Continuous Testing: Transforming Testing for Agile and Devops Table of Contents

Total Page:16

File Type:pdf, Size:1020Kb

Continuous Testing: Transforming Testing for Agile and Devops Table of Contents Continuous Testing: Transforming Testing for Agile and DevOps Table of Contents Introduction 3 Continuous Testing vs Test Automation 4 Traditional Testing Doesn’t Work 4 What Is Continuous Testing? 5 Comparing Continuous Testing with Test Automation 6 Risk 6 Breadth 7 Time 7 Continuous Testing > Test Automation 8 Continuous Testing and Agile + DevOps Success 9 Key Findings 9 Key Recommendations 10 Additional Research Findings 10 The Top Continuous Testing Roadblocks 11 Time and resources 11 Complexity 11 Results 12 The Path to Continuous Testing 13 Conclusion 14 www.tricentis.com © 2019 Tricentis GmbH. All Rights Reserved Transforming Testing for Agile and DevOps | Page 3 Let’s face it. Businesses don’t want—or need—perfect software. They want This guide explores what Continuous Testing really involves, to deliver new, business-differentiating software as soon as presents new research on why it’s so critical for Agile + DevOps, possible. To enable this, we need fast feedback on whether the and offers tips to help you make it a reality in your own team and latest innovations will work as expected or crash and burn in organization. production. We also need to know if these changes somehow broke the core functionality that the customer base—and thus the business—depends upon. This is where Continuous Testing comes in. There are four main sections Continuous Testing is the process of executing automated tests as part of the software delivery pipeline in order to ob- tain feedback on the business risks associated with a soft- ware release as rapidly as possiable. Continuous Testing does Continuous Testing vs Test Automation not require any specific type of testing approach (shift left, shift right…) or testing tools. However, it does require that: • Actionable feedback is delivered to the right stakeholder at the right time The Top Roadblocks to Continuous Testing • Testing occurs across all phases of the software delivery pipeline Test automation is essential for Continuous Testing, but it’s not sufficient. Test automation is designed to produce a set of Continuous Testing and Agile + DevOps Success pass/fail data points correlated to user stories or application requirements. Continuous Testing, on the other hand, focuses on business risk and providing insight on whether the software can be released. Beyond test automation, Continuous Testing also involves practices such as aligning testing with your busi- The Path to Continuous Testing ness risk, applying service virtualization and stateful test data management to stabilize testing for Continuous Integration, and performing exploratory testing to expose “big block” issues early in each iteration. It’s not simply a matter of more tools, or differ- ent tools. It requires a deeper transformation across people and processes as well as technologies. www.tricentis.com © 2019 Tricentis GmbH. All Rights Reserved Transforming Testing for Agile and DevOps | Page 4 Continuous Testing vs. Test Automation Like Lucy and Ethel struggling to keep pace at the chocolate fac- As expectations associated with test are changing, legacy test- tory, many software testers have been scrambling to keep pace ing platforms aren’t keeping up. Legacy testing platforms take with accelerated processes—then along comes the supervisor a “heavy” approach to testing. They rely on brittle scripts, de- proclaiming, “You’re doing splendidly…Speed it up!” liver slow end-to-end regression test execution, and produce an overwhelming level of false positives. As a result, they’ve achieved limited success with test automation. The overall test automation rate is 18%, on average—8% for enterprises. In a polling question asked at industry webinars and trade shows, respondents overwhelming reported that the results of test au- tomation to date have been “So-So.” Traditional Testing Doesn’t Work Recent changes across the industry are demanding more from testing while making test automation even more difficult to achieve. There are several reasons for this: • Application architectures are • Thanks to Agile, DevOps, and • Now that software is the primary increasingly more distributed and Continuous Delivery, many appli- interface to the business, an appli- complex, embracing cloud, APIs, cations are now released anywhere cation failure is a business failure. microservices, etc. and creating from every two weeks to thousands This is true even for a seemingly virtually endless combinations of of time a day. As a result, the time minor glitch that could have severe different protocols and technolo- available for test design, mainte- repercussions if it impacts the user gies within a single business trans- nance, and especially execution experience. As a result, applica- action. decreases dramatically. tion-related risks have become a primary concern for even non-tech- nical business leaders. Given that software testers are facing increasingly complex ap- to transform the testing process as deliberately and markedly plications, they are expected to deliver trustworthy go/no-go as we’ve transformed the development process. This requires decisions at the new speed of modern business. More of the more effective test automation…and more. This requires a dif- same traditional testing approaches won’t get us there. We need ferent approach called Continuous Testing. www.tricentis.com © 2019 Tricentis GmbH. All Rights Reserved Transforming Testing for Agile and DevOps | Page 5 What Is Continuous Testing? Continuous Testing is the process of executing automated tests Test automation is designed to produce a set of pass/fail data as part of the software delivery pipeline in order to obtain feed- points correlated to user stories or application requirements. back on the business risks associated with a software release Continuous Testing, on the other hand, focuses on business risk as rapidly as possible. Continuous Testing does not require any and providing insight on whether the software can be released. specific type of testing approach (shift left, shift right…) or testing To achieve this shift, we need to stop asking “are we done test- tools. However, it does require that: ing” and instead concentrate on “does the release candidate have an acceptable level of business risk?” • Actionable feedback is delivered to the right stakeholder at the right time • Testing occurs across all phases of the software delivery pipeline Here are 5 key attributes to Continuous Testing Assesses business risk coverage Requires a stable test environment is its primary goal to be available on demand Seamlessly integrates into the software Delivers actionable feedback appropriate delivery pipeline and DevOps toolchain for each stage of the delivery pipeline Establishes a safety net that helps the team protect the user experience www.tricentis.com © 2019 Tricentis GmbH. All Rights Reserved Transforming Testing for Agile and DevOps | Page 6 Comparing Continuous Testing with Test Automation The main differences between Continuous Testing and test automation can be grouped into three broad categories: Risk Breadth Time If your test cases weren’t built with business risk in mind, your Risk test results won’t provide the insight needed to assess risks. Most tests are designed to provide low-level details on whether user stories are correctly implementing the requirements—not Businesses today have not only exposed many of their inter- high-level assessments of whether a release candidate is too nal applications to the end user, they also have developed vast risky to release. Would you automatically stop a release from amounts of additional software that extends and complements taking place based on test results? If not, your tests aren’t prop- those applications. For example, airlines have gone far beyond erly aligned with business risks. exposing their once-internal booking systems. They now let customers plan and book complete vacations, including hotels, To be clear: We’re not suggesting that low-granularity tests aren’t rental cars and activities. Exposing more and more innovative valuable; we’re stating that more is needed to stop high-risk can- functionality to the user is now a competitive differentiator—but didates from going out into the wild. it also increases the number, variety and complexity of potential failure points. Here are some ways that testers can address risk: • Understand the risks associated with the complete applica- Large-scale “software fails” have such severe business reper- tion portfolio cussions that application-related risks are now prominent com- • Map risks to application components and requirements ponents of a business’ public financial filing. Given that notable (which are then mapped to tests) software failures resulted in an average -4.06 percent decline in • Use a test suite that achieves the highest possible risk cov- stock price (which equates to an average of negative $2.55 bil- erage with the least amount of test cases lion loss of market capitalization), it’s not surprising that business • Always report status that shows risk exposure from busi- leaders are taking note—and expecting IT leaders to take action. ness, technical, performance, and compliance perspectives www.tricentis.com © 2019 Tricentis GmbH. All Rights Reserved Transforming Testing for Agile and DevOps | Page 7 Breadth Even if a business manages to steer clear of large-scale software Here are some ways to address testing breadth: fails that make the headlines, even seemingly minor glitches can • Define and execute complete end-to-end tests that exer- still
Recommended publications
  • Core Elements of Continuous Testing
    WHITE PAPER CORE ELEMENTS OF CONTINUOUS TESTING Today’s modern development disciplines -- whether Agile, Continuous Integration (CI) or Continuous Delivery (CD) -- have completely transformed how teams develop and deliver applications. Companies that need to compete in today’s fast-paced digital economy must also transform how they test. Successful teams know the secret sauce to delivering high quality digital experiences fast is continuous testing. This paper will define continuous testing, explain what it is, why it’s important, and the core elements and tactical changes development and QA teams need to make in order to succeed at this emerging practice. TABLE OF CONTENTS 3 What is Continuous Testing? 6 Tactical Engineering Considerations 3 Why Continuous Testing? 7 Benefits of Continuous Testing 4 Core Elements of Continuous Testing WHAT IS CONTINUOUS TESTING? Continuous testing is the practice of executing automated tests throughout the software development cycle. It’s more than just automated testing; it’s applying the right level of automation at each stage in the development process. Unlike legacy testing methods that occur at the end of the development cycle, continuous testing occurs at multiple stages, including development, integration, pre-release, and in production. Continuous testing ensures that bugs are caught and fixed far earlier in the development process, improving overall quality while saving significant time and money. WHY CONTINUOUS TESTING? Continuous testing is a critical requirement for organizations that are shifting left towards CI or CD, both modern development practices that ensure faster time to market. When automated testing is coupled with a CI server, tests can instantly be kicked off with every build, and alerts with passing or failing test results can be delivered directly to the development team in real time.
    [Show full text]
  • Smoke Testing
    International Journal of Scientific and Research Publications, Volume 4, Issue 2, February 2014 1 ISSN 2250-3153 Smoke Testing Vinod Kumar Chauhan Quality Assurance (QA), Impetus InfoTech Pvt. Ltd. (India) Abstract- Smoke testing is an end-to-end testing which determine the stability of new build by checking the crucial functionality of the application under test and used as criteria of accepting the new build for detailed testing. Index Terms- Software testing, acceptance testing, agile, build, regression testing, sanity testing I. INTRODUCTION The purpose of this research paper is to give details of smoke testing from the industry practices. II. SMOKE TESTING The purpose of smoke testing is to determine whether the new software build is stable or not so that the build could be used for detailed testing by the QA team and further work by the development team. If the build is stable i.e. the smoke test passes then build could be used by the QA and development team. On the stable build QA team performs functional testing for the newly added features/functionality and then performs regression testing depending upon the situation. But if the build is not stable i.e. the smoke fails then the build is rejected to the development team to fix the build issues and create a new build. Smoke Testing is generally done by the QA team but in certain situations, can be done by the development team. In that case the development team checks the stability of the build and deploy to QA only if the build is stable. In other case, whenever there is new build deployment to the QA environment then the team first performs the smoke test on the build and depending upon the results of smoke the decision to accept or reject the build is taken.
    [Show full text]
  • Types of Software Testing
    Types of Software Testing We would be glad to have feedback from you. Drop us a line, whether it is a comment, a question, a work proposition or just a hello. You can use either the form below or the contact details on the rightt. Contact details [email protected] +91 811 386 5000 1 Software testing is the way of assessing a software product to distinguish contrasts between given information and expected result. Additionally, to evaluate the characteristic of a product. The testing process evaluates the quality of the software. You know what testing does. No need to explain further. But, are you aware of types of testing. It’s indeed a sea. But before we get to the types, let’s have a look at the standards that needs to be maintained. Standards of Testing The entire test should meet the user prerequisites. Exhaustive testing isn’t conceivable. As we require the ideal quantity of testing in view of the risk evaluation of the application. The entire test to be directed ought to be arranged before executing it. It follows 80/20 rule which expresses that 80% of defects originates from 20% of program parts. Start testing with little parts and extend it to broad components. Software testers know about the different sorts of Software Testing. In this article, we have incorporated majorly all types of software testing which testers, developers, and QA reams more often use in their everyday testing life. Let’s understand them!!! Black box Testing The black box testing is a category of strategy that disregards the interior component of the framework and spotlights on the output created against any input and performance of the system.
    [Show full text]
  • Smoke Testing What Is Smoke Testing?
    Smoke Testing What is Smoke Testing? Smoke testing is the initial testing process exercised to check whether the software under test is ready/stable for further testing. The term ‘Smoke Testing’ is came from the hardware testing, in the hardware testing initial pass is done to check if it did not catch the fire or smoked in the initial switch on.Prior to start Smoke testing few test cases need to created once to use for smoke testing. These test cases are executed prior to start actual testing to checkcritical functionalities of the program is working fine. This set of test cases written such a way that all functionality is verified but not in deep. The objective is not to perform exhaustive testing, the tester need check the navigation’s & adding simple things, tester needs to ask simple questions “Can tester able to access software application?”, “Does user navigates from one window to other?”, “Check that the GUI is responsive” etc. Here are graphical representation of Smoke testing & Sanity testing in software testing: Smoke Sanity Testing Diagram The test cases can be executed manually or automated; this depends upon the project requirements. In this types of testing mainly focus on the important functionality of application, tester do not care about detailed testing of each software component, this can be cover in the further testing of application. The Smoke testing is typically executed by testers after every build is received for checking the build is in testable condition. This type of testing is applicable in the Integration Testing, System Testing and Acceptance Testing levels.
    [Show full text]
  • Drive Continuous Delivery with Continuous Testing
    I Don’t Believe Your Company Is Agile! Alex Martins CTO Continuous Testing CA Technologies October 2017 1 Why Many Companies Think They’re Agile… They moved some Dev projects from waterfall to agile They’re having daily standups They have a scrum master Product owner is part of the team They are all talking and walking agile… And are talking about Continuous Delivery BUT… QA is STILL a Bottleneck… Even in DevOps Shops A 2017 survey of self- …of delays were occurring at proclaimed DevOps 63% the Test/QA stage of the practitioners found that … cycle. “Where are the main hold-ups in the software production process?” 63% 32% 30% 16% 22% 21% 23% http://www.computing.co.uk/digital_assets/634fe325-aa28-41d5-8676-855b06567fe2/CTG-DevOps-Review-2017.pdf 3 Challenges to Achieving Continuous Delivery & Testing IDEA Requirements 64% of total defect cost originate in the requirements analysis and design phase1. ? ? of developers time is spent 80% of teams experience delays in development and QA Development 50% 3 finding and fixing defects2 due to unavailable dependencies X X Security 70x required manual pen 30% of teams only security scan 50% more time spent on security test scan cost vs. automation10 once per year9 defects in lower-performing teams8 X X X 70% of all 63% of testers admit they 50% of time 79% of teams face prohibitive QA / Testing testing is still can’t test across all the different spent looking for restrictions, time limits or access manual4 devices and OS versions5 test data6 fees on needed 3rd party services3 ! Release 57% are dissatisfied with the time it takes to deploy new features7 ! ! Ave.
    [Show full text]
  • Your Continuous Testing with Spirent's Automation Platforms
    STREAMLINE Your Continuous Testing With Spirent’s Automation Platforms DE RELE VE AS LO E P E T A ING T R G ES E T T S N U I O U IN T N E CO STAG Table of Contents Agile 3 What is Continuous Test (CT)? 4 What Hinders CT Implementation? 5 The Chasm 6 The Bridge 7 Spirent Velocity Framework 8 Lab as a Service (LaaS) 9 Test as a Service (TaaS) 10 CT Implementation Best Practices 11 Summary 12 2 of 12 Agile software development practices gained momentum in the late 90s. Agile emphasizes close collaboration between business stakeholders, the development team, and QA. This enabled faster software delivery, better quality and improved customer satisfaction. By employing DevOps practices, the pace and benefits are amplified. 3 of 12 What is Continuous Test (CT)? Continuous Test (CT) enables CT haed Cotuous terato ad Deery ee network testing to be more effectively performed by DEVELOP ITEATE STAGE ELEASE development teams by enabling them to take advantage of the QA team’s knowledge of real world customer use cases and environments. This is known as “shift left” because testing is moved earlier in the development cycle. With “shift left” tests are run as early as possible to accelerate understanding of AUTOMATE TESTS ORCHESTRATE TEST ENVIRONMENTSEXECUTE TESTS EARLIER problem areas in the code and where development attention is required. Why Do You Need CT? The combination of earlier and faster testing shortens time to release while improving quality and customer satisfaction. 4 of 12 What Hinders CT Implementation? Deficient or non existent Insufficient test Lack of test results Inadequate understanding of tools for creating resources for timely analysis tools hinder customer environments and automated tests test execution assessment of test results use cases by developers EW SOFTWAE DEVELOP ITEATE STAGE ELEASE SOFTWAE BILD ELEASE The promise of DevOps can’t be fully realized until Continuous Testing (CT) is factored in.
    [Show full text]
  • Opportunities and Open Problems for Static and Dynamic Program Analysis Mark Harman∗, Peter O’Hearn∗ ∗Facebook London and University College London, UK
    1 From Start-ups to Scale-ups: Opportunities and Open Problems for Static and Dynamic Program Analysis Mark Harman∗, Peter O’Hearn∗ ∗Facebook London and University College London, UK Abstract—This paper1 describes some of the challenges and research questions that target the most productive intersection opportunities when deploying static and dynamic analysis at we have yet witnessed: that between exciting, intellectually scale, drawing on the authors’ experience with the Infer and challenging science, and real-world deployment impact. Sapienz Technologies at Facebook, each of which started life as a research-led start-up that was subsequently deployed at scale, Many industrialists have perhaps tended to regard it unlikely impacting billions of people worldwide. that much academic work will prove relevant to their most The paper identifies open problems that have yet to receive pressing industrial concerns. On the other hand, it is not significant attention from the scientific community, yet which uncommon for academic and scientific researchers to believe have potential for profound real world impact, formulating these that most of the problems faced by industrialists are either as research questions that, we believe, are ripe for exploration and that would make excellent topics for research projects. boring, tedious or scientifically uninteresting. This sociological phenomenon has led to a great deal of miscommunication between the academic and industrial sectors. I. INTRODUCTION We hope that we can make a small contribution by focusing on the intersection of challenging and interesting scientific How do we transition research on static and dynamic problems with pressing industrial deployment needs. Our aim analysis techniques from the testing and verification research is to move the debate beyond relatively unhelpful observations communities to industrial practice? Many have asked this we have typically encountered in, for example, conference question, and others related to it.
    [Show full text]
  • Michael Bolton in NZ Pinheads, from the Testtoolbox, Kiwi Test Teams & More!
    NZTester The Quarterly Magazine for the New Zealand Software Testing Community and Supporters ISSUE 4 JUL - SEP 2013 FREE In this issue: Interview with Bryce Day of Catch Testing at ikeGPS Five Behaviours of a Highly Effective Time Lord Tester On the Road Again Hiring Testers Michael Bolton in NZ Pinheads, From the TestToolbox, Kiwi Test Teams & more! NZTester Magazine Editor: Geoff Horne [email protected] [email protected] ph. 021 634 900 P O Box 48-018 Blockhouse Bay Auckland 0600 New Zealand www.nztester.co.nz Advertising Enquiries: [email protected] Disclaimer: Articles and advertisements contained in NZTester Magazine are published in good faith and although provided by people who are experts in their fields, NZTester make no guarantees or representations of any kind concerning the accuracy or suitability of the information contained within or the suitability of products and services advertised for any and all specific applications and uses. All such information is provided “as is” and with specific disclaimer of any warranties of merchantability, fitness for purpose, title and/or non-infringement. The opinions and writings of all authors and contributors to NZTester are merely an expression of the author’s own thoughts, knowledge or information that they have gathered for publication. NZTester does not endorse such authors, necessarily agree with opinions and views expressed nor represents that writings are accurate or suitable for any purpose whatsoever. As a reader of this magazine you disclaim and hold NZTester, its employees and agents and Geoff Horne, its owner, editor and publisher, harmless of all content contained in this magazine as to its warranty of merchantability, fitness for purpose, title and/or non-infringement.
    [Show full text]
  • Continuous Testing Report 2019
    Continuous Testing Report In association with 2 Continuous Testing Report Contents Introduction 4 Executive summary 6 Current trends in continuous testing Test design 9 Functional and performance testing 13 Test data management 17 Test environment management 21 Test orchestration in the agile enterprise 24 Continuous testing: the road ahead 27 About the study 31 About the sponsors 37 3 Introduction Welcome dear readers. dependency on IT solutions today, with the integration of front-office and consumer-facing apps with back- Quality and testing approaches, methods, and office core systems, the leveraging of cloud and expertise have undergone radical changes over the microservices and the integration and use of IoT. And, last few years. Every organization today aspires on top of that, AI is emerging to make these solutions to deliver faster and more valuable IT solutions to autonomous and self learning. business and customers. To do this, they have been leveraging agile and DevOps methodologies and All this technology is delivered by different teams, using smarter automation technologies and as-a- many of which may not even be part of a single Service solutions to deliver IT faster and with greater company. flexibility. As we scramble to deliver innovative solutions for the At the same time, the IT landscape has also been newer, more complex IT landscape, there is, of course, growing in complexity. There is an increased a risk of failure. While some failures are inevitable and often provide a valuable learning opportunity (given a quick feedback loop), there are others that we must prevent from happening. Failures in core systems that seriously disrupt the business operations of an enterprise, failures that seriously impact a large number of clients and therefore jeopardize an organization’s reliability and brand perception, or failures in systems that cannot easily be rolled back all demand good testing of these systems before being deployed.
    [Show full text]
  • Exploring Languages with Interpreters and Functional Programming Chapter 11
    Exploring Languages with Interpreters and Functional Programming Chapter 11 H. Conrad Cunningham 24 January 2019 Contents 11 Software Testing Concepts 2 11.1 Chapter Introduction . .2 11.2 Software Requirements Specification . .2 11.3 What is Software Testing? . .3 11.4 Goals of Testing . .3 11.5 Dimensions of Testing . .3 11.5.1 Testing levels . .4 11.5.2 Testing methods . .6 11.5.2.1 Black-box testing . .6 11.5.2.2 White-box testing . .8 11.5.2.3 Gray-box testing . .9 11.5.2.4 Ad hoc testing . .9 11.5.3 Testing types . .9 11.5.4 Combining levels, methods, and types . 10 11.6 Aside: Test-Driven Development . 10 11.7 Principles for Test Automation . 12 11.8 What Next? . 15 11.9 Exercises . 15 11.10Acknowledgements . 15 11.11References . 16 11.12Terms and Concepts . 17 Copyright (C) 2018, H. Conrad Cunningham Professor of Computer and Information Science University of Mississippi 211 Weir Hall P.O. Box 1848 University, MS 38677 1 (662) 915-5358 Browser Advisory: The HTML version of this textbook requires a browser that supports the display of MathML. A good choice as of October 2018 is a recent version of Firefox from Mozilla. 2 11 Software Testing Concepts 11.1 Chapter Introduction The goal of this chapter is to survey the important concepts, terminology, and techniques of software testing in general. The next chapter illustrates these techniques by manually constructing test scripts for Haskell functions and modules. 11.2 Software Requirements Specification The purpose of a software development project is to meet particular needs and expectations of the project’s stakeholders.
    [Show full text]
  • Continuous Quality and Testing to Accelerate Application Development
    Continuous Quality and Testing to Accelerate Application Development How to assess your current testing maturity level and practice continuous testing for DevOps Continuous Quality and Testing to Accelerate Application Development // 1 Table of Contents 03 Introduction 04 Why Is Continuous Quality and Testing Maturity Important to DevOps? 05 Continuous Testing Engineers Quality into DevOps 07 Best Practices for Well- Engineered Continuous Testing 08 Continuous Testing Maturity Levels Level 1: Chaos Level 2: Continuous Integration Level 3: Continuous Flow Level 4: Continuous Feedback Level 5: Continuous Improvement 12 Continuous Testing Maturity Assessment 13 How to Get Started with DevOps Testing? 14 Continuous Testing in the Cloud Choosing the right tools for Continuous Testing On-demand Development and Testing Environments with Infrastructure as Code The Right Tests at the Right Time 20 Get Started 20 Conclusion 21 About AWS Marketplace and DevOps Institute 21 Contributors Introduction A successful DevOps implementation reduces the bottlenecks related to testing. These bottlenecks include finding and setting up test environments, test configurations, and test results implementation. These issues are not industry specific. They can be experienced in manufacturing, service businesses, and governments alike. They can be reduced by having a thorough understanding and a disciplined, mature implementation of Continuous Testing and related recommended engineering practices. The best place to start addressing these challenges is having a good understanding of what Continuous Testing is. Marc Hornbeek, the author of Engineering DevOps, describes it as: “A quality assessment strategy in which most tests are automated and integrated as a core and essential part of DevOps. Continuous Testing is much more than simply ‘automating tests.’” In this whitepaper, we’ll address the best practices you can adopt for implementing Continuous Quality and Testing on the AWS Cloud environment in the context of the DevOps model.
    [Show full text]
  • Experience and Exploring in Software Testing
    Ohjelmistotestauksen Teemapäivä, TTY, 8.6.2010 How Do Testers Do It? Exploratory and Experience Based Testing Juha Itkonen Software Business and Engineering Institute (SoberIT) [email protected] +358 50 5771688 Contents • Introduction to experience based and exploratory testing – Intelligent manual testing • Overall strategies and detailed techniques • Selection of exploratory tester’s pitfalls Juha Itkonen - SoberIT 2010 2 Manual Testing • Testing that is performed by human testers Research has shown: 1. Individual differences in • Stereotype of manual testing testing are high 2. Test case design – Executing detailed pre-designed test cases techniques alone do not – Mechanical step-by-step following the explain the results instructions – Treated as work that anybody can do In practice, it’s clear that some testers are better than others in manual testing and more effective at revealing defects... Juha Itkonen - SoberIT 2010 3 My viewpoint: Experience Based – Intelligent – Manual Testing • Manual testing that builds on the tester’s experience – knowledge and skills • Some aspects of testing rely on tester’s skills – during testing – e.g., input values, expected results, or interactions • Testers are assumed to know what they are doing – Testing does not mean executing detailed scripts • Focus on the actual testing work in practice – What happens during testing activities? – How are defects actually found? – Experience-based and exploratory aspects of software testing Juha Itkonen - SoberIT 2010 4 Exploratory Testing is creative testing without predefined test cases Based on knowledge and skills of the tester 1. Tests are not defined in advance – Exploring with a general mission – without specific step-by-step instructions on how to accomplish the mission 2.
    [Show full text]