Bois-Marie INSTITUT DES HAUTES ÉTUDES SCIENTIFIQUES

Total Page:16

File Type:pdf, Size:1020Kb

Bois-Marie INSTITUT DES HAUTES ÉTUDES SCIENTIFIQUES Newsletter - 2015 bois-marie INSTITUT DES HAUTES ÉTUDES SCIENTIFIQUES editorial What is the point of basic China is also emerging as a leader in R&D funding ($600bn research? This question is by 2020), with very significant support for basic research. This often asked of those who have a curiosity-driven rather than a is a key political issue. utilitarian approach to their work. As well as its decisive role in most technological innovations One way to answer this is to show the continuum that exists and its impact on economic players, basic research contributes from basic to applied research. As we celebrate this November to deep thinking. Whether solving the mysteries of black holes the centenary of Einstein describing General Relativity, we or of morphogenesis, theoretical sciences are some of the most recall that without this breakthrough, our GPS systems would powerful tools to understand the world better. The scientific operate with the required degree of precision for about two method is driven by a desire to push the boundaries of knowledge, minutes only, once activated. Many technological innovations in which is also a desire for independence and freedom - two of the aerospace industry, telecommunications or medical research IHÉS’ core values. involve extremely complex theoretical models. Basic research is The Institute is a place of knowledge and sharing, led by its more than ever a strategic issue for companies. faculty and visiting professors. IHÉS is more than ever determined The socio-economic impact of a reputedly abstract discipline such to fully play its part within the scientific ecosystem, by offering as mathematics has recently been measured in France: the study exceptional scientists a place where their research can flourish. (published in May 2015) gives proof positive that mathematics This Bois-Marie will give you an idea of their intellectual contributes to the creation of added value up to 15% of GDP. curiosity and of the thriving scientific activity at the Institute. A similar result was found in studies in the UK in 2012 and in Supporting the IHÉS model for the benefit of the entire scientific the Netherlands in 2013 (16% and 13% respectively). A report community is essential. published by the American Academy of Arts and Sciences in the United States in 2014 has no hesitation in stating that the Marwan Lahoud country’s entire economy has greatly benefited from massive Chairman of the IHÉS Board of Directors investment in science and engineering in the 20th century. contents events ........................................................................ 2 - 5 cours de l’IHÉS ......................................................... 6 testimony ................................................................... 7 “séminaire de géométrie algébrique” .......................... 8 - 10 Oppenheimer and IHÉS ............................................ 11 - 13 international campaign ............................................... 14 - 15 point of view of ... / agenda ....................................... 16 Institut des Hautes Études Scientifiques | Le Bois-Marie, 35 route de Chartres, F-91440 Bures-sur-Yvette, France Telephone: +33 1 60 92 66 00 | Email: [email protected] | Website: www.ihes.fr events quantum mechanics trimester For the first time at IHÉS, Thibault Damour, There were 37 speakers during this trimester, Jürg Fröhlich and David Ruelle organised a including Alain Connes, Alain Aspect, Serge trimester on Quantum Mechanics. Haroche, Claude Cohen-Tannoudji, Jean Dalibard. Many of the most important experiments that test fundamental predictions or puzzling aspects of Quantum Mechanics have been carried out by research groups in France, in particular ones working in the Paris area. Furthermore, theoretical work on the foundations of Quantum Mechanics has a Pierre Cartier, Thibault Damour, long-standing tradition in France, which Claude Cohen-Tannoudji has continued to this day. Finally, problems concerning the unification of quantum theory quantum sciences. It was held over 11 weeks with a theory of gravitation are actively with an opening colloquium on 29 January, then pursued by people in the Paris area and, in a weekly seminar from 4 February to 1 April particular, at IHÉS. with talks and discussions around a specific The program brought together experimental topic. It ended with a closing colloquium and theoretical physicists with an expertise in on 9 April. Serge Haroche Join our 2000+ subscribers to view most of the scientific events on the IHÉS YouTube channel. summer school The summer school was organised by Joanna an overview of recent developments in the Nelson, Daniel Cristofaro-Gardiner and Joël theory of moduli spaces of pseudoholomorphic Fish and was held from 6 to 17 July. curves in symplectic and contact geometry. This year, 7 mini lectures with moderated This Summer School, on Moduli Problems discussions and related talks by a senior researcher in Symplectic Geometry, aims to provide PhD on current and future directions in the field students, post-docs, and young researchers with were added to the programme. You can also keep up with IHÉS news on our Facebook page : With the support of Dusa McDuff with Summer School participants 2 Huawei conference quantum gravity in Paris The Quantum Gravity in Paris workshop meets once a year for four days, including a special day at IHÉS. Over the years, the workshop has led to new collaborations between researchers and strengthened ties among the research institu- tions involved in its organisation. 2015 freshers’ welcome for FMJH Masters’ students Located since 1962 in the Chevreuse valley at Stéphane Mallat Cédric Villani the heart of the world’s largest pool of mathe- maticians, the Institute has always maintained As part of the partnership with Huawei, IHÉS Francis Bach, Cédric Villani, Mérouane Debbah close relations with the French mathematical and Huawei Technologies France’s Mathematical and Stéphane Mallat were invited to speak community and is delighted to be organising and Algorithmic Sciences Lab organised their during this day of meetings and exchanges collaborative events such as welcoming Masters’ first joint conference on 15 May, in the Marilyn among researchers from both institutions. students. On 2,3 and 4 September 2015, IHÉS and James Simons Conference Centre. welcomed nearly 90 students for a joint start to the academic year, organised by the Jacques Hadamard Mathematics Foundation, for Univer- sité Paris-Sud, Université Versailles St Quentin, ENS Cachan, ENSTA and École Centrale Paris. a day to explore Alexander Grothendieck Maxim Kontsevich’s contributions Alexander Grothendieck, who passed away on Ahmed Abbes and Emmanuel Ullmo organised 13 November 2014 in Ariège (South-West of an inaugural conference day, broadcasted Friends of IHES took advantage of Maxim France), left a profound mark on the history of simultaneously at the Morningside Center of Kontsevich’s visit to the United States to receive mathematics. Hailed as one of the most influential Mathematics, the Chinese Academy of Sciences his Breakthrough Prize in Mathematics to mathematicians of the 20th century, his ambitious and the Department of Mathematical Sciences, organise a conference on his work. This event programme of bringing together arithmetic, Tokyo University. took place at the Simons Foundation on algebraic geometry and topology continues to 18 November. structure contemporary mathematics. Two of Maxim’s close colleagues, Tony Pantev and Anton Kapustin, explored some of his Alexander Grothendieck was one of the first contributions to mathematics and their permanent professors at IHÉS at its creation in interactions with physics. 1958 and remained there for 11 years. He set up the extraordinary “Séminaire de Géométrie random maps day Algébrique”. Grothendieck was demanding, original and Since the early 2000’s, there has been generous and those qualities shaped the spirit increased interest in the study of random of the Institute.The name of the Institut des maps in theoretical physics, combinatorics Hautes Études Scientifiques is inextricably and probabilities. In order to bring together linked to Grothendieck’s. scientists working in this field and to facilitate IHÉS wanted to pay tribute to him and interactions between maths and physics, special inaugurated on 21 January, in partnership with “random maps days” have been held on a CNRS, the “Laboratoire Alexander Grothendieck” regular basis since 2006 and almost bi-monthly where all mathematical and theoretical physics since 2012. fields will be covered. The two last days were held at IHÉS. The laboratory was established as a Certified Research Team (ERL) and enables the fruitful Emmanuel Ullmo historical relations between IHÉS and CNRS to perpetuate. 3 events the new Université Paris-Saclay Université Paris-Saclay was officially created scientific potential that is recognised in France on 29 December 2014 and brings together 19 and internationally as being first rate. The Institutions of higher education and research, ambition of this project is to create a major among which IHÉS. research university based on the development of a continuum from basic to applied sciences using As a world famous centre of scientific research the skills, diversity and wealth of experience of and a driving force for innovation and economic the various players. Emmanuel Ullmo, development, Université Paris-Saclay is a major IHÉS has naturally chosen to be one of its scientific, economic and territorial project for
Recommended publications
  • Report for the Academic Year 1995
    Institute /or ADVANCED STUDY REPORT FOR THE ACADEMIC YEAR 1994 - 95 PRINCETON NEW JERSEY Institute /or ADVANCED STUDY REPORT FOR THE ACADEMIC YEAR 1 994 - 95 OLDEN LANE PRINCETON • NEW JERSEY 08540-0631 609-734-8000 609-924-8399 (Fax) Extract from the letter addressed by the Founders to the Institute's Trustees, dated June 6, 1930. Newark, New jersey. It is fundamental in our purpose, and our express desire, that in the appointments to the staff and faculty, as well as in the admission of workers and students, no account shall be taken, directly or indirectly, of race, religion, or sex. We feel strongly that the spirit characteristic of America at its noblest, above all the pursuit of higher learning, cannot admit of any conditions as to personnel other than those designed to promote the objects for which this institution is established, and particularly with no regard whatever to accidents of race, creed, or sex. TABLE OF CONTENTS 4 BACKGROUND AND PURPOSE 5 • FOUNDERS, TRUSTEES AND OFFICERS OF THE BOARD AND OF THE CORPORATION 8 • ADMINISTRATION 11 REPORT OF THE CHAIRMAN 15 REPORT OF THE DIRECTOR 23 • ACKNOWLEDGMENTS 27 • REPORT OF THE SCHOOL OF HISTORICAL STUDIES ACADEMIC ACTIVITIES MEMBERS, VISITORS AND RESEARCH STAFF 36 • REPORT OF THE SCHOOL OF MATHEMATICS ACADEMIC ACTIVITIES MEMBERS AND VISITORS 42 • REPORT OF THE SCHOOL OF NATURAL SCIENCES ACADEMIC ACTIVITIES MEMBERS AND VISITORS 50 • REPORT OF THE SCHOOL OF SOCIAL SCIENCE ACADEMIC ACTIVITIES MEMBERS, VISITORS AND RESEARCH STAFF 55 • REPORT OF THE INSTITUTE LIBRARIES 57 • RECORD OF INSTITUTE EVENTS IN THE ACADEMIC YEAR 1994-95 85 • INDEPENDENT AUDITORS' REPORT INSTITUTE FOR ADVANCED STUDY: BACKGROUND AND PURPOSE The Institute for Advanced Study is an independent, nonprofit institution devoted to the encouragement of learning and scholarship.
    [Show full text]
  • Fifty Years of Mathematics with Masaki Kashiwara
    Introduction D-modules SKK R-H correspondence Microlocal sheaf theory Others Fifty years of Mathematics with Masaki Kashiwara Pierre Schapira Sorbonne Universit´e,Paris, France ICM 2018 Rio de Janeiro, August 1st 1 / 26 Introduction D-modules SKK R-H correspondence Microlocal sheaf theory Others Before Kashiwara Masaki Kashiwara was a student of Mikio Sato and the story begins long ago, in the late fifties, when Sato created a new branch of mathematics, now called \Algebraic Analysis" by publishing his papers on hyperfunction theory and developed his vision of analysis and linear partial differential equations (LPDE) in a series of lectures at Tokyo University. 2 / 26 Introduction D-modules SKK R-H correspondence Microlocal sheaf theory Others Hyperfunctions on a real analytic manifold M are cohomology classes supported by M of the sheaf OX of holomorphic functions on a complexification X of M. In these old times, trying to understand real phenomena by complexifying a real manifold and looking at what happens in the complex domain was a totally new idea. The use of cohomology of sheaves in analysis was definitely revolutionary. 3 / 26 Introduction D-modules SKK R-H correspondence Microlocal sheaf theory Others Figure : ¿藤幹d and Á原正樹 4 / 26 Introduction D-modules SKK R-H correspondence Microlocal sheaf theory Others Kashiwara's thesis and D-module theory Then came Masaki Kashiwara. In his master's thesis, Tokyo University, 1970, Kashiwara establishes the foundations of analytic D-module theory, a theory which is now a fundamental tool in many branches of mathematics, from number theory to mathematical physics. (Soon after and independently, Joseph Bernstein developed a similar theory in the algebraic setting.) 5 / 26 Introduction D-modules SKK R-H correspondence Microlocal sheaf theory Others On a complex manifold X , one has the non commutative sheaf of rings DX of holomorphic partial differential operators.
    [Show full text]
  • Motives, Volume 55.2
    http://dx.doi.org/10.1090/pspum/055.2 Recent Titles in This Series 55 Uwe Jannsen, Steven Kleiman, and Jean-Pierre Serre, editors, Motives (University of Washington, Seattle, July/August 1991) 54 Robert Greene and S. T. Yau, editors, Differential geometry (University of California, Los Angeles, July 1990) 53 James A. Carlson, C. Herbert Clemens, and David R. Morrison, editors, Complex geometry and Lie theory (Sundance, Utah, May 1989) 52 Eric Bedford, John P. D'Angelo, Robert £. Greene, and Steven G. Krantz, editors, Several complex variables and complex geometry (University of California, Santa Cruz, July 1989) 51 William B. Arveson and Ronald G. Douglas, editors, Operator theory/operator algebras and applications (University of New Hampshire, July 1988) 50 James Glimm, John Impagliazzo, and Isadore Singer, editors, The legacy of John von Neumann (Hofstra University, Hempstead, New York, May/June 1988) 49 Robert C. Gunning and Leon Ehrenpreis, editors, Theta functions - Bowdoin 1987 (Bowdoin College, Brunswick, Maine, July 1987) 48 R. O. Wells, Jr., editor, The mathematical heritage of Hermann Weyl (Duke University, Durham, May 1987) 47 Paul Fong, editor, The Areata conference on representations of finite groups (Humboldt State University, Areata, California, July 1986) 46 Spencer J. Bloch, editor, Algebraic geometry - Bowdoin 1985 (Bowdoin College, Brunswick, Maine, July 1985) 45 Felix E. Browder, editor, Nonlinear functional analysis and its applications (University of California, Berkeley, July 1983) 44 William K. Allard and Frederick J. Almgren, Jr., editors, Geometric measure theory and the calculus of variations (Humboldt State University, Areata, California, July/August 1984) 43 Francois Treves, editor, Pseudodifferential operators and applications (University of Notre Dame, Notre Dame, Indiana, April 1984) 42 Anil Nerode and Richard A.
    [Show full text]
  • How to Glue Perverse Sheaves”
    NOTES ON BEILINSON'S \HOW TO GLUE PERVERSE SHEAVES" RYAN REICH Abstract. The titular, foundational work of Beilinson not only gives a tech- nique for gluing perverse sheaves but also implicitly contains constructions of the nearby and vanishing cycles functors of perverse sheaves. These con- structions are completely elementary and show that these functors preserve perversity and respect Verdier duality on perverse sheaves. The work also de- fines a new, \maximal extension" functor, which is left mysterious aside from its role in the gluing theorem. In these notes, we present the complete details of all of these constructions and theorems. In this paper we discuss Alexander Beilinson's \How to glue perverse sheaves" [1] with three goals. The first arose from a suggestion of Dennis Gaitsgory that the author study the construction of the unipotent nearby cycles functor R un which, as Beilinson observes in his concluding remarks, is implicit in the proof of his Key Lemma 2.1. Here, we make this construction explicit, since it is invaluable in many contexts not necessarily involving gluing. The second goal is to restructure the pre- sentation around this new perspective; in particular, we have chosen to eliminate the two-sided limit formalism in favor of the straightforward setup indicated briefly in [3, x4.2] for D-modules. We also emphasize this construction as a simple demon- stration that R un[−1] and Verdier duality D commute, and de-emphasize its role in the gluing theorem. Finally, we provide complete proofs; with the exception of the Key Lemma, [1] provides a complete program of proof which is not carried out in detail, making a technical understanding of its contents more difficult given the density of ideas.
    [Show full text]
  • Lecture Notes in Mathematics a Collection of Informal Reports and Seminars Edited by A
    Lecture Notes in Mathematics A collection of informal reports and seminars Edited by A. Dold, Heidelberg and B. Eckmann, Z(Jrich 287 Hyperfunctions and Pseudo-Differential Equations Proceedings of a Conference at Katata, 1971 Edited by Hikosaburo Komatsu, University of Tokyo, Tokyo/Japan Springer-Verlag Berlin. Heidelberg New York 1973 AMS Subject Classifications 1970): 35 A 05, 35 A 20, 35 D 05, 35 D 10, 35 G 05, 35 N t0, 35 S 05, 46F 15 ISBN 3-540-06218-1 Springer-Verlag Berlin- Heidelberg" New York ISBN 0-387-06218-1 Springer-Verlag New York • Heidelberg • Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher. © by Springer Verlag Berlin . Heidelberg 1973. Library of Congress Catalog Card Number 72-88782. Printed in Germany. Offsetdruck: Jutius Beltz, Hemsbach/Bergstr. Dedicated to the memory of the late professor Andre MARTINEAU, who had originally planned to attend this conference. He appreciated the importance of hyperfunctions for the first time and has made the most profound contributions to the theory of hyperfunctions. LIST OF PARTICIPANTS Y. AKIZUKI (Gunma University) H. HIRONAKA (Harvard University) A. KANEKO (University of Tokyo) M. KASHIWARA (RIMS, Kyoto University) T.
    [Show full text]
  • Fundamental Algebraic Geometry
    http://dx.doi.org/10.1090/surv/123 hematical Surveys and onographs olume 123 Fundamental Algebraic Geometry Grothendieck's FGA Explained Barbara Fantechi Lothar Gottsche Luc lllusie Steven L. Kleiman Nitin Nitsure AngeloVistoli American Mathematical Society U^VDED^ EDITORIAL COMMITTEE Jerry L. Bona Peter S. Landweber Michael G. Eastwood Michael P. Loss J. T. Stafford, Chair 2000 Mathematics Subject Classification. Primary 14-01, 14C20, 13D10, 14D15, 14K30, 18F10, 18D30. For additional information and updates on this book, visit www.ams.org/bookpages/surv-123 Library of Congress Cataloging-in-Publication Data Fundamental algebraic geometry : Grothendieck's FGA explained / Barbara Fantechi p. cm. — (Mathematical surveys and monographs, ISSN 0076-5376 ; v. 123) Includes bibliographical references and index. ISBN 0-8218-3541-6 (pbk. : acid-free paper) ISBN 0-8218-4245-5 (soft cover : acid-free paper) 1. Geometry, Algebraic. 2. Grothendieck groups. 3. Grothendieck categories. I Barbara, 1966- II. Mathematical surveys and monographs ; no. 123. QA564.F86 2005 516.3'5—dc22 2005053614 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA.
    [Show full text]
  • Algebraic D-Modules and Representation Theory Of
    Contemporary Mathematics Volume 154, 1993 Algebraic -modules and Representation TheoryDof Semisimple Lie Groups Dragan Miliˇci´c Abstract. This expository paper represents an introduction to some aspects of the current research in representation theory of semisimple Lie groups. In particular, we discuss the theory of “localization” of modules over the envelop- ing algebra of a semisimple Lie algebra due to Alexander Beilinson and Joseph Bernstein [1], [2], and the work of Henryk Hecht, Wilfried Schmid, Joseph A. Wolf and the author on the localization of Harish-Chandra modules [7], [8], [13], [17], [18]. These results can be viewed as a vast generalization of the classical theorem of Armand Borel and Andr´e Weil on geometric realiza- tion of irreducible finite-dimensional representations of compact semisimple Lie groups [3]. 1. Introduction Let G0 be a connected semisimple Lie group with finite center. Fix a maximal compact subgroup K0 of G0. Let g be the complexified Lie algebra of G0 and k its subalgebra which is the complexified Lie algebra of K0. Denote by σ the corresponding Cartan involution, i.e., σ is the involution of g such that k is the set of its fixed points. Let K be the complexification of K0. The group K has a natural structure of a complex reductive algebraic group. Let π be an admissible representation of G0 of finite length. Then, the submod- ule V of all K0-finite vectors in this representation is a finitely generated module over the enveloping algebra (g) of g, and also a direct sum of finite-dimensional U irreducible representations of K0.
    [Show full text]
  • MASAKI KASHIWARA PIERRE SCHAPIRA Ind-Sheaves
    Astérisque MASAKI KASHIWARA PIERRE SCHAPIRA Ind-sheaves Astérisque, tome 271 (2001) <http://www.numdam.org/item?id=AST_2001__271__R1_0> © Société mathématique de France, 2001, tous droits réservés. L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l’accord avec les conditions générales d’uti- lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ ASTÉRISQUE 271 IND-SHEAVES Masaki Kashiwara Pierre Schapira Société Mathématique de France 2001 M. Kashiwara Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan. E-mail : [email protected] P. Schapira Institut de Mathématiques, Analyse Algébrique, Université P & M Curie, Case 82, 4, place Jussieu F-75252, Paris Cedex 05, France. E-mail : [email protected] Url : http://www.math.jussieu.fr/"schapira 2000 Mathematics Subject Classification. — 18F20, 32C38, 32S60. Key words and phrases. — Sheaves, Grothendieck topologies, ind-objects, D-modules, moderate cohomology, integral transforms. The first named author benefits by a "Chaire Internationale de Recherche Blaise Pascal de l'Etat et de la Région d'Ile-de-France, gérée par la Fondation de l'Ecole Normale Supérieure". IND-SHEAVES Masaki Kashiwara, Pierre Schapira Abstract. — Sheaf theory is not well suited to the study of various objects in Analysis which are not defined by local properties. The aim of this paper is to show that it is possible to overcome this difficulty by enlarging the category of sheaves to that of ind-sheaves, and by extending to ind-sheaves the machinery of sheaves.
    [Show full text]
  • IMU-Net 88: March 2018 a Bimonthly Email Newsletter from the International Mathematical Union Editor: Martin Raussen, Aalborg University, Denmark
    IMU-Net 88: March 2018 A Bimonthly Email Newsletter from the International Mathematical Union Editor: Martin Raussen, Aalborg University, Denmark CONTENTS 1. Editorial: ICM 2018 2. IMU General Assembly meeting in São Paulo 3. CDC Panel Discussion and Poster Session during ICM 2018 4. Fields medalist Alan Baker passed away 5. CWM: Faces of women in mathematics 6. Report on the ISC general assembly 7. ICIAM 2019 congress 8. Abel Prize 2018 to Robert Langlands 9. 2018 Wolf prizes to Beilinson and Drinfeld 10. MSC 2020: Revision of Mathematics Subject Classification 11. Subscribing to IMU-Net ------------------------------------------------------------------------------------------------------- 1. EDITORIAL: ICM 2018 Dear Colleagues, After so many months of work and expectation, the year of the Congress has finally arrived! Preparations are well under way: the bulk of the scientific program has been defined, the proceedings are being finalized (the papers by plenary and invited speakers will be distributed to all the participants at the Congress), travel grants have been awarded to participants from the developing world, communications and posters are being selected as I write, and registration of participants is also taking place right now. Keep in mind that the deadline for early advance registration, with reduced registration fee, is April 27. Much of our effort over the last couple of years has been geared towards advertising the Congress, domestically and abroad, as we take the occasion as a historic opportunity to popularize mathematics in our society and, especially, amongst the Brazilian youth. I believe we are being very successful. The Biennium of Mathematics 2017-2018, formally proclaimed by the Brazilian national parliament, encompasses a wide range of outreach initiatives throughout the country, and raised the profile of mathematics in mainstream media to totally unprecedented levels.
    [Show full text]
  • Arxiv:2104.06941V2 [Math.AG] 26 May 2021
    RIEMANN-HILBERT CORRESPONDENCE FOR ALEXANDER COMPLEXES LEI WU Abstract. We establish a Riemann-Hilbert correspondence for Alexander complexes (also known as Sabbah specialization complexes) by using relative holonomic D-modules in an equivariant way, which particularly gives a \global" approach to the correspondence for Deligne's nearby cycles. Using the corre- spondence and zero loci of Bernstein-Sato ideals, we obtain a formula for the relative support of the Alexander complexes. Contents 1. Introduction 1 2. Sheafification of sheaves of modules over commutative rings 8 3. Relative maximal and minimal extensions along F 17 4. Alexander complex of Sabbah 34 5. Comparison 35 References 40 1. Introduction Let f be a holomorphic function on a complex manifold X with D the divisor of f and let Ux be a small open neighborhood of x 2 D. Then we consider the fiber product diagram ∗ ∗ ∗ Uex = (Ux n D) ×C Ce Ce exp f ∗ Ux n D C ∗ ∗ ∗ arXiv:2104.06941v3 [math.AG] 1 Sep 2021 where exp: Ce ! C is the universal cover of the punctured complex plane C . ∗ The deck transformation induces a C[π1(C )]-module structure on the compactly i supported cohomology group Hc(Uex; C), which is called the i-th (local) Alexander module of f. Taking Ux sufficiently small, the Alexander modules contain the information of the cohomology groups of the Milnor fibers around x together with their monodromy action. As x varies along D, all the local Alexander modules ∗ give a constructible complex of sheaves of C[π1(C )]-modules, which recovers the Deligne nearby cycle of the constant sheaf along f (see [Bry86]).
    [Show full text]
  • 27 Oct 2008 Masaki Kashiwara and Algebraic Analysis
    Masaki Kashiwara and Algebraic Analysis Pierre Schapira Abstract This paper is based on a talk given in honor of Masaki Kashiwara’s 60th birthday, Kyoto, June 27, 2007. It is a brief overview of his main contributions in the domain of microlocal and algebraic analysis. It is a great honor to present here some aspects of the work of Masaki Kashiwara. Recall that Masaki’s work covers many fields of mathematics, algebraic and microlocal analysis of course, but also representation theory, Hodge the- ory, integrable systems, quantum groups and so on. Also recall that Masaki had many collaborators, among whom Daniel Barlet, Jean-Luc Brylinski, Et- surio Date, Ryoji Hotta, Michio Jimbo, Seok-Jin Kang, Takahiro Kawai, Tet- suji Miwa, Kiyosato Okamoto, Toshio Oshima, Mikio Sato, myself, Toshiyuki Tanisaki and Mich`ele Vergne. In each of the domain he approached, Masaki has given essential contri- butions and made important discoveries, such as, for example, the existence of crystal bases in quantum groups. But in this talk, I will restrict myself to describe some part of his work related to microlocal and algebraic analysis. The story begins long ago, in the early sixties, when Mikio Sato created a new branch of mathematics now called “Algebraic Analysis”. In 1959/60, arXiv:0810.4875v1 [math.HO] 27 Oct 2008 M. Sato published two papers on hyperfunction theory [24] and then devel- oped his vision of analysis and linear partial differential equations in a series of lectures at Tokyo University (see [1]). If M is a real analytic manifold and X is a complexification of M, hyperfunctions on M are cohomology classes supported by M of the sheaf X of holomorphic functions on X.
    [Show full text]
  • Holonomic Systems of Linear Differential Equations and Feynman Integrals
    Publ. RIMS, Kyoto Univ. 12 Suppl. (1977), 131-140. Holonomic Systems of Linear Differential Equations and Feynman Integrals by Masaki KASHIWARA* and Takahiro KAWAI** The purpose of this report is to show that the (generalized) Feynman integral should satisfy a holonomic system***' of linear differential equa- tions. We also discuss the analyticity of the defining functiont} of the Feynman amplitude in complex domain as a corollary of this result. Our main result, i.e. the existence of holonomic system, gives an affirma- tive answer to the conjecture of Regge [15], who first understood and emphasized the importance of the role of systems of differential equations in the investigation of Feynman integrals. In his report a homological approach to this problem is suggested. It is very illuminating but seems to be accompanied with many technical difficulties, as Professor Regge himself points out in the report. This important property of the Feynman integral has also been conjectured and proved in simple cases by Sato [16] independently and in a little different context See also Barucchi- Ponzano [1], Kawai-Stapp [11], [12] and references cited there. Note that Kawai-Stapp ([11], [12]) discusses the ^-matrix itself, not the indi- vidual Feynman integral, as Sato [16] originally proposed. We also give the diagramatic description of the characteristic variety of the system involved. It enjoys a nice physical interpretation as is shown by Kashi- Received August 28, 1976. * Mathematical Institute, Nagoya University and Department of Mathematics, Harvard University. Supported by the National Science Foundation. ** Research Institute for Mathematical Sciences, Kyoto University and Department of Mathematics, University of California, Berkeley.
    [Show full text]