A Uniform Construction of the Holomorphic Voas of Central
Total Page:16
File Type:pdf, Size:1020Kb
A Uniform Construction of the 71 Holomorphic VOAs of c = 24 from the Leech Lattice Sven Möller (joint work with Nils Scheithauer) Vertex Operator Algebras, Number Theory, and Related Topics: A Conference in Honor of Geoffrey Mason, California State University, Sacramento 12th June 2018 Schellekens’ List Orbifold Construction and Dimension Formulae A Generalised Deep-Hole Construction Contents 1 Schellekens’ List 2 Orbifold Construction and Dimension Formulae 3 A Generalised Deep-Hole Construction Sven Möller A Uniform Construction of the 71 holomorphic VOAs of c = 24 Schellekens’ List Orbifold Construction and Dimension Formulae A Generalised Deep-Hole Construction Holomorphic VOAs of Small Central Charge Proposition (Consequence of [Zhu96]) Let V be a strongly rational, holomorphic VOA. Then the central charge c of V is in 8Z≥0. + c = 8: VE8 , c = 16: V 2 , V (only lattice theories) [DM04] E8 D16 Theorem ([Sch93, DM04, EMS15]) Let V be a strongly rational, holomorphic VOA of central charge c = 24. Then the Lie algebra V1 is isomorphic to one of the 71 Lie algebras on Schellekens’ list (V \, 24 Niemeier lattice theories, etc. with chV (τ) = j(τ) − 744 + dim(V1)). c = 32: already more than 1 160 000 000 lattice theories Sven Möller A Uniform Construction of the 71 holomorphic VOAs of c = 24 Schellekens’ List Orbifold Construction and Dimension Formulae A Generalised Deep-Hole Construction Classification Orbifold constructions give all 71 cases on Schellekens’ list. [FLM88, DGM90, Don93, DGM96, Lam11, LS12, LS15, Miy13, SS16, EMS15, Mö16, LS16b, LS16a, LL16] Theorem (Classification I) There is a strongly rational, holomorphic VOA V of central charge c = 24 with Lie algebra V1 if and only if V1 is isomorphic to one of the 71 Lie algebras on Schellekens’ list. Conjecture (Classification II) There are up to isomorphism exactly 71 strongly rational, holomorphic VOAs V of central charge c = 24. Uniqueness proved for all cases except V \. [DM04, LS16c, KLL16, LS15, LL16, EMS17, LS17, LS18] Sven Möller A Uniform Construction of the 71 holomorphic VOAs of c = 24 Schellekens’ List Orbifold Construction and Dimension Formulae A Generalised Deep-Hole Construction Schellekens’ List D. 0 24 36 48 60 72 84 96 108 120 132 144 156 168 192 216 240 264 288 300 312 336 360 384 408 456 552 624 744 1128 Rk. 0 0 4 C4,10 A6,7 A2,6 A2,2 6 D4,12 A1,2 F4,6 D5,8 A1,2A5,6 2 A1D6,5 B2,3 8 2 A1C5,3 A4,5 G2,2 3 A1A7,4 A1,2 A2B2 10 A3C7,2 A3 2 E 3,4 A1C3,2 6,4 D5,4 4 2 A2,2 3 A4,2 A3D7,3 A1 2 D4,4 C4,2 A G2 A A12 A6 A 2 B3 A F B2 5 B 12 1,4 2,3 5,3 4,2 8,2 4,2 6,2 E 12,2 6 4 A8,3 3 7,3 B2,2 D4,3 B3,2 E6,3G2 A4A9,2 2 2 B3 B E A2A5,2 A2D2 2 5 7,2 3 5,2 2 B4 D8,2 16 4 4 B2 B3 C4 A5C5 F4 B6 16 A1,2 A1A3,2 A7D9,2 B8E8,2 A A D6,2 E6,2 C10 B4D2 3 7,2 B C 2 C F 2 2 4,2 C 2 4 6 8 4 3 4 C4 4 2 A11D7 3 A5D4 A9D6 A17E7 E8 E6 24 24 12 8 6 4 2 2 3 2 3 2 24 C A1 A2 A3 A4 A6 A7D5 A8 A12 D8 A15D9 D12 A24 D24 6 4 4 2 D4 D6 E6 D10E7 D16E8 Sven Möller A Uniform Construction of the 71 holomorphic VOAs of c = 24 Schellekens’ List Orbifold Construction and Dimension Formulae A Generalised Deep-Hole Construction Cyclic Orbifold Construction Let V be a strongly rational, holomorphic VOA and let G = hgi with g ∈ Aut(V ) of order n and type n{0}, i.e. ρ(V (g)) ∈ (1/n)Z. The fusion algebra of V G is the group algebra of the finite quadratic space Zn × Zn with q((i, j)) = ij/n + Z. Assume that V G satisfies the positivity condition. Then the direct sum of irreducible V G -modules V orb(g) := M V (g i )G i∈Zn is again a strongly rational, holomorphic VOA. Sven Möller A Uniform Construction of the 71 holomorphic VOAs of c = 24 Schellekens’ List Orbifold Construction and Dimension Formulae A Generalised Deep-Hole Construction Dimension Formula I Conjecture (Dimension Formula I) In the orbifold situation with c = 24: φ((d, n/d)) n d X 24 + dim(V g ) − dim(V orb(g )) = 24 + R (d, n/d) d 1 1 d|n with 24 n−1 R = X X d dim(W (i,j)) φ(n) i,j,k k/n k=1 i,j∈Zn ij=k (mod n) and di,j,k ∈ Z>0. ∗ Proved if n prime, g(Γ0(n)\H ) = 0 [EMS17] or n = 14,... Sven Möller A Uniform Construction of the 71 holomorphic VOAs of c = 24 Schellekens’ List Orbifold Construction and Dimension Formulae A Generalised Deep-Hole Construction Dimension Formula II Conjecture (Dimension Formula II) In the orbifold situation with c = 24: orb(g) X gd ˜ dim(V1 ) = 24 + cd dim(V1 ) − R d|n P with the cd determined by d|n(t, d)cd = n/t for all t | n and 24 n−1 R˜ = X X d˜ dim(W (i,j)) φ(n) i,j,k k/n k=1 i,j∈Zn ij=k (mod n) ˜ ˜ with di,j,k ∈ Z≥0. Moreover, R ≥ 24 if n prime and g(Γ0(n)) 6= 0. ∗ Proved if n prime, g(Γ0(n)\H ) = 0 or n = 14,... Sven Möller A Uniform Construction of the 71 holomorphic VOAs of c = 24 Schellekens’ List Orbifold Construction and Dimension Formulae A Generalised Deep-Hole Construction Extremal Orbifolds Corollary (Upper Bound) In the orbifold situation with c = 24: orb(g) X gd dim(V1 ) ≤ 24 + cd dim(V1 ). d|n Definition We call g extremal if equality holds, i.e. if R˜ = 0. This is the case for example if ρ(V (g i )) ≥ 1 for all i ∈ Zn \{0} (equivalence for n prime and g(Γ0(n)) = 0). No extremal orbifolds for n prime and g(Γ0(n)) 6= 0. Sven Möller A Uniform Construction of the 71 holomorphic VOAs of c = 24 Schellekens’ List Orbifold Construction and Dimension Formulae A Generalised Deep-Hole Construction Deep-Hole Construction Construction of the 23 Niemeier lattices N(Φ) with Φ 6= ∅ from the deep holes of the Leech lattice Λ [CS99]. −(2πi)h Inner automorphism of VΛ of the form g = e 0 for ∼ ∨ h ∈ h = Λ ⊗Z C = (VΛ)1 a deep hole (of order n = h , the dual Coxeter number of Φ, i.e. nh ∈ Λ). Then ρ(VΛ(g)) = min hα, αi/2 = 1 α∈Λ+h orb(g) and g is extremal, i.e. dim((VΛ )1) = 24 + 24n. orb(g) ∼ Indeed, VΛ = VN(Φ) where Φ is the root system from the deep-hole construction. g h (Note that VΛ = VΛh with Λ := {α ∈ Λ | hα, hi ∈ Z}.) Sven Möller A Uniform Construction of the 71 holomorphic VOAs of c = 24 Schellekens’ List Orbifold Construction and Dimension Formulae A Generalised Deep-Hole Construction Generalised Deep-Hole Construction All finite-order automorphisms in Aut(VΛ) are conjugate to −(2πi)h0 ∼ g =ν ˆe for ν ∈ Aut(Λ) = Co0 and h ∈ πν (h) [DN99]. Q bt The dimension formula yields for ν with cycle shape t|m t orb(g) X ˜ dim(V1 ) = 24 + n bt /t − R. t|m Take ν from list [Hö17] of 11 (12) conjugacy classes hνi in O(Λ) arising from certain cyclic subgroups of the glue codes of the 23 Niemeier lattices with roots. g orb(g) Search for h ∈ πν (h) such that rk((VΛ )1) = rk((VΛ )1) and g is extremal, i.e. has large conformal weights i ρ(VΛ(g )) = ρνi + min hα, αi/2. α∈πνi (Λ)+ih orb(g) ∼ Expect that VΛ = U for all U on Schellekens’ list (observe that ∨ n = (hj /kj ) ord(ˆν) for simple components of U1). g ν,h (Note VΛν,h ⊆ VΛ with Λ := {α ∈ Λ | να = α, hα, hi ∈ Z}.) Sven Möller A Uniform Construction of the 71 holomorphic VOAs of c = 24 Schellekens’ List Orbifold Construction and Dimension Formulae A Generalised Deep-Hole Construction Automorphisms cycl. shp. orders n # orb. rk. orb. dim. A 124 1, 2,..., 25, 30, 46 24 24 24 + 24n B 1828 2, 4,..., 18, 22, 30 17 16 24 + 12n C 1636 3, 6, 9, 12, 18 6 12 24 + 8n D 212 2, 6, 10,..., 22, 46 9 12 24 + 6n E 142244 4, 8, 12, 16 5 10 24 + 6n F 1454 5, 10 2 8 24 + (24/5)n G 12223262 6, 12 2 8 24 + 4n H 1373 7 1 6 24 + (24/7)n I 12214182 8 1 6 24 + 3n J 2363 6, 18 2 6 24 + 2n K 22102 10 1 4 24 + (6/5)n L 1−24224 2 1 0 24 − 12n Sven Möller A Uniform Construction of the 71 holomorphic VOAs of c = 24 Schellekens’ List Orbifold Construction and Dimension Formulae A Generalised Deep-Hole Construction Results and Outlook Have candidate automorphism g for each of the 71 cases. Status: Proof of orbifold construction from the Leech lattice for 63 of the 71 cases. Application: Uniform proof of the uniqueness conjecture via inverse orbifolds.