ABSTRACT MITRA, MADHUMI. Paleopalynology of the Tar Heel

Total Page:16

File Type:pdf, Size:1020Kb

ABSTRACT MITRA, MADHUMI. Paleopalynology of the Tar Heel ABSTRACT MITRA, MADHUMI. Paleopalynology of the Tar Heel Formation of Atlantic Coastal Plain of North Carolina, United States (Under the direction of James Earl Mickle.) Sediments from the Late Cretaceous Tar Heel Formation in the Atlantic Coastal Plain of North Carolina were investigated for occurrence and distribution of palynomorphs. Exposures along rivers at Elizabethtown, Goldsboro, Ivanhoe, Lock, Willis Creek and Tar River in North Carolina were systematically collected. One hundred and three sediment samples were macerated by standard techniques modified by eliminating treatments with nitric acid and potassium hydroxide, and analyzed for palynomorphs. Eighty species of palynomorphs were distributed in 4 form genera of freshwater algae, 3 of dinoflagellates, 9 of fungi, 15 of pteridophytes, 11 of gymnosperms and 24 of angiosperms. Angiosperms were the dominant components in assemblages at all localities. Representatives of the Normapolles pollen group (characteristic angiosperm pollen group of middle and high northern latitudes of eastern North America and Europe) occur throughout the Tar Heel Formation and collectively comprise 29%-54% of the angiosperm assemblages. Palynological age assessment is in concordance with earlier dating determined by other workers based on invertebrate faunas. Minimum variance clustering with squared Euclidean distances in the Q-mode (clustering of samples) indicates that stratigraphically older layers of Ivanhoe, Lock and Willis Creek are similar in palynofloral composition, and one section of the Goldsboro locality is compositionally equivalent to the Tar River locality. Minimum variance cluster analysis in the R-mode (clustering of taxa) indicates the association of Campanian taxa in the same cluster. This reconfirms that localities of the Tar Heel Formation are of Early Campanian age. Informal biostratigraphic zones of Campanian (CA2-CA4) known from other Atlantic Coastal Plain deposits do not occur in the Tar Heel Formation. Quantitative analysis is consistent with the long-standing hypothesis of diversification and dominance of angiosperm pollen groups during the Campanian. The palynological record of the Tar Heel Formation, based on some indicator taxa with modern equivalents, suggests that subtropical to warm, moist temperate conditions prevailed in the southeastern region of North America during Campanian time. PALEOPALYNOLOGY OF THE TAR HEEL FORMATION OF ATLANTIC COASTAL PLAIN OF NORTH CAROLINA, UNITED STATES by MADHUMI MITRA A dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy BOTANY Raleigh 2002 APPROVED BY ___________________________ _____________________________ Chair of Advisory Committee ___________________________ _____________________________ ___________________________ BIOGRAPHICAL SKETCH Madhumi Mitra was born in Calcutta, India. She is the only child of Amarendranath Mitra and Aloka Paul Mitra. Madhumi completed her baccalaureate degree with first class honors in Botany from Presidency College, Calcutta, India. She obtained a masters of science degree in Botany with specialization in Phycology from the University of Calcutta, India in December 1989. After four years of absence from academics, Madhumi enrolled in a Ph.D program in Paleobotany at North Carolina State University, Raleigh, North Carolina, in August 1993 under the supervision of Dr. James E. Mickle. She took a leave of absence for two years and moved to Puerto Rico in June 1995 to be with her family. During her stay in San Juan, Puerto Rico, Madhumi worked as a research assistant in the Department of Biology at University of Puerto Rico. She also taught AP (Advanced Placement) Biology at Baldwin School of Puerto Rico from 1996-1997. Madhumi returned to North Carolina State University in August 1997 and continued her doctoral work in Paleopalynology. Madhumi has supervised and taught laboratories in Biology and Botany at North Carolina State University. She is currently employed as a full-time Lecturer and Teacher Educator (Biology Education) in the Department of Natural Sciences at University of Maryland Eastern Shore, Princess Anne, Maryland. She teaches courses in Biology, Botany, Geology and Environmental Sciences and supervises undergraduate and graduate interns in the Biology Education program. Madhumi received the Conant travel award to attend the XVI International Botanical Congress in St. Louis, Missouri in August 1999. She received an International ii Travel Award from the Botanical Society of America to attend the Sixth International Paleobotanical Congress in Qinhuangdao, China in July 2000. She is the recipient of a Chrysalis Award from AWG (Association for Women Geoscientists) in 2000. She also received a Service Learning award from the Institute of Service Learning at Salisbury University in 1999. In 2001, she received a Faculty Development Grant to develop an online laboratory manual in Botany. Madhumi has presented her research at various professional meetings both nationally and internationally. iii ACKNOWLEDGMENTS I would like to thank my parents for their constant encouragement, understanding and unfailing support in this endeavor. I express my heartfelt thanks to my supervising professor, Dr. James. E. Mickle, for his encouragement, support and guidance during my years of study at North Carolina State University. He has been my friend, philosopher and guide, in the truest sense. I wish to thank Dr. Thomas Wentworth of Department of Botany at North Carolina State University for providing an extremely supportive role as the Co-chairman of my advisory committee and helping me to remain focused in this project. I would like to thank Dr. Patricia Gensel of Department of Biology at University of North Carolina, Chapel Hill, for honing my background in palynology and providing insight on paleofloristics. I am thankful to Dr. Elisabeth Wheeler of Department of Wood and Paper Science at North Carolina State University, a distinguished member of my dissertation committee, for her constant support and enthusiasm. I always received sound advice from her whenever I approached her with situations that I had difficulty in dealing with. I am glad to have Dr. Marianne Feaver on my dissertation advisory committee. I am thankful for her comments and suggestions. Special thanks go to Dr. Jenny Xiang of Department of Botany at North Carolina State University for her helpful comments on my dissertation and agreeing to serve on the advisory committee during Dr. Gensel’s absence. I am indebted to Dr. Debra Willard of United States Geological Survey for training me on the palynological techniques for processing clastic rocks. I am extremely iv grateful to Drs. Lucy Edwards, Greg Gohn, Norm Frederiksen of United States Geological Survey, Dr. Raymond Christopher of Clemson University, Drs David Batten, William Elsik, Michael Farabee, Robert Ravn, Michael Zavada for helping me identify palynomorphs, providing me with useful references and other valuable suggestions. I am greatly indebted to Dr. Don Engelhardt who was an excellent technical resource with regard to morphology, taxonomy and literature of palynomorphs from the Late Cretaceous Coastal Plain sediments. Special thanks go to my husband, Dr. Abhijit Nagchaudhuri who constantly motivated me besides helping me with collection of samples from sites and assisting me with data analysis. I am thankful to have a wonderful daughter, Auromita, who was a source of inspiration for me to move on despite many obstacles in my life. I am very thankful to Professor Charles Elzinga of Mathematics and Computer Science at University of Maryland Eastern Shore for his valuable assistance with statistical data analysis. Special appreciation goes to my friend, Arindam Sengupta for assisting me with Adobe Photoshop, figures generated by Autocad and helping me with translations from German to English. Many thanks are due to Dr. Gerald Van Dyke, Dr. Nina Allen, Ms. Donna Wright, Ms. Irena Brglez, Ms. Sue Vitello, Ms. Linda Jenkins, Ms. Joyce Bruffey of the Department of Botany at North Carolina State University for providing help and support all the time. I sincerely thank, Dr. Joseph Okoh of Department of Natural Sciences at University of Maryland Eastern Shore for understanding and encouraging me while I was working on writing my dissertation. I wish to thank Ms. Hedricks, GIS Coordinator of v University of Maryland Eastern Shore, for teaching me GIS that was helpful in creating maps for this project. Research for this dissertation was supported by grants from the Geographical Society of America. vi TABLE OF CONTENTS Page LIST OF TABLES ………………………………………………………………………………… viii LIST OF FIGURES ……………………………………………………………………………….. ix 1. INTRODUCTION ……………………………………………………………………….. 1 1.1 Importance of the Research ………………………………………………………….. 1 1.2 Objectives ……………………………………………………………………………. 5 1.3 Background Information …………………………………………………………….. 5 2. MATERIALS AND METHODS ……………………………………………………….. 13 2.1 History, Geology and Distribution of the Tar Heel Formation …………………….. 13 2.2 Description of the Collecting Sites ………………………………………………… 14 2.3 Materials and Techniques for Collection ………………………………………….. 17 2.4 Identification of Taxa ……………………………………………………………….. 21 3. SYSTEMATIC PALEOPALYNOLOGY …………………………………………….. 24 3.1 Distribution of Palynomorphs …………………………………………………….. 25 3.2 Classification of Palynomorphs …………………………………………………… 25 3.3 Description of Palynomorphs ……………………………………………………..
Recommended publications
  • The Vegetation of Robinson Crusoe Island (Isla Masatierra), Juan
    The Vegetation ofRobinson Crusoe Island (Isla Masatierra), Juan Fernandez Archipelago, Chile1 Josef Greimler,2,3 Patricio Lopez 5., 4 Tod F. Stuessy, 2and Thomas Dirnbiick5 Abstract: Robinson Crusoe Island of the Juan Fernandez Archipelago, as is the case with many oceanic islands, has experienced strong human disturbances through exploitation ofresources and introduction of alien biota. To understand these impacts and for purposes of diversity and resource management, an accu­ rate assessment of the composition and structure of plant communities was made. We analyzed the vegetation with 106 releves (vegetation records) and subsequent Twinspan ordination and produced a detailed colored map at 1: 30,000. The resultant map units are (1) endemic upper montane forest, (2) endemic lower montane forest, (3) Ugni molinae shrubland, (4) Rubus ulmifolius­ Aristotelia chilensis shrubland, (5) fern assemblages, (6) Libertia chilensis assem­ blage, (7) Acaena argentea assemblage, (8) native grassland, (9) weed assemblages, (10) tall ruderals, and (11) cultivated Eucalyptus, Cupressus, and Pinus. Mosaic patterns consisting of several communities are recognized as mixed units: (12) combined upper and lower montane endemic forest with aliens, (13) scattered native vegetation among rocks at higher elevations, (14) scattered grassland and weeds among rocks at lower elevations, and (15) grassland with Acaena argentea. Two categories are included that are not vegetation units: (16) rocks and eroded areas, and (17) settlement and airfield. Endemic forests at lower elevations and in drier zones of the island are under strong pressure from three woody species, Aristotelia chilensis, Rubus ulmifolius, and Ugni molinae. The latter invades native forests by ascending dry slopes and ridges.
    [Show full text]
  • Cultivating Australian Native Plants
    Cultivating Australian Native Plants Achieving results with small research grants A report for the Rural Industries Research and Development Corporation by Dr Malcolm Reid Macquarie University February 1999 RIRDC Publication No 99/7 RIRDC Project No AFF-1A © 1999 Rural Industries Research and Development Corporation. All rights reserved. ISBN 0 642 57835 4 ISSN 1440-6845 Cultivating Australian native plants – Achieving results with small research grants Publication no. 99/7 Project no. AFF-1A The views expressed and the conclusions reached in this publication are those of the author and not necessarily those of persons consulted. RIRDC shall not be responsible in any way whatsoever to any person who relies in whole or in part on the contents of this report. This publication is copyright. However, RIRDC encourages wide dissemination of its research, providing the Corporation is clearly acknowledged. For any other enquiries concerning reproduction, contact the Publications Manager on phone 02 6272 3186. Distributor Contact Details Dr. Malcolm Reed School of Biological Sciences Macquarie University NSW 2109 Phone : (02) 9850 8155 Fax : (02) 9850 8245 email : [email protected] Australian Flora Foundation Contact Details GPO Box 205 SYDNEY NSW 2001 RIRDC Contact details Rural Industries Research and Development Corporation Level 1, AMA House 42 Macquarie Street BARTON ACT 2600 PO Box 4776 KINGSTON ACT 2604 Phone : (02) 6272 4539 Fax : (02) 6272 5877 email : [email protected] internet : http://www.rirdc.gov.au Published in February 1999 Printed on environmentally friendly paper by the AFFA Copy Centre ii Foreword Ten years ago the Australian Special Rural Research Council was determining priorities for the funding of research and development for Australian native cut flower growing and exporting.
    [Show full text]
  • Early Jurassic Microbial Mats—A Potential Response to Reduced Biotic Activity in the Aftermath of the End-Triassic Mass Extinction Event
    Palaeogeography, Palaeoclimatology, Palaeoecology 464 (2016) 76–85 Contents lists available at ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Early Jurassic microbial mats—A potential response to reduced biotic activity in the aftermath of the end-Triassic mass extinction event Olof Peterffy a, Mikael Calner a, Vivi Vajda a,b,⁎ a Department of Geology, Lund University, SE-22362 Lund, Sweden b Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden article info abstract Article history: Wrinkle structures are microbially induced sedimentary structures (MISS) formed by cyanobacteria and are com- Received 6 June 2015 mon in pre-Cambrian and Cambrian siltstones and sandstones but are otherwise rare in the Phanerozoic geolog- Received in revised form 4 December 2015 ical record. This paper reports the first discovery of Mesozoic wrinkle structures from Sweden. These are Accepted 22 December 2015 preserved in fine-grained and organic-rich heterolithic strata of the Lower Jurassic (Hettangian) Höganäs Forma- Available online 30 December 2015 tion in Skåne, southern Sweden. The strata formed in a low-energy, shallow subtidal setting in the marginal parts fi Keywords: of the Danish rift-basin. Palynological analyses of ne-grained sandstones hosting the wrinkle structures show Hettangian that the local terrestrial environment probably consisted of a wetland hosting ferns, cypress and the extinct co- Mass extinction nifer family Cheirolepidaceae. Palynostratigraphy indicates a Hettangian age, still within the floral recovery phase Microbial mat following the end-Triassic mass extinction event. The finding of wrinkle structures is significant as the presence Cyanobacteria of microbial mats in the shallow subtidal zone, (in a deeper setting compared to where modern epibenthic mi- Wrinkle structures crobial mats grow) suggests decreased benthic biodiversity and suppressed grazing in shallow marine environ- Sweden ments in the early aftermath of the end-Triassic mass extinction event.
    [Show full text]
  • Growing Ferns Indoors
    The British Pteridological Society For Fern Enthusiasts Further information is obtainable from: www.ebps.org.uk Copyright ©2016 British Pteridological Society Charity No. 1092399 Patron: HRH The Prince of Wales c/o Dept. of Life Sciences,The Natural History Museum, Cromwell Road, London SW7 5BD The British Pteridological Society For Fern Enthusiasts 125 th Anniversary 1891-2016 Phlebodium pseudoaureum in a living room Some further reading: Sub-tropical ferns in a modern conservatory Indoor ferns: caring for ferns. Boy Altman. (Rebo 1998) House Plants Loren Olsen. 2015. Gardening with Ferns Martin Rickard (David and Charles) From Timber Press: Fern Grower’s Manual Barbara Hoshizaki and Robbin Moran The Plant Lover’s Guide to Ferns Richie Stefan and Sue Olsen Growing Ferns Indoors The BPS would like to thank the Cambridge University Tropical epiphytic ferns in a heated greenhouse Botanical Gardens for their help with the indoor ferns RHS Chelsea Flower Show 2016 Growing Ferns Indoors Growing ferns in the home can be both relaxing and beneficial guard heaters to ward-off temperatures below 5C, although as the soft green foliage is pleasing to the eye and may also help many tender ferns fare better if the minimum winter Ferns that will grow in domestic living rooms, conservatories and in purifying air. It would appear that some ferns and their root- temperature is 10C. glasshouses can provide all-year interest and enjoyment. Some associated micro-organisms can biodegrade air and water ferns that will tolerate these environments are listed below but pollutants. Growing humid and tropical ferns there are many more to be found in specialist books on fern Glasshouses that have the sole purpose of growing plants offer culture.
    [Show full text]
  • COMMONWEALTH of VIRGINIA DEPARTMENT of CONSERVATION and ECONOMIC DEVELOPMENT DIVISION of MINERAL RESOURCES Robert C
    VIRGINIA DIVISION OF MINERAL RESOURCES PUBLICATION 20 GEOLOGY OF THE OAK GROVE CORE . e- 1lg**** - rlrl""*"-*-lq j4;i; s" r "e .-e l;"* l* - :-* l,i.l-1" -*"4{ ' *-q-S''q-"_ l -a,T-,! - !:: ts"--l ::9: : ::5 :e 'l I ." t::::,:1,a::-:d:; r--" 4 f-d;:s ,:,S r,! ,:a:16:":, 9:-4:-:r:: -':"-lii;3? -F - d,* COMMONWEALTH OF VIRGINIA DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT DIVISION OF MINERAL RESOURCES Robert C. Milici, Commissioner of Mineral Resources and State Geologist CHARLOTTESVILLE, VIRGINIA 1980 VIRGINIA DIVISION OF MINERAL RESOURCES PUBLICATION 20 GEOLOGY OF THE OAK GROVE CORE COMMONWEALTH OF VI RGINIA DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT DIVISION OF MINERAL RESOURCES Robert C. Milici, Commissioner of Mineral Resources and State Geologist CHAR LOTTESVI LLE, VI RGI N IA 1980 VIRGINIA DIVISION OF MINERAL RESOURCES PUBLICATION 20 GEOLOGY OF THE OAK GROVE CORE COMMONWEALTH OF VI RGIN IA DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT DIVISION OF MINERAL RESOURCES Robert C. Milici, Commissioner of Mineral Resources and State Geologist CHARLOTTESVILLE, VIRGINIA 1980 COMMONWEALTH OT VIRGINIA DEPARTMENT OF PURCHASES AND SUPPLY . RICHMOND 1980 DEPARTMENT OF CONSERVATION AND ECONOMIC DEVELOPMENT Richmond, Virginia FRED W. WALKER, Director JERALDF. MOORE, Deputy Director BOARD J. H. JOHNSON, West Point, Chairman A. R. DUNNING, Millwood, Vice Chairman MYRON P. ERKILETIAN, Alexandria ARTHUR P. FLIPPO. Doswell HENRY T. N. GRAVES, Luray MILDRED LAYNE, Williamsburg FREDERIC S. REED, Manakin-Sabot GEORGE P. SHAFRAN, Arlington SHELDON H. SHORT,III, Chase City NICHOLAS D. STREET, Grundy SHERMAN WALLACE, Cleveland E. FLOYD YATES, Powhatan CONTENTS' Page Part 1.
    [Show full text]
  • TAXON:Dicksonia Squarrosa (G. Forst.) Sw. SCORE
    TAXON: Dicksonia squarrosa (G. SCORE: 18.0 RATING: High Risk Forst.) Sw. Taxon: Dicksonia squarrosa (G. Forst.) Sw. Family: Dicksoniaceae Common Name(s): harsh tree fern Synonym(s): Trichomanes squarrosum G. Forst. rough tree fern wheki Assessor: Chuck Chimera Status: Assessor Approved End Date: 11 Sep 2019 WRA Score: 18.0 Designation: H(HPWRA) Rating: High Risk Keywords: Tree Fern, Invades Pastures, Dense Stands, Suckering, Wind-Dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 ? outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) y 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) y 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 n 405 Toxic to animals y=1, n=0 n 406 Host for recognized pests and pathogens 407 Causes allergies or is otherwise toxic to humans 408 Creates a fire hazard in natural ecosystems y=1, n=0 y 409 Is a shade tolerant plant at some stage of its life cycle y=1, n=0 y Creation Date: 11 Sep 2019 (Dicksonia squarrosa (G.
    [Show full text]
  • 9/3/2019 1 Bonnie Fine Jacobs Curriculum Vitae Address
    9/3/2019 BONNIE FINE JACOBS CURRICULUM VITAE ADDRESS: Roy M. Huffington Department of Earth Sciences P.O. Box 750395 Southern Methodist University Dallas, Texas 75275-0395 EDUCATION: Ph.D. 1983, Geosciences, University of Arizona. Past Vegetation and Climate of the Mogollon Rim Area, Arizona. M.S. 1978, Geosciences, University of Arizona. Vegetation and Modern Pollen Spectra in Sinaloa and Nayarit, Mexico. B.A. 1974, Geology/Anthropology, State University of New York at Buffalo. EMPLOYMENT: 2013 – Present. Professor, Roy M. Huffington Department of Earth Sciences, Southern Methodist University. 2006 – 2013. Associate Professor, Roy M. Huffington Department of Earth Sciences, Southern Methodist University. 2009 – 2010. Founding Director, SMU Center for the Environment, Southern Methodist University. 2000 – 2010. Director, Environmental Science Program; 2008 – 2010 founding Director Environmental Studies Program, Southern Methodist University. 2000 – 2006. Assistant Professor Southern Methodist University. 2001- Present. Research Associate Professor II of Biological Sciences, Southern Methodist University. 1995 - 2000. Adjunct Associate Professor, Departments of Anthropology and Geological Sciences, Southern Methodist University. 1986 - 1995. Adjunct Assistant Professor, Southern Methodist University, Department of Geological Sciences, Southern Methodist University. 1 9/3/2019 1985 – Present. Scientist, and Director of Palynology Laboratory, Southern Methodist University. 1984 - 2000. Adjunct Assistant Professor, Department of Biological
    [Show full text]
  • Two New Fern Chloroplasts and Decelerated Evolution Linked to the Long Generation Time in Tree Ferns
    GBE Two New Fern Chloroplasts and Decelerated Evolution Linked to the Long Generation Time in Tree Ferns Bojian Zhong1,*, Richard Fong1,LesleyJ.Collins2, Patricia A. McLenachan1, and David Penny1 1Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand 2Faculty of Health Sciences, Universal College of Learning, Palmerston North, New Zealand *Corresponding author: E-mail: [email protected]. Accepted: April 23, 2014 Data deposition: The two new chloroplast genomes (Dicksonia and Tmesipteris) have been deposited at GenBank under accessions KJ569698 and KJ569699, respectively. Abstract We report the chloroplast genomes of a tree fern (Dicksonia squarrosa) and a “fern ally” (Tmesipteris elongata), and show that the phylogeny of early land plants is basically as expected, and the estimates of divergence time are largely unaffected after removing the fastest evolving sites. The tree fern shows the major reduction in the rate of evolution, and there has been a major slowdown in the rate of mutation in both families of tree ferns. We suggest that this is related to a generation time effect; if there is a long time period between generations, then this is probably incompatible with a high mutation rate because otherwise nearly every propagule would probably have several lethal mutations. This effect will be especially strong in organisms that have large numbers of cell divisions between generations. This shows the necessity of going beyond phylogeny and integrating its study with other properties of organisms. Key words: Tmesipteris, Dicksonia, ferns and fern allies, chloroplast genomes, generation time effect, mutation rates. Introduction problematic. Tmesipteris was to help test the possibility that We address three main types of questions in this study: The themorewidespreadPsilotum was misplaced because of phylogeny of early land plants, the decelerated evolutionary “long branch attraction” artifact (Hendy and Penny 1989).
    [Show full text]
  • Review of the Survey's Activities in 1988
    5 Review af the Survey's activities in 1988 Martin Ghisler Director During 1988 GGU started two major field projects in geological series. In addition the programme will in­ Greenland, one in North-East Greenland, and another clude a preliminary evaluation of the mineral potential in West Greenland in the Disko Bugt area. In addition of the area and, combined with existing aeromagnetic petroleum geological investigations in Jameson Land and planned marine-seismic surveys, will contribute to a and glacio-hydrological studies in West Greenland con­ better understanding of the geology and hydrocarbon tinued. A total of 84 participants were engaged in the potential of the off-shore area. field work. In 1988, 23 participants from GGU and 6 from the The scientific and technical staff at GGU in Copen­ Geodetic Institute were supported by helicopter from a hagen continued research on material collected in base camp north of Daneborg, 300 km north of Mesters Greenland; total staff including administrative person­ Vig. The main activities were concentrated on the crys­ nel numbers at present 108. A 10 per cent reduction of talline rocks of the Caledonides between 75° and 76°N the staff is forecast over the next four years, combined and were accompanied by more detailed studies south with an additional reduction of the budget by 14 per of 75°N on the sedimentary features of the late Pre­ cent. Accordingly, decreasing activity in both field work cambrian Eleonore Bay Group, the palaeontology of in Greenland and laboratory work in Copenhagen is Lower Palaeozoic strata, and the sedimentological and expected.
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE ORCID ID: 0000-0003-0186-6546 Gar W. Rothwell Edwin and Ruth Kennedy Distinguished Professor Emeritus Department of Environmental and Plant Biology Porter Hall 401E T: 740 593 1129 Ohio University F: 740 593 1130 Athens, OH 45701 E: [email protected] also Courtesy Professor Department of Botany and PlantPathology Oregon State University T: 541 737- 5252 Corvallis, OR 97331 E: [email protected] Education Ph.D.,1973 University of Alberta (Botany) M.S., 1969 University of Illinois, Chicago (Biology) B.A., 1966 Central Washington University (Biology) Academic Awards and Honors 2018 International Organisation of Palaeobotany lifetime Honorary Membership 2014 Fellow of the Paleontological Society 2009 Distinguished Fellow of the Botanical Society of America 2004 Ohio University Distinguished Professor 2002 Michael A. Cichan Award, Botanical Society of America 1999-2004 Ohio University Presidential Research Scholar in Biomedical and Life Sciences 1993 Edgar T. Wherry Award, Botanical Society of America 1991-1992 Outstanding Graduate Faculty Award, Ohio University 1982-1983 Chairman, Paleobotanical Section, Botanical Society of America 1972-1973 University of Alberta Dissertation Fellow 1971 Paleobotanical (Isabel Cookson) Award, Botanical Society of America Positions Held 2011-present Courtesy Professor of Botany and Plant Pathology, Oregon State University 2008-2009 Visiting Senior Researcher, University of Alberta 2004-present Edwin and Ruth Kennedy Distinguished Professor of Environmental and Plant Biology, Ohio
    [Show full text]
  • Descriptive Text to the 1995 Geological Map of Greenland, 1:2 500 000
    GEOLOGICAL SURVEY OF DENMARK AND GREENLAND BULLETIN 18 2009 Greenland from Archaean to Quaternary Descriptive text to the 1995 Geological map of Greenland, 1:2 500 000. 2nd edition Niels Henriksen, A.K. Higgins, Feiko Kalsbeek and T. Christopher R. Pulvertaft GEOLOGICAL SURVEY OF DENMARK AND GREENLAND MINISTRY OF CLIMATE AND ENERGY Geological Survey of Denmark and Greenland Bulletin 18 Keywords Archaean, Caledonides, Cenozoic, economic geology, geological map, Greenland, ice sheet, Mesozoic, offshore, orogenic belts, Palaeozoic, petroleum, Phanerozoic, Proterozoic, sedimentary basins. Cover illustration The cover design depicts mountains of the East Greenland Caledonian fold belt. The view, west of Mestersvig (located on map, page 4), is north over Bersærkerbræ and the northern part of the Stauning Alper to Kong Oscar Fjord with Traill Ø in the right backgro- und. The mountains up to 1800 m high are of the Neoproterozoic Eleonore Bay Supergroup. To the right: first author Niels Henriksen, for many years head of geological mapping at GGU/GEUS, and participant in field work in Greenland for more than 45 years. Frontispiece: facing page Major Caledonian syncline involving reactivated Archaean basement gneisses containing amphibolite bands. Overlying rusty coloured Mesoproterozoic metasediments (Krummedal supracrustal sequence) just visible in tight core of the fold. The intensity of deformation in the syncline clearly increases towards the core, where the basement gneisses become more strongly foliated. Some of the amphibolite bands were derived from cross-cutting basic intrusions, which are still discernable in the less severely deformed parts of the Archaean basement (Fig. 17, p. 31). The height of the section is c. 2000 m.
    [Show full text]
  • Early Cenomanian Palynofloras and Inferred Resiniferous
    Early Cenomanian palynofloras and inferred resiniferous forests and vegetation types in Charentes (southwestern France) Daniel Peyrot, Eduardo Barron, France Polette, David Batten, Didier Néraudeau To cite this version: Daniel Peyrot, Eduardo Barron, France Polette, David Batten, Didier Néraudeau. Early Cenomanian palynofloras and inferred resiniferous forests and vegetation types in Charentes (southwestern France). Cretaceous Research, Elsevier, 2019, 94, pp.168-189. 10.1016/j.cretres.2018.10.011. insu-01897273 HAL Id: insu-01897273 https://hal-insu.archives-ouvertes.fr/insu-01897273 Submitted on 17 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Early Cenomanian palynofloras and inferred resiniferous forests and vegetation types in Charentes (southwestern France) Daniel Peyrot, Eduardo Barrón, France Polette, David J. Batten, Didier Néraudeau PII: S0195-6671(18)30252-0 DOI: 10.1016/j.cretres.2018.10.011 Reference: YCRES 3988 To appear in: Cretaceous Research Received Date: 21 June 2018 Revised Date: 19 September 2018 Accepted Date: 12 October 2018 Please cite this article as: Peyrot, D., Barrón, E., Polette, F., Batten, D.J., Néraudeau, D., Early Cenomanian palynofloras and inferred resiniferous forests and vegetation types in Charentes (southwestern France), Cretaceous Research (2018), doi: https://doi.org/10.1016/j.cretres.2018.10.011.
    [Show full text]