Deep Brain Stimulation Macroelectrodes Compared To

Total Page:16

File Type:pdf, Size:1020Kb

Deep Brain Stimulation Macroelectrodes Compared To Deep brain stimulation macroelectrodes compared to multiple microelectrodes in rat hippocampus Sharanya Arcot Desai, Georgia Institute of Technology Claire-Anne Gutekunst, Emory University Steve Potter, Emory University Robert Gross, Emory University Journal Title: Frontiers in Neuroengineering Volume: Volume 7, Number JUN Publisher: Frontiers Media | 2014-06-12, Pages 16-16 Type of Work: Article | Final Publisher PDF Publisher DOI: 10.3389/fneng.2014.00016 Permanent URL: https://pid.emory.edu/ark:/25593/rsb7b Final published version: http://dx.doi.org/10.3389/fneng.2014.00016 Copyright information: © 2014 Arcot Desai, Gutekunst, Potter and Gross. This is an Open Access work distributed under the terms of the Creative Commons Attribution 3.0 Unported License (http://creativecommons.org/licenses/by/3.0/). Accessed September 25, 2021 7:22 PM EDT ORIGINAL RESEARCH ARTICLE published: 12 June 2014 doi: 10.3389/fneng.2014.00016 Deep brain stimulation macroelectrodes compared to multiple microelectrodes in rat hippocampus Sharanya Arcot Desai 1,2 , Claire-Anne Gutekunst 3 , Steve M. Potter 1,2 *† and Robert E. Gross 2,3 *† 1 Laboratory for Neuroengineering, Georgia Institute of Technology, Atlanta, GA, USA 2 The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA 3 Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA Edited by: Microelectrode arrays (wire diameter <50 μm) were compared to traditional macroelec- Laura Ballerini, University of Trieste, trodes for deep brain stimulation (DBS). Understanding the neuronal activation volume may Italy help solve some of the mysteries associated with DBS, e.g., its mechanisms of action. We Reviewed by: used c-fos immunohistochemistry to investigate neuronal activation in the rat hippocampus Luca Berdondini, Italian Institute of Technology, Italy caused by multi-micro- and macroelectrode stimulation. At ± 1V stimulation at 25 Hz, Vassiliy Tsytsarev, University of microelectrodes (33 μm diameter) had a radius of activation of 100 μm, which is 50% of Maryland School of Medicine, USA that seen with 150 μm diameter macroelectrode stimulation. Macroelectrodes activated *Correspondence: about 5.8 times more neurons than a single microelectrode, but displaced ∼20 times Steve M. Potter, Laboratory for more neural tissue. The sphere of influence of stimulating electrodes can be significantly Neuroengineering, Georgia Institute of Technology, 313 Ferst Drive, increased by reducing their impedance. By ultrasonic electroplating (sonicoplating) the Atlanta, GA 30332, USA microelectrodes with platinum to increase their surface area and reduce their impedance e-mail: [email protected]; by an order of magnitude, the radius of activation increased by 50 μm and more than Robert E. Gross, Department of Neurosurgery, Emory University twice the number of neurons were activated within this increased radius compared to School of Medicine, Suite 6329, unplated microelectrodes. We suggest that a new approach to DBS, one that uses multiple 101 Woodruff Circle, Atlanta, GA high-surface area microelectrodes, may be more therapeutically effective due to increased 30322, USA neuronal activation. e-mail: [email protected] †Steve M. Potter and Robert E. Gross Keywords: deep brain stimulation, neuronal activation, immediate early gene (IEG), multielectrode array (MEA), have contributed equally to this work. macroelectrodes, hippocampus, electroplating INTRODUCTION stimulation not possible with a single macroelectrode. Third, While beneficial for neuropsychiatric disorders spanning a wide tissue damage by MEAs may be less than that caused by macro- range (e.g., Parkinson’s disease, depression, epilepsy), much electrodes. The first goal of this study was to compare the remains to be learned about the mechanisms of action of deep volume of tissue activated by multimicroelectrode arrays and brain stimulation (DBS; Kumar et al., 1998; McIntyre et al., single macroelectrodes. 2004b; Mayberg et al., 2005; Greenberg et al., 2006; Perlmutter Reducing the impedance of microelectrodes provides several and Mink, 2006; Volkmann et al., 2006; Benabid et al., 2009). advantages for neural recording, such as reduced stimulation arti- In particular, a greater understanding the spatial extent of fact and reduced thermal noise leading to improved signal to noise influence of electrical stimulation and the factors that deter- ratio (Ferguson et al., 2009; Desai et al., 2010). For microstimula- mine it is required to optimize the effectiveness and efficiency tion, stimulation amplitude is limited to 1 V due to the possibility of DBS. of water hydrolysis, which therefore limits current density and thus All clinical DBS electrodes are single macroelectrodes, cylindri- stimulation effectiveness (Rozman et al., 2000). Thus, impedance cal in shape with diameters ∼1 mm and surface areas ∼6mm2, reduction allows for achieving higher currents in both voltage and although arrays of multiple smaller electrodes have been proposed. current-controlled applications at the near-maximum of safe volt- However, stimulation through multielectrode arrays (MEA) of ages. A second goal of this study was to compare volume of tissue microelectrodes (i.e., microstimulation; Desai et al., 2010)may activated with untreated microelectrodes to that attained in elec- have advantages when compared to single macroelectrode stim- troplated microelectrodes that are coated to reduce impedance ulation (i.e., macrostimulation) for several reasons, especially (Desai et al., 2010). when stimulating complex structures like the hippocampus, an Several simulation studies by Grill (1999), McIntyre et al. important locus in the etiology of temporal lobe epilepsy (Velasco (2004a), Wei and Grill (2009), Chaturvedi et al. (2010), But- et al., 2001, 2007). First, microelectrodes with diameters of 10s son et al. (2011), and others have estimated the electrical fields of microns can be specifically targeted toward particular cell lay- and activating functions surrounding electrode tracks, but this ers, which may not be possible with a macroelectrode whose needs validation in living neuronal tissue. An excellent study diameter (e.g., 1.27 mm) is bigger than these targets. Second, by Histed et al. (2009) used 2-photon calcium imaging to study one or a few microelectrodes within a MEA may be stimu- patterns of cell activation using microelectrodes in the superfi- lated at a time, which would enable spatiotemporal patterns of cial layers of cortex. Although this technique has great temporal Frontiers in Neuroengineering www.frontiersin.org June 2014 | Volume 7 | Article 16 | 1 Arcot Desai et al. DBS macro vs. microelectrodes and spatial resolution, it cannot be used in deep brain struc- diameter, Plastics One, VA, USA) aimed toward the CA3 cell tures like thalamus or hippocampus because brain tissue strongly layer of the dorsal hippocampus. Rats in groups 2 and 3 were scatters light and imaging becomes impossible beyond a depth implanted with a microelectrode array (Tucker-Davis Technolo- of1mm(Helmchen and Denk, 2005). The results from the gies, FL, USA) with 16 33-μm diameter electrodes arranged in Histed et al. (2009) study will certainly serve as a guiding point tworowsof8(Figure 1). Row 1 was targeted toward the CA1 for understanding electrical stimulation interaction with neu- cell layer and row 2 was targeted toward the CA3 cell layer of ronal populations, but cannot be directly translated to other the dorsal hippocampus. Whereas group 2 had unplated micro- brain regions which have different cytoarchitecture and projection electrodes implanted, the microelectrodes in group 3 had their patterns. impedances reduced by an order of magnitude by sonicoplating c-fos is an immediate early gene which has been used exten- with platinum black (Desai et al., 2010). Sonicoplating (electro- sively as a metabolic marker to study seizure pathways and plating under ultrasonic vibrations) significantly improves the neuroanatomical connections, and to analyze neuronal popula- durability of platinum black on the base metal. Details on this tions activated by a wide range of stimuli including neuroactive procedure and its effect on recording and stimulation perfor- drugs and brain stimulation techniques (Dragunow and Faull, mance of the microelectrode in chronic implants can be found 1989; Saryyeva et al., 2011). Transient induction of c-fos mRNA elsewhere (Desai et al., 2010). Shown in Figure 2 are impedance and protein has been reported in several studies following neu- plots of a macroelectrode and microelectrode array before and ronal excitation (Morgan and Curran, 1991). The mRNA reaches after electroplating. Since microelectrodes in the MEA were con- peak values at 30–45 min post-stimulation and decays with a half- nected in parallel while being stimulated, it was necessary to life of 12 min. c-fos protein synthesis follows mRNA expression make sure that the combined impedance of 15 microelectrodes and it is turned over with a half-life of about2h(Muller et al., (with and without electroplating) did not fall below 200 1984). Given these long activation and decay time scales, this tech- since the maximum current delivering capacity of our setup is nique lacks temporal resolution. However, it provides single-cell ±5 mA and we used ±1V voltage controlled stimulation in our spatial resolution and can be used to visualize and count indi- study. vidual neurons activated by electrical stimulation as shown in Saryyeva et al.
Recommended publications
  • Electrophysiological Phenotype Characterization of Human Ipsc-Derived Neuronal Cell Lines by Means of High-Density Microelectrode Arrays
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.02.271403; this version posted September 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Electrophysiological Phenotype Characterization of Human iPSC-Derived Neuronal Cell Lines by Means of High-Density Microelectrode Arrays Silvia Ronchi1*, Alessio Paolo Buccino1, Gustavo Prack1, Sreedhar Saseendran Kumar1, Manuel Schröter1, Michele Fiscella1,2*† and Andreas Hierlemann1† 1Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland 2MaxWell Biosystems AG, Albisriederstrasse 253, 8047 Zürich, Switzerland *Corresponding authors ([email protected], [email protected]) †Authors share senior authorship Keywords: induced pluripotent stem cells, high-density microelectrode arrays, electrophysiology Abstract Recent advances in the field of cellular reprogramming have opened a route to study the fundamental mechanisms underlying common neurological disorders. High-density microelectrode-arrays (HD-MEAs) provide unprecedented means to study neuronal physiology at different scales, ranging from network through single-neuron to subcellular features. In this work, we used HD-MEAs in vitro to characterize and compare human induced-pluripotent-stem-cell (iPSC)-derived dopaminergic and motor neurons, including isogenic neuronal lines modeling Parkinson’s disease and amyotrophic lateral sclerosis. We established reproducible electrophysiological network, single-cell and subcellular metrics, which were used for phenotype characterization and drug testing. Metrics such as burst shapes and axonal velocity enabled the distinction of healthy and diseased neurons. The HD-MEA metrics could also be used to detect the effects of dosing the drug retigabine to human motor neurons.
    [Show full text]
  • Multiwell Microelectrode Array Technology for the Evaluation of Human Ipsc- Derived Neuron and Cardiomyocyte Development and Maturation
    . Multiwell Microelectrode Array Technology for the Evaluation of Human iPSC- Derived Neuron and Cardiomyocyte Development and Maturation Clements, M.; Hayes, H.B.; Nicolini, A.M.; Arrowood, C.A; Clements, I.P.; Millard, D.C. Axion BioSystems, Atlanta, GA Multiwell MEA Technology MEA Assay with Neurons MEA Assay with Cardiomyocytes Why use microelectrode arrays? Neural Electrophysiology Phenotypes Cardiac Electrophysiology Phenotypes (a) (c) The flexibility and accessibility of induced pluripotent AxISTM control and analysis software provides The need for simple, reliable, and predictive pre-clinical assays for cardiac safety has motivated initiatives world-wide, stem cell (iPSC) technology has allowed complex human straightforward reporting of multiple measures on the including the Comprehensive in vitro Proarrhythmia Assay (CiPA) and Japan iPS Cardiac Safety Assessment (JiCSA). biology to be reproduced in vitro at previously maturity of the cell culture: The Maestro MEA platform enables assessment of functional in vitro cardiomyocyte activity with an easy-to-use benchtop unimaginable scales. Accurate characterization of stem system. The Maestro detects and records electrical signals from cells cultured directly onto an array of planar electrodes in each well of the MEA plate. Multiple electrodes in each well provide mechanistic electrophysiological data reflecting the cell-derived neurons and cardiomyocytes requires an • Functionality – Neurons within the population following important variables: assay to provide a functional phenotype. For these produce spontaneous action potentials. The mean electro-active cells, measurements of electrophysiological firing rate (MFR) counts action potentials over time to • Depolarization – Cardiomyocyte depolarization is detected by the amplitude of the field potential spike (AMP). activity across a networked population of cells provides a (b) quantify individual neuron functionality.
    [Show full text]
  • Intraoperative Microelectrode Recordings in Substantia Nigra Pars Reticulata in Anesthetized Rats
    fnins-14-00367 April 27, 2020 Time: 19:44 # 1 BRIEF RESEARCH REPORT published: 29 April 2020 doi: 10.3389/fnins.2020.00367 Intraoperative Microelectrode Recordings in Substantia Nigra Pars Reticulata in Anesthetized Rats Hanyan Li and George C. McConnell* Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States The Substantia Nigra pars reticulata (SNr) is a promising target for deep brain stimulation (DBS) to treat the gait and postural disturbances in Parkinson’s disease (PD). Positioning the DBS electrode within the SNr is critical for the development of preclinical models of SNr DBS to investigate underlying mechanisms. However, a complete characterization of intraoperative microelectrode recordings in the SNr to guide DBS electrode placement is lacking. In this study, we recorded extracellular single-unit activity in anesthetized rats at multiple locations in the medial SNr (mSNr), lateral SNr (lSNr), and the Ventral Tegmental Area (VTA). Immunohistochemistry and fluorescently dyed electrodes were used to map neural recordings to neuroanatomy. Neural recordings were analyzed in the time domain (i.e., firing rate, interspike interval (ISI) correlation, ISI variance, regularity, spike amplitude, signal-to-noise ratio, half-width, asymmetry, and latency) and the frequency domain (i.e., spectral power in frequency bands of interest). Spike amplitude Edited by: decreased and ISI correlation increased in the mSNr versus the lSNr. Spike amplitude, Reinhold Scherer, signal-to-noise ratio, and ISI correlation increased in the VTA versus the mSNr. ISI University of Essex, United Kingdom correlation increased in the VTA versus the lSNr. Spectral power in the VTA increased Reviewed by: versus: (1) the mSNr in the 20–30 Hz band and (2) the lSNr in the 20–40 Hz band.
    [Show full text]
  • A Microelectrode Array (MEA) Integrated with Clustering Structures for Investigating in Vitro Neurodynamics in Confined Interconnected Sub-Populations of Neurons
    Published in Sensors and Actuators B 114, issue 1, 530-541, 2006 1 which should be used for any reference to this work A microelectrode array (MEA) integrated with clustering structures for investigating in vitro neurodynamics in confined interconnected sub-populations of neurons L. Berdondini a,∗, M. Chiappalone b, P.D. van der Wal a, K. Imfeld a, N.F. de Rooij a, M. Koudelka-Hep a, M. Tedesco b, S. Martinoia b, J. van Pelt d, G. Le Masson c, A. Garenne c a Sensors, Actuators and Microsystems Laboratory, Institute of Microtechnology, University of Neuchatel,ˆ Jaquet-Droz 1, 2007 Neuchatel,ˆ Switzerland b Department of Biophysical and Electronic Engineering (DIBE), University of Genova, Via Opera Pia 11a, 16145 Genova, Italy c INSERM E358, University Bordeaux 2, 146 rue Leo´ Saignat, 33077 Bordeaux Cedex, France d Netherlands Institute for Brain Research (NIBR), Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands Abstract Understanding how the information is coded in large neuronal networks is one of the major challenges for neuroscience. A possible approach to investigate the information processing capabilities of the neuronal ensembles is given by the use of dissociated neuronal cultures coupled to microelectrode arrays (MEAs). Here, we describe a new strategy, based on MEAs, for studying in vitro neuronal network dynamics in interconnected sub-populations of cortical neurons. The rationale is to sub-divide the neuronal network into communicating clusters while preserving a high degree of functional connectivity within each confined sub-population, i.e. to achieve a compromise between a completely random large neuronal population and a patterned network, such as currently used with conventional MEAs.
    [Show full text]
  • A Single-Neuron: Current Trends and Future Prospects
    cells Review A Single-Neuron: Current Trends and Future Prospects Pallavi Gupta 1, Nandhini Balasubramaniam 1, Hwan-You Chang 2, Fan-Gang Tseng 3 and Tuhin Subhra Santra 1,* 1 Department of Engineering Design, Indian Institute of Technology Madras, Tamil Nadu 600036, India; [email protected] (P.G.); [email protected] (N.B.) 2 Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan; [email protected] 3 Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +91-044-2257-4747 Received: 29 April 2020; Accepted: 19 June 2020; Published: 23 June 2020 Abstract: The brain is an intricate network with complex organizational principles facilitating a concerted communication between single-neurons, distinct neuron populations, and remote brain areas. The communication, technically referred to as connectivity, between single-neurons, is the center of many investigations aimed at elucidating pathophysiology, anatomical differences, and structural and functional features. In comparison with bulk analysis, single-neuron analysis can provide precise information about neurons or even sub-neuron level electrophysiology, anatomical differences, pathophysiology, structural and functional features, in addition to their communications with other neurons, and can promote essential information to understand the brain and its activity. This review highlights various single-neuron models and their behaviors, followed by different analysis methods. Again, to elucidate cellular dynamics in terms of electrophysiology at the single-neuron level, we emphasize in detail the role of single-neuron mapping and electrophysiological recording. We also elaborate on the recent development of single-neuron isolation, manipulation, and therapeutic progress using advanced micro/nanofluidic devices, as well as microinjection, electroporation, microelectrode array, optical transfection, optogenetic techniques.
    [Show full text]
  • Human Motor Neurons with SOD1-G93A Mutation Generated from CRISPR/Cas9 Gene-Edited Ipscs Develop Pathological Features of Amyotrophic Lateral Sclerosis
    fncel-14-604171 November 13, 2020 Time: 14:24 # 1 ORIGINAL RESEARCH published: 19 November 2020 doi: 10.3389/fncel.2020.604171 Human Motor Neurons With SOD1-G93A Mutation Generated From CRISPR/Cas9 Gene-Edited iPSCs Develop Pathological Features of Amyotrophic Lateral Sclerosis Byung Woo Kim1, Jiwon Ryu1, Ye Eun Jeong2, Juhyun Kim3 and Lee J. Martin1,4,5* 1 Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States, 2 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States, 3 Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States, 4 The Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States, 5 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States Edited by: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized Xin Qi, Case Western Reserve University, by gradual degeneration and elimination of motor neurons (MNs) in the motor cortex, United States brainstem, and spinal cord. Some familial forms of ALS are caused by genetic mutations Reviewed by: in superoxide dismutase 1 (SOD1) but the mechanisms driving MN disease are unclear. Monica Nizzardo, University of Milan, Italy Identifying the naturally occurring pathology and understanding how this mutant SOD1 Thomas M. Durcan, can affect MNs in translationally meaningful ways in a valid and reliable human cell Mcgill University, Canada model remains to be established. Here, using CRISPR/Cas9 genome editing system *Correspondence: and human induced pluripotent stem cells (iPSCs), we generated highly pure, iPSC- Lee J.
    [Show full text]
  • In Vivo Microelectrode Arrays for Detecting Multi-Region Epileptic Activities in the Hippocampus in the Latent Period of Rat Model of Temporal Lobe Epilepsy
    micromachines Article In Vivo Microelectrode Arrays for Detecting Multi-Region Epileptic Activities in the Hippocampus in the Latent Period of Rat Model of Temporal Lobe Epilepsy Yuchuan Dai 1,2, Yilin Song 1,2, Jingyu Xie 1,2, Shengwei Xu 1,2, Xinrong Li 1,2, Enhui He 1,2, Huabing Yin 3 and Xinxia Cai 1,2,* 1 State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China; [email protected] (Y.D.); [email protected] (Y.S.); [email protected] (J.X.); [email protected] (S.X.); [email protected] (X.L.); [email protected] (E.H.) 2 School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 3 Division of Biomedical Engineering, University of Glasgow Room 626, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, UK; [email protected] * Correspondence: [email protected]; Tel.: +86-10-58887193 Abstract: Temporal lobe epilepsy (TLE) is a form of refractory focal epilepsy, which includes a latent period and a chronic period. Microelectrode arrays capable of multi-region detection of neural activities are important for accurately identifying the epileptic focus and pathogenesis mechanism in the latent period of TLE. Here, we fabricated multi-shank MEAs to detect neural activities in the DG, Citation: Dai, Y.; Song, Y.; Xie, J.; Xu, hilus, CA3, and CA1 in the TLE rat model. In the latent period in TLE rats, seizures were induced S.; Li, X.; He, E.; Yin, H.; Cai, X.
    [Show full text]
  • Role of Human Induced Pluripotent Stem Cell-Derived Spinal Cord Astrocytes in the Functional Maturation of Motor Neurons in a Multielectrode Array System
    bioRxiv preprint doi: https://doi.org/10.1101/614297; this version posted April 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Role of human induced pluripotent stem cell-derived spinal cord astrocytes in the functional maturation of motor neurons in a multielectrode array system Running title: human motor neuron and astrocyte maturation in a multielectrode system Arens Taga1, Raha Dastgheyb1, Christa Habela1, Jessica Joseph1, Jean-Philippe Richard1, Sarah K. Gross1, Giuseppe Lauria2, Gabsang Lee1,3, Norman Haughey1, Nicholas J. Maragakis1 1. Johns Hopkins University, Department of Neurology, Baltimore, MD, USA 2. Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy 3. Johns Hopkins University, Department of Neuroscience, Baltimore, MD, USA Corresponding Author: Nicholas J. Maragakis, M.D. Professor Johns Hopkins University Department of Neurology The John G. Rangos Sr. Bldg. 855 North Wolfe Street Room 248, 2nd Floor Baltimore, MD, 21205 USA Phone: 1-410-614-9874 Fax: 1-410-502-5459 email: [email protected] Acknowledgements: We thank Labchan Rajbhandari and Dr Venkatesan’s Lab who provided the plasma cleaning platform. Funding was provided by the Packard Center for ALS Research at Johns Hopkins. Department of Defense, W81XWH1810175. ALS Association 18-DDC-436. bioRxiv preprint doi: https://doi.org/10.1101/614297; this version posted April 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Conflicts of Interest: Arens Taga: None Raha Dastgheyb: None Christa Habela: None Jessica Joseph: None Jean-Philippe Richard: None Sarah K.
    [Show full text]
  • Download Author Version (PDF)
    Lab on a Chip Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/loc Page 1 of 13 Lab on a Chip Graphical Abstract Microchannel device tailored to laser axotomy and long-term microelectrode array electrophysiology of functional regeneration Rouhollah Habibey, a Asiyeh Golabchi, a Shahrzad Latifi, a,b Francesco Difato*a and Axel Blau * a a Department of Neuroscience and Brain Technologies (NBT), Italian Institute of Technology (IIT), via Morego 30, 16163 Genoa, Italy b Department of Neurology, David Geffen School of Medicine at UCLA, 635 Charles E. Young, Los Angeles, CA 90095 * Corresponding authors: [email protected] & [email protected] We present a PDMS microchannel device compatible with multielectrode array electrophysiology and laser microdissection for selected axonal injury and long-term access to compartmentalized neuronal network morphology and activity.
    [Show full text]
  • Comparison of Recordings from Microelectrode Arrays and Single Electrodes in the Visual Cortex
    The Journal of Neuroscience, January 10, 2007 • 27(2):261–264 • 261 Toolbox Editor’s Note: Toolboxes are intended to briefly highlight a new method or a resource of general use in neuroscience or to critically analyze existing approaches or methods. For more information, see http://www.jneurosci.org/misc/itoa.shtml. Comparison of Recordings from Microelectrode Arrays and Single Electrodes in the Visual Cortex Ryan C. Kelly,1,2* Matthew A. Smith,1* Jason M. Samonds,1 Adam Kohn,3 A. B. Bonds,4,5 J. Anthony Movshon,3 and Tai Sing Lee1,2 1Center for the Neural Basis of Cognition and 2Computer Science Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, 3Center for Neural Science, New York University, New York, New York 10003, and Departments of 4Electrical Engineering and Computer Science and 5Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235 Advances in microelectrode neural re- tional to the square of the number of cordings. On average, the recording qual- cording systems have made it possible to cells). The larger population also provides ity is somewhat lower than that of single record extracellular activity from a large the possibility of examining higher-order electrodes but, nonetheless, is sufficient number of neurons simultaneously. A (non-pairwise) interactions among neu- for assessing tuning properties such as the substantial body of work is associated rons (Schneidman et al., 2006; Shlens et spatiotemporal receptive field (STRF) and with traditional single-electrode extracel- al., 2006). Finally, multielectrode systems orientation tuning. lular recording, and the robustness of the have been developed that may be im- recording method has been proven exper- planted and used for several months, Recording methods imentally.
    [Show full text]
  • A Silicon-Based Microelectrode Array with a Microdrive for Monitoring Brainstem Regions of Freely Moving Rats
    A robust silicon-based microelectrode array, mounted on a microdrive A silicon-based microelectrode array with a microdrive for monitoring brainstem regions of freely moving rats G Márton1,2, P Baracskay3, B Cseri3, B Plósz4, G Juhász3, Z Fekete2,5, A Pongrácz2,5 1 Comparative Psychophysiology Department, Institute of Cognitive Neuroscience and Physiology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 2 Magyar Tudósok Blvd., H-1117, Budapest, Hungary 2 MEMS Laboratory, Institute for Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, 29-33 Konkoly Thege Miklós st., H-1121, Budapest, Hungary 3 Research Group of Proteomics, Institute of Biology, Faculty of Science, Eötvös Loránd University, 1/C Pázmány P. Walkway, H-1117, Budapest, Hungary 4 Plósz Microengineering Office Ltd., 119 Üllői st., H-1091, Budapest, Hungary 5 MTA EK NAP B Research Group for Implantable Microsystems, 29-33 Konkoly Thege Miklós st., H-1121, Budapest, Hungary E-mail: [email protected] 1 A robust silicon-based microelectrode array, mounted on a microdrive Abstract Objective. Exploring neural activity behind synchronization and time locking in brain circuits is one of the most important tasks in neuroscience. Our goal was to design and characterize a microelectrode array (MEA) system specifically for obtaining in vivo extracellular recordings from three deep-brain areas of freely moving rats, simultaneously. The target areas, the deep mesencephalic reticular-, pedunculopontine tegmental- and pontine reticular nuclei are related to the regulation of sleep-wake cycles. Approach. The three targeted nuclei are collinear, therefore a single-shank MEA was designed in order to contact them.
    [Show full text]
  • Implantable Thin Film Devices As Brain-Computer Interfaces: Recent Advances in Design and Fabrication Approaches
    coatings Review Implantable Thin Film Devices as Brain-Computer Interfaces: Recent Advances in Design and Fabrication Approaches Yuhao Zhou 1, Bowen Ji 1,2,* , Minghao Wang 3, Kai Zhang 2, Shuaiqi Huangfu 1, Huicheng Feng 1,2 , Honglong Chang 1,2 and Xichen Yuan 2,* 1 Unmanned System Research Institute, Northwestern Polytechnical University, Xi’an 710072, China; [email protected] (Y.Z.); [email protected] (S.H.); [email protected] (H.F.); [email protected] (H.C.) 2 Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; [email protected] 3 College of Electronics and Information, Hangzhou Dianzi University, Hangzhou 310018, China; [email protected] * Correspondence: [email protected] (B.J); [email protected] (X.Y.) Abstract: Remarkable progress has been made in the high resolution, biocompatibility, durability and stretchability for the implantable brain-computer interface (BCI) in the last decades. Due to the inevitable damage of brain tissue caused by traditional rigid devices, the thin film devices are developing rapidly and attracting considerable attention, with continuous progress in flexible materials and non-silicon micro/nano fabrication methods. Therefore, it is necessary to systematically summarize the recent development of implantable thin film devices for acquiring brain information. This brief review subdivides the flexible thin film devices into the following four categories: planar, open-mesh, probe, and micro-wire layouts. In addition, an overview of the fabrication approaches Citation: Zhou, Y.; Ji, B.; Wang, M.; is also presented.
    [Show full text]