vulkanologie, Seismologie schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Preface There is a widespread belief that it is not space but time that in the end poses the great- est challenge in science. It is according to Godel¨ “that mysterious and seemingly self- contradictory being which, on the other hand, seems to form the basis of the world’s and our own existence”. The basic scope of this monograph is to present the new view of time, termed natural time χ (from the Greek word “χρo´νoς” which means “time”), introduced by the authors in 2001. In this new view, time is not continuous, thus being in sharp contrast with the hitherto used conventional time t which is modeled as the one-dimensional continuum R of the real numbers. The results deduced to date on the basis of this new domain reveal that novel dynamical features hidden behind time series in complex systems can emerge upon analyzing them in natural time, but cannot when the analysis is carried out within the frame of conventional time. -
A Prototype Photoplethysmography Electronic Device That Distinguishes Congestive Heart Failure from Healthy Individuals by Applying Natural Time Analysis
electronics Article A Prototype Photoplethysmography Electronic Device that Distinguishes Congestive Heart Failure from Healthy Individuals by Applying Natural Time Analysis George Baldoumas 1,2, Dimitrios Peschos 1, Giorgos Tatsis 2 , Spyridon K. Chronopoulos 2,* , Vasilis Christofilakis 2,* , Panos Kostarakis 2, Panayiotis Varotsos 3, Nicholas V. Sarlis 3 , Efthimios S. Skordas 3 , Aris Bechlioulis 4, Lampros K. Michalis 4 and Katerina K. Naka 4 1 Faculty of Medicine, University of Ioannina, 451 10 Ioannina, Greece; [email protected] (G.B.); [email protected] (D.P.) 2 Electronics-Telecommunications and Applications Laboratory, Physics Department, University of Ioannina, 451 10 Ioannina, Greece; [email protected] (G.T.); [email protected] (P.K.) 3 Section of Solid State Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, 157 84 Zografos, Athens, Greece; [email protected] (P.V.); [email protected] (N.V.S.); [email protected] (E.S.S.) 4 Michaelidion Cardiac Center, 2nd Department of Cardiology and Michaelidion Cardiac Center, Medical School, University of Ioannina, 45110 Ioannina, Greece; [email protected] (A.B.); [email protected] (L.K.M.); [email protected] (K.K.N.) * Correspondence: [email protected] (S.K.C.); [email protected] (V.C.); Tel.: +30-26510-08635 (S.K.C.); +30-26510-08542 (V.C.) Received: 28 September 2019; Accepted: 2 November 2019; Published: 5 November 2019 Abstract: In this paper, a prototype photoplethysmography (PPG) electronic device is presented for the distinction of individuals with congestive heart failure (CHF) from the healthy (H) by applying the concept of Natural Time Analysis (NTA). -
Earthquake (M6.9), Based on VLF Electromagnetic Propagation Data As Recorded by a New VLF/LF Receiver Installed in Athens (Greece)
entropy Article Statistical and Criticality Analysis of the Lower Ionosphere Prior to the 30 October 2020 Samos (Greece) Earthquake (M6.9), Based on VLF Electromagnetic Propagation Data as Recorded by a New VLF/LF Receiver Installed in Athens (Greece) Dimitrios Z. Politis 1 , Stelios M. Potirakis 1,* , Yiannis F. Contoyiannis 1, Sagardweep Biswas 2, Sudipta Sasmal 2 and Masashi Hayakawa 3,4 1 Department of Electrical and Electronics Engineering, Ancient Olive Grove Campus, University of West Attica, 12244 Egaleo, Greece; [email protected] (D.Z.P.); [email protected] (Y.F.C.) 2 Indian Centre for Space Physics, 43 Chalantika, Garia St. Road, Kolkata 700084, India; [email protected] (S.B.); [email protected] (S.S.) 3 Hayakawa Institute of Seismo-Electromagnetics Co. Ltd. (Hi-SEM), University of Electro-Communications (UEC) Alliance Center #521, 1-1-1, Kojimacho, Chofu, Tokyo 182-0026, Japan; [email protected] 4 Advanced Wireless and Communications Research Center (AWCC), University of Electro-Communications (UEC), 1-5-1, Chofugaoka, Chofu, Tokyo 182-8585, Japan * Correspondence: [email protected] Citation: Politis, D.Z.; Potirakis, Abstract: In this work we present the statistical and criticality analysis of the very low frequency S.M.; Contoyiannis, Y.F.; Biswas, S.; Sasmal, S.; Hayakawa, M. Statistical (VLF) sub-ionospheric propagation data recorded by a VLF/LF radio receiver which has recently been and Criticality Analysis of the Lower established at the University of West Attica in Athens (Greece). We investigate a very recent, strong Ionosphere Prior to the 30 October (M6.9), and shallow earthquake (EQ) that occurred on 30 October 2020, very close to the northern 2020 Samos (Greece) Earthquake coast of the island of Samos (Greece). -
Natural Time Analysis: the Area Under the Receiver Operating Characteristic Curve of the Order Parameter Fluctuations Minima Preceding Major Earthquakes
entropy Article Natural Time Analysis: The Area under the Receiver Operating Characteristic Curve of the Order Parameter Fluctuations Minima Preceding Major Earthquakes Nicholas V. Sarlis 1,2 , Efthimios S. Skordas 1,2 , Stavros-Richard G. Christopoulos 2,3 and Panayiotis A. Varotsos 1,2,* 1 Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, 157 84 Zografos, Greece; [email protected] (N.V.S.); [email protected] (E.S.S.) 2 Solid Earth Physics Institute, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, 157 84 Zografos, Greece; [email protected] 3 Faculty of Engineering, Environment and Computing, Coventry University, Priory Street, Coventry CV1 5FB, UK * Correspondence: [email protected]; Tel.: +30-2107276737 Received: 18 April 2020; Accepted: 20 May 2020; Published: 21 May 2020 Abstract: It has been reported that major earthquakes are preceded by Seismic Electric Signals (SES). Observations show that in the natural time analysis of an earthquake (EQ) catalog, an SES activity starts when the fluctuations of the order parameter of seismicity exhibit a minimum. Fifteen distinct minima—observed simultaneously at two different natural time scales and deeper than a certain threshold—are found on analyzing the seismicity of Japan from 1 January 1984 to 11 March 2011 (the time of the M9 Tohoku EQ occurrence) 1 to 3 months before large EQs. Six (out of 15) of these minima preceded all shallow EQs of magnitude 7.6 or larger, while nine are followed by smaller EQs. The latter false positives can be excluded by a proper procedure (J. -
Natural Time Analysis: Results Related to Two Earthquakes in Greece During 2019
Article NATURAL TIME ANALYSIS: RESULTS RELATED TO TWO EARTHQUAKES IN GREECE DURING 2019 Nicholas V. Sarlis 1,2 , Efthimios S. Skordas 1,2 and Panayiotis A. Varotsos 1,2, * 1 Section of Solid State Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos 157 84, Athens, Greece 2 Solid Earth Physics Institute, Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos 157 84, Athens, Greece * Correspondence: [email protected]; Tel.: +30-2107276737 Version May 13, 2019 submitted to Proceedings 1 Abstract: The following two earthquakes occurred in Greece during 2019: First, a Mw5.4 earthquake 2 close to Preveza city in Western Greece on 5 February and a Mw5.3 earthquake 50km East of Patras on 3 30 March. Here, we present the natural time analysis of the Seismic Electric Signals (SES) activities that 4 have been recorded before these two earthquakes. In addition, we explain how the occurrence times 5 of these two earthquakes can be identified by analyzing in natural time the seismicity subsequent to 6 the SES activities. 7 Keywords: seismicity; earthquake prediction; natural time; seismic electric signals; Greece 8 1. Introduction 9 According to the United States Geological Survey (USGS) [1], a strong earthquake (EQ) of moment 10 magnitude Mw6.8 occurred on 25 October 2018 22:55 UTC at an epicentral distance around 133 km SW 11 of the city of Patras, Western Greece (see Figure1). It was preceded by an anomalous geolectric signal 12 that was recorded on 2 October 2018 at a measuring station 70km away from the epicenter[2]. -
Application of Artificial Intelligence in Predicting Earthquakes: State-Of-The-Art and Future Challenges
Received September 16, 2020, accepted September 30, 2020. Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. Digital Object Identifier 10.1109/ACCESS.2020.3029859 Application of Artificial Intelligence in Predicting Earthquakes: State-of-the-Art and Future Challenges MD. HASAN AL BANNA1, (Associate Member, IEEE), KAZI ABU TAHER1, M. SHAMIM KAISER 2, (Senior Member, IEEE), MUFTI MAHMUD 3, (Senior Member, IEEE), MD. SAZZADUR RAHMAN2, (Member, IEEE), A. S. M. SANWAR HOSEN 4, (Member, IEEE), AND GI HWAN CHO 4, (Member, IEEE) 1Department of Information and Communication Technology, Bangladesh University of Professionals, Dhaka 1216, Bangladesh 2Institute of Information Technology, Jahangirnagar University, Dhaka 1342, Bangladesh 3Department of Computer Science, Nottingham Trent University, Nottingham NG11 8NS, U.K. 4Division of Computer Science and Engineering, Jeonbuk National University, Jeonju 54896, South Korea Corresponding authors: Mufti Mahmud ([email protected]; [email protected]) and Gi Hwan Cho ([email protected]) This work was supported in part by fellowship number 19FS12048 from the Information and Communication Technology Division of the Government of the People's Republic of Bangladesh. ABSTRACT Predicting the time, location and magnitude of an earthquake is a challenging job as an earthquake does not show specific patterns resulting in inaccurate predictions. Techniques based on Artificial Intelligence (AI) are well known for their capability to find hidden patterns in data. In the case of earthquake prediction, these models also produce a promising outcome. This work systematically explores the contributions made to date in earthquake prediction using AI-based techniques. A total of 84 scientific research papers, which reported the use of AI-based techniques in earthquake prediction, have been selected from different academic databases. -
Article Count
Nat. Hazards Earth Syst. Sci., 21, 1785–1806, 2021 https://doi.org/10.5194/nhess-21-1785-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Long-term magnetic anomalies and their possible relationship to the latest greater Chilean earthquakes in the context of the seismo-electromagnetic theory Enrique Guillermo Cordaro1,2, Patricio Venegas-Aravena1,3,4, and David Laroze5 1Observatorios de Radiación Cósmica y Geomagnetismo, Departamento de Física, FCFM, Universidad de Chile, Casilla 487-3, Santiago, Chile 2Facultad de Ingeniería, Universidad Autónoma de Chile, Pedro de Valdivia 425, Santiago, Chile 3Department of Structural and Geotechnical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile 4Research Center for Integrated Disaster Risk Management (CIGIDEN), Santiago, Chile 5Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile Correspondence: Patricio Venegas-Aravena ([email protected]) Received: 24 October 2020 – Discussion started: 26 November 2020 Revised: 29 April 2021 – Accepted: 10 May 2021 – Published: 11 June 2021 Abstract. Several magnetic measurements and theoretical in order to filter space influence. The FFT method confirms developments from different research groups have shown the rise in the power spectral density in the millihertz range certain relationships with worldwide geological processes. 1 month before each earthquake, which decreases to lower Secular variation in geomagnetic cutoff rigidity, magnetic values some months after earthquake occurrence. The cumu- frequencies, or magnetic anomalies have been linked with lative anomaly method exhibited an increase prior to each spatial properties of active convergent tectonic margins or Chilean earthquake (50–90 d prior to earthquakes) similar to earthquake occurrences during recent years.