Dimethyl Ether Hazard Summary Identification

Total Page:16

File Type:pdf, Size:1020Kb

Dimethyl Ether Hazard Summary Identification Common Name: DIMETHYL ETHER CAS Number: 115-10-6 RTK Substance number: 0758 DOT Number: UN 1033 Date: June 1996 Revision: July 2002 ------------------------------------------------------------------------- ------------------------------------------------------------------------- HAZARD SUMMARY WORKPLACE EXPOSURE LIMITS * Dimethyl Ether can affect you when breathed in. No occupational exposure limits have been established for * Vapor can cause eye, nose and throat irritation. Dimethyl Ether. This does not mean that this substance is * High exposure can cause headache, dizziness, not harmful. Safe work practices should always be followed. lightheadedness, and even loss of consciousness. * Skin contact with liquid Dimethyl Ether can cause severe WAYS OF REDUCING EXPOSURE frostbite. * Where possible, enclose operations and use local exhaust * Dimethyl Ether is a HIGHLY FLAMMABLE LIQUID or ventilation at the site of chemical release. If local exhaust GAS and a DANGEROUS FIRE HAZARD. ventilation or enclosure is not used, respirators should be worn. IDENTIFICATION * Wear protective work clothing. Dimethyl Ether is a colorless compressed gas or liquid. It is * Wash thoroughly immediately after exposure to Dimethyl used as a refrigerant, solvent, propellant for aerosol sprays, Ether and at the end of the workshift. and in making certain plastics. * On skin contact with Dimethyl Ether, immediately submerse the affected body part in warm water. REASON FOR CITATION * Post hazard and warning information in the work area. In * Dimethyl Ether is on the Hazardous Substance List addition, as part of an ongoing education and training because it is cited by DOT and NFPA. effort, communicate all information on the health and * This chemical is on the Special Health Hazard Substance safety hazards of Dimethyl Ether to potentially exposed List because it is FLAMMABLE. workers. * Definitions are provided on page 5. HOW TO DETERMINE IF YOU ARE BEING EXPOSED The New Jersey Right to Know Act requires most employers to label chemicals in the workplace and requires public employers to provide their employees with information and training concerning chemical hazards and controls. The federal OSHA Hazard Communication Standard, 1910.1200, requires private employers to provide similar training and information to their employees. * Exposure to hazardous substances should be routinely evaluated. This may include collecting personal and area air samples. You can obtain copies of sampling results from your employer. You have a legal right to this information under OSHA 1910.1020. * If you think you are experiencing any work-related health problems, see a doctor trained to recognize occupational diseases. Take this Fact Sheet with you. DIMETHYL ETHER page 2 of 6 This Fact Sheet is a summary source of information of all WORKPLACE CONTROLS AND PRACTICES potential and most severe health hazards that may result from exposure. Duration of exposure, concentration of the substance Unless a less toxic chemical can be substituted for a hazardous and other factors will affect your susceptibility to any of the substance, ENGINEERING CONTROLS are the most potential effects described below. effective way of reducing exposure. The best protection is to --------------------------------------------------------------------------- enclose operations and/or provide local exhaust ventilation at the site of chemical release. Isolating operations can also HEALTH HAZARD INFORMATION reduce exposure. Using respirators or protective equipment is less effective than the controls mentioned above, but is Acute Health Effects sometimes necessary. The following acute (short-term) health effects may occur immediately or shortly after exposure to Dimethyl Ether: In evaluating the controls present in your workplace, consider: (1) how hazardous the substance is, (2) how much of the * Vapor can cause eye, nose and throat irritation. substance is released into the workplace and (3) whether * High exposure can cause headache, dizziness, harmful skin or eye contact could occur. Special controls lightheadedness, and even loss of consciousness. should be in place for highly toxic chemicals or when * Skin contact with liquid Dimethyl Ether can cause severe significant skin, eye, or breathing exposures are possible. frostbite. In addition, the following controls are recommended: Chronic Health Effects * Where possible, automatically transfer Dimethyl Ether The following chronic (long-term) health effects can occur at from cylinders or other storage containers to process some time after exposure to Dimethyl Ether and can last for months or years: containers. * Before entering a confined space where Dimethyl Ether Cancer Hazard may be present, check to make sure that an explosive * According to the information presently available to the New concentration does not exist. Jersey Department of Health and Senior Services, Dimethyl * Specific engineering controls are required for this chemical Ether has not been tested for its ability to cause cancer in by OSHA. Refer to the OSHA Standard: 29 CFR 1910.101 animals. on Compressed Gases. Reproductive Hazard Good WORK PRACTICES can help to reduce hazardous exposures. The following work practices are recommended: * According to the information presently available to the New Jersey Department of Health and Senior Services, Dimethyl * Workers whose clothing has been contaminated by Ether has not been tested for its ability to affect Dimethyl Ether should change into clean clothing reproduction. promptly. Other Long-Term Effects * Contaminated work clothes should be laundered by individuals who have been informed of the hazards of * Dimethyl Ether has not been tested for other chronic exposure to Dimethyl Ether. (long-term) health effects. * Eye wash fountains should be provided in the immediate work area for emergency use. MEDICAL * If there is the possibility of skin exposure, emergency shower facilities should be provided. Medical Testing * On skin contact with Dimethyl Ether, immediately wash or There is no special test for this chemical. However, if illness shower to remove the chemical. At the end of the occurs or overexposure is suspected, medical attention is workshift, wash any areas of the body that may have recommended. contacted Dimethyl Ether, whether or not known skin contact has occurred. Any evaluation should include a careful history of past and * Do not eat, smoke, or drink where Dimethyl Ether is present symptoms with an exam. Medical tests that look for handled, processed, or stored, since the chemical can be damage already done are not a substitute for controlling swallowed. Wash hands carefully before eating, drinking, exposure. smoking, or using the toilet. * Do not smoke in the work area. Even a little vapor inhaled Request copies of your medical testing. You have a legal right through a burning cigarette, cigar, or pipe will be converted to this information under OSHA 1910.1020. into more highly toxic substances. DIMETHYL ETHER page 3 of 6 PERSONAL PROTECTIVE EQUIPMENT STRONG ACIDS (such as HYDROCHLORIC, SULFURIC and NITRIC); and HALOGENS. WORKPLACE CONTROLS ARE BETTER THAN * Store in tightly closed containers in a cool, well-ventilated PERSONAL PROTECTIVE EQUIPMENT. However, for area, and prevent AIR from entering container. some jobs (such as outside work, confined space entry, jobs * Sources of ignition, such as smoking and open flames, are done only once in a while, or jobs done while workplace prohibited where Dimethyl Ether is used, handled, or controls are being installed), personal protective equipment stored. may be appropriate. * Metal containers involving the transfer of Dimethyl Ether should be grounded and bonded. OSHA 1910.132 requires employers to determine the * Use only non-sparking tools and equipment, especially appropriate personal protective equipment for each hazard and when opening and closing containers of Dimethyl Ether. to train employees on how and when to use protective * Peroxide formation may occur in containers that have been equipment. opened and remain in storage for more than six months. Peroxides can be detonated by friction, impact or heating. The following recommendations are only guidelines and may not apply to every situation. QUESTIONS AND ANSWERS Clothing Q: If I have acute health effects, will I later get chronic * Avoid skin contact with Dimethyl Ether. Wear solvent- health effects? resistant gloves and clothing. Safety equipment suppliers/ A: Not always. Most chronic (long-term) effects result from manufacturers can provide recommendations on the most repeated exposures to a chemical. protective glove/clothing material for your operation. * Where exposure to cold equipment, vapors, or liquid may Q: Can I get long-term effects without ever having short- occur, employees should be provided with special clothing designed to prevent the freezing of body tissues. term effects? * All protective clothing (suits, gloves, footwear, headgear) A: Yes, because long-term effects can occur from repeated should be clean, available each day, and put on before exposures to a chemical at levels not high enough to make work. you immediately sick. Eye Protection Q: What are my chances of getting sick when I have been * Wear non-vented, impact resistant goggles when working exposed to chemicals? with fumes, gases, or vapors. A: The likelihood of becoming sick from chemicals is * Wear indirect-vent, impact and splash resistant goggles increased as the amount of exposure increases. This is when working with liquids.
Recommended publications
  • Zheng31sympa.Pdf
    Proceedings of the Combustion Institute Proceedings of the Combustion Institute 31 (2007) 1215–1222 www.elsevier.com/locate/proci High temperature ignition and combustion enhancement by dimethyl ether addition to methane–air mixtures q Zheng Chen, Xiao Qin, Yiguang Ju *, Zhenwei Zhao, Marcos Chaos, Frederick L. Dryer Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA Abstract The effects of dimethyl ether (DME) addition on the high temperature ignition and burning properties of methane–air mixtures were studied experimentally and numerically. The results showed that for a homo- geneous system, a small amount of DME addition to methane resulted in a significant reduction in the high temperature ignition delay. The ignition enhancement effect by DME addition was found to exceed that possible with equivalent amounts of hydrogen addition, and it was investigated by using radical pool growth and computational singular perturbation analysis. For a non-premixed methane–air system, it was found that two different ignition enhancement regimes exist: a kinetic limited regime and a transport limited regime. In contrast to the dramatic ignition enhancement in the kinetic limited regime, the ignition enhancement in the transport limited regime was significantly less effective. Furthermore, laminar flame speeds as well as Markstein lengths were experimentally measured for methane–air flames with DME addi- tion. The results showed that the flame speed increases almost linearly with DME addition. However, the Markstein length and the Lewis number of the binary fuel change dramatically at small DME concentra- tions. Moreover, comparison between experiments and numerical simulations showed that only the most recent DME mechanism well reproduced the flame speeds of both DME–air and CH4–air flames.
    [Show full text]
  • Ethylene Glycol Dimethyl Ether.Pdf
    SIGMA-ALDRICH sigma-aldrich.com Material Safety Data Sheet Version 4.0 Revision Date 03/14/2010 Print Date 09/08/2010 1. PRODUCT AND COMPANY IDENTIFICATION Product name : 1,2-Dimethoxyethane Product Number : 259527 Brand : Sigma-Aldrich Company : Sigma-Aldrich 3050 Spruce Street SAINT LOUIS MO 63103 USA Telephone : +18003255832 Fax : +18003255052 Emergency Phone # : (314) 776-6555 2. HAZARDS IDENTIFICATION Emergency Overview OSHA Hazards Flammable liquid, Target Organ Effect, Reproductive hazard Target Organs Liver, Kidney, Blood, Central nervous system, Female reproductive system., Male reproductive system. GHS Label elements, including precautionary statements Pictogram Signal word Danger Hazard statement(s) H225 Highly flammable liquid and vapour. H303 May be harmful if swallowed. H332 Harmful if inhaled. H360 May damage fertility or the unborn child. Precautionary statement(s) P201 Obtain special instructions before use. P210 Keep away from heat/sparks/open flames/hot surfaces. - No smoking. P308 + P313 IF exposed or concerned: Get medical advice/attention. HMIS Classification Health hazard: 1 Chronic Health Hazard: * Flammability: 3 Physical hazards: 0 NFPA Rating Health hazard: 0 Fire: 3 Reactivity Hazard: 0 Potential Health Effects Inhalation May be harmful if inhaled. May cause respiratory tract irritation. Skin May be harmful if absorbed through skin. May cause skin irritation. Eyes May cause eye irritation. Sigma-Aldrich - 259527 Page 1 of 6 Ingestion May be harmful if swallowed. 3. COMPOSITION/INFORMATION ON INGREDIENTS Synonyms : Monoglyme Dimethylglycol mono-Glyme Ethylene glycol dimethyl ether Formula : C4H10O2 Molecular Weight : 90.12 g/mol CAS-No. EC-No. Index-No. Concentration Ethylene glycol dimethyl ether 110-71-4 203-794-9 603-031-00-3 - 4.
    [Show full text]
  • Selective Carbonylation of Dimethyl Ether to Methyl Acetate on Ferrierite
    Catalysis Communications 75 (2016) 28–31 Contents lists available at ScienceDirect Catalysis Communications journal homepage: www.elsevier.com/locate/catcom Short communication Selective carbonylation of dimethyl ether to methyl acetate on Ferrierite So Young Park a, Chae-Ho Shin b,JongWookBaea,⁎ a School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, Gyeonggi-do 440-746, Republic of Korea b Department of Chemical Engineering, Chungbuk National University (CNU), Cheongju, Chungbuk 361-763, Republic of Korea article info abstract Article history: Synthesis of methyl acetate (MA) by carbonylation of dimethyl ether (DME) was investigated using laboratory- Received 19 August 2015 made H-form Ferrierite (FER) zeolite with different Si/Al molar ratios. The synthesized H-FER with a Si/Al ratio of Received in revised form 6 November 2015 12 (FER(12)) revealed a higher DME conversion as well as MA selectivity. The observed higher catalytic perfor- Accepted 9 December 2015 mance on the FER(12) was mainly attributed to a higher ratio of Bronsted to Lewis acid sites as well as the higher Available online 10 December 2015 crystallinity with the less coke formation. The superior properties of the FER(12) having a higher ratio of Bronsted fi Keywords: to Lewis acid sites and crystallinity ef ciently suppressed the formation of inactive coke precursors. Carbonylation © 2015 Elsevier B.V. All rights reserved. Dimethyl ether Methyl acetate Ferrierite Coke formation 1. Introduction can be finally regenerated by forming an adsorbed methyl group [12, 13]. Interestingly, the micropores of the H-form Ferrierite (H-FER), Carbonylation reaction of dimethyl ether (DME) with CO has been which has one-dimensional channels of 8-MR with perpendicularly largely investigated to selectively synthesize an important petrochemi- intersected channels of 10-MR structures, seem to be effective for cal intermediate or alternative clean fuels [1,2].
    [Show full text]
  • Physicochemical Properties of Organic Medicinal Agents
    Principles of Drug Action 1, Spring 2005, Esters ESTERS AND RELATED CARBOXYLIC ACID DERIVATIVES Jack DeRuiter I. Structure and Preparation Esters are derivatives of carboxylic acids that arise via replacement of the hydroxyl (OH) portion of the acid COOH function with an "ether" moiety (-OR): O O H C C O C O Acid Ester Note that replacement of the acid OH group with an "ether" moiety removes the acidic function from the parent structure (acid) resulting in the formation of non-acidic (neutral, but somewhat polar) compounds (esters). Esters can be sub-classified based on their general structure as aliphatic, aromatic or cyclic (called "lactones") as illustrated by the examples below: O O CH2CH3 CH2CH3 O CH3 O O O Aliphatic Ester Aromatic Ester Cyclic Ester (Lactone) A variety of methods have been developed for the preparation of esters. Most of these methods involve reaction of an alcohol with an "activated carboxylic acid" compound (i.e. acid chloride): O O H C C X OC C O X- Ester "Activated" acid (X=Cl) Alcohol (Electrophile) (Nucleophile) The ester functionality does not introduce a center of asymmetry and thus optical and geometric isomerism does not result from the presence of this functional group. The ester functionality (the carbonyl and ether oxygen) is composed of an sp2 hybridized carbon so it cannot be chiral, and since there is free rotation about the ether bond geometric isomerism also is not possible at the sp2 center. 1 Principles of Drug Action 1, Spring 2005, Esters II. Solubility of Esters Esters contain carbonyl (C=O) and ether (O-C) dipoles arising from covalent bonding between electronegative oxygen atoms and electronically neutral carbon atoms.
    [Show full text]
  • Halogenated Ether, Alcohol, and Alkane Anesthetics Activate TASK-3 Tandem Pore Potassium Channels Likely Through a Common Mechanism S
    Supplemental material to this article can be found at: http://molpharm.aspetjournals.org/content/suppl/2017/03/21/mol.117.108290.DC1 1521-0111/91/6/620–629$25.00 https://doi.org/10.1124/mol.117.108290 MOLECULAR PHARMACOLOGY Mol Pharmacol 91:620–629, June 2017 Copyright ª 2017 by The American Society for Pharmacology and Experimental Therapeutics Halogenated Ether, Alcohol, and Alkane Anesthetics Activate TASK-3 Tandem Pore Potassium Channels Likely through a Common Mechanism s Anita Luethy, James D. Boghosian, Rithu Srikantha, and Joseph F. Cotten Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts (A.L., J.D.B., and J.F.C.); Department of Anesthesia, Kantonsspital Aarau, Aarau, Switzerland (A.L.); Carver College of Medicine, University of Iowa, Iowa City, Iowa (R.S.) Received January 7, 2017; accepted March 20, 2017 Downloaded from ABSTRACT The TWIK-related acid-sensitive potassium channel 3 (TASK-3; hydrate (165% [161–176]) . 2,2-dichloro- . 2-chloro 2,2,2- KCNK9) tandem pore potassium channel function is activated by trifluoroethanol . ethanol. Similarly, carbon tetrabromide (296% halogenated anesthetics through binding at a putative anesthetic- [245–346]), carbon tetrachloride (180% [163–196]), and 1,1,1,3,3,3- binding cavity. To understand the pharmacologic requirements for hexafluoropropanol (200% [194–206]) activate TASK-3, whereas molpharm.aspetjournals.org TASK-3 activation, we studied the concentration–response of the larger carbon tetraiodide and a-chloralose inhibit. Clinical TASK-3 to several anesthetics (isoflurane, desflurane, sevoflurane, agents activate TASK-3 with the following rank order efficacy: halothane, a-chloralose, 2,2,2-trichloroethanol [TCE], and chloral halothane (207% [202–212]) .
    [Show full text]
  • BENZENE AS a LARVICIDE for SCREW WORMS1 the Larval Stage
    BENZENE AS A LARVICIDE FOR SCREW WORMS1 By D. C. PARMAN Assistant Entomologist, Investigations of Insects Affecting the Health of Animals, Bureau of Entomology, United States Department of Agriculture INTRODUCTION The larval stage of CocMiomyia macellaria Fab., generally known amonff stock raisers in the Southwest as the screw worm, causes con- siderable loss to the livestock industry, estimated as high as $5,000,000 in some years. It has been apparent that the larvicides used to kill the worms are either toxic to the animal or at least in most cases detrimental to the healing of the wounds. This toxicity was at first attributed to the screw worm, but as many cases were ob- served where the animal was practically consumed by the larvae and still lived until the loss of olood or injury to some vital organ brought de^th, it was surmised that the treatments with larvicides were the cause of many deaths. During the summer of 1916 syste- matic work was begun to find a more efficient larvicide than the phenols and chloroform which were generally used. At first an attempt was made to add something to these larvicides to counteract the toxic properties. As this was not successful it was deemed best to look for a chemical that might be used with more satis- factory results. Several chemical groups were studied for possible larvicides. EXPERIMENTAL PROCEDURE All available chemicals with possible larvicidal value were selected for laboratory tests to determine whether they would kill the larvae of the screw-worm fly. The first tests were made by pouring the chemical on a number of larvae in a tube, or dusting on just enough to cover the larvae.
    [Show full text]
  • Chemistry and Physics of Lipids Effects of Ether Vs. Ester Linkage On
    Chemistry and Physics of Lipids 160 (2009) 33–44 Contents lists available at ScienceDirect Chemistry and Physics of Lipids journal homepage: www.elsevier.com/locate/chemphyslip Effects of ether vs. ester linkage on lipid bilayer structure and water permeability S. Deren Guler a, D. Dipon Ghosh b, Jianjun Pan a, John C. Mathai c, Mark L. Zeidel c, John F. Nagle a,b, Stephanie Tristram-Nagle a,∗ a Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA b Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA c Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Cambridge, MA 02139, USA article info abstract Article history: The structure and water permeability of bilayers composed of the ether-linked lipid, dihexadecylphos- Received 29 January 2009 phatidylcholine (DHPC), were studied and compared with the ester-linked lipid, dipalmitoylphosphadit- Received in revised form 29 March 2009 dylcholine (DPPC). Wide angle X-ray scattering on oriented bilayers in the fluid phase indicate that the Accepted 26 April 2009 area per lipid A is slightly larger for DHPC than for DPPC. Low angle X-ray scattering yields A = 65.1 Å2 for Available online 3 May 2009 ◦ −13 DHPC at 48 C. LAXS data provide the bending modulus, KC = 4.2 × 10 erg, and the Hamaker parame- ter H =7.2× 10−14 erg for the van der Waals attractive interaction between neighboring bilayers. For the Keywords: low temperature phases with ordered hydrocarbon chains, we confirm the transition from a tilted L␤ Ether lipid ◦ gel phase to an untilted, interdigitated L␤I phase as the sample hydrates at 20 C.
    [Show full text]
  • Combustion and Emissions Characteristics of a Compression-Ignition Engine Using Ammonia-DME Mixtures Christopher Wolfgang Gross Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 Combustion and emissions characteristics of a compression-ignition engine using ammonia-DME mixtures Christopher Wolfgang Gross Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Mechanical Engineering Commons Recommended Citation Gross, Christopher Wolfgang, "Combustion and emissions characteristics of a compression-ignition engine using ammonia-DME mixtures" (2012). Graduate Theses and Dissertations. 12589. https://lib.dr.iastate.edu/etd/12589 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Combustion and emissions characteristics of a compression- ignition engine using ammonia-DME mixtures by Christopher W. Gross A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Mechanical Engineering Program of Study Committee: Song-Charng Kong, Major Professor Terrence Meyer Stuart Birrell Iowa State University Ames, Iowa 2012 Copyright © Christopher W. Gross, 2012. All rights reserved. ii Table of Contents List of Figures ........................................................................................................................
    [Show full text]
  • Williamson Ether Synthesis the Williamson Ether Synthesis Is an Organic Reaction, Forming an Ether from an Alkyl Halide and an Alcohol
    The Williamson ether synthesis The Williamson ether synthesis is an organic reaction, forming an ether from an alkyl halide and an alcohol. This reaction was developed by Alexander Williamson in 1850. It involves the reaction of an alkoxide ion with a primary alkyl halide via an SN2 reaction. The Williamson reaction is widely used in both laboratory and industrial synthesis, and remains the simplest and most popular method of preparing ethers. Both symmetrical and asymmetrical ethers are easily prepared. The reaction for this week: an example of a Williamson ether synthesis acetaminophen ethyl iodide phenacetin starting material reagent product Phenacetin may be synthesized as an example of the Williamson ether synthesis The first synthesis of phenacetin was reported in 1878 by Harmon Morse. Procedure 1. Weigh an Extra-Strength Tylenol tablet. Pulverize the tablet with mortar and pestle. Weigh out 0.22 g and place it in a dry 15-ml round-bottom flask along with 0.28 g of finely pulverized K2CO3 (mortar and pestle) and 3.0 mL of butanone. Carefully add 0.28 mL of ethyl iodide with a syringe. 2. Add a stir bar; attach a microscale water-cooled condenser to the flask. Heat the mixture under reflux directly on a hot plate at medium setting for 1 hour. In the meantime, obtain the IR of acetaminophen. 3. Turn off the heat. Allow the mixture to cool down. Add 4 mL of water to the flask and transfer its contents to a 16 x 125 mm test tube with a screw cap. Rinse round-bottom flask 4 times with 1 mL of tert-butyl methyl ether (BME) and add the rinsings to the test tube.
    [Show full text]
  • CO2 Recycling to Dimethyl Ether: State-Of-The-Art and Perspectives
    molecules Review CO2 Recycling to Dimethyl Ether: State-of-the-Art and Perspectives Enrico Catizzone 1,* ID , Giuseppe Bonura 2 ID , Massimo Migliori 1, Francesco Frusteri 2 and Girolamo Giordano 1 1 Department of Environmental and Chemical Engineering, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; [email protected] (M.M.); [email protected] (G.G.) 2 CNR-ITAE “Nicola Giordano”, Via S. Lucia Sopra Contesse 5, 98126 Messina, Italy; [email protected] (G.B.); [email protected] (F.F.) * Correspondence: [email protected]; Tel.: +39-098-449-6669 Received: 13 November 2017; Accepted: 22 December 2017; Published: 24 December 2017 Abstract: This review reports recent achievements in dimethyl ether (DME) synthesis via CO2 hydrogenation. This gas-phase process could be considered as a promising alternative for carbon dioxide recycling toward a (bio)fuel as DME. In this view, the production of DME from catalytic hydrogenation of CO2 appears as a technology able to face also the ever-increasing demand for alternative, environmentally-friendly fuels and energy carriers. Basic considerations on thermodynamic aspects controlling DME production from CO2 are presented along with a survey of the most innovative catalytic systems developed in this field. During the last years, special attention has been paid to the role of zeolite-based catalysts, either in the methanol-to-DME dehydration step or in the one-pot CO2-to-DME hydrogenation. Overall, the productivity of DME was shown to be dependent on several catalyst features, related not only to the metal-oxide phase—responsible for CO2 activation/hydrogenation—but also to specific properties of the zeolites (i.e., topology, porosity, specific surface area, acidity, interaction with active metals, distributions of metal particles, .
    [Show full text]
  • Reassessment of 3 Tolerance Exemptions for Ethylene Glycol
    UNITED STATES ENVIRONMENTAL PROTECTION AGENCY - +,TE* sr4, WASHINGTON, D.C. 20460 Q c, OFFICE OF PREVENTION, PESTICIDES, AND TOXIC SUBSTANCES DATE: June 29,2006 ACTION MEMORANDUM SUBJECT: Reassessment of 3 Tolerance Exemptions for Ethylene Glycol, Diethylene Glycol, and the Combination of Diethylene Glycol Monomethyl Ether, Diethylene Glycol Monoethyl Ether, and Diethylene Glycol Monobutyl Ether FROM: Pauline Wagner, Chief F b.~!!<Lo 'v \ 3~~10 b Inert Ingredient Assessment Branch Registration Division (7505P) TO: Lois A. Rossi, Director Registration Division (7505P) 1. FQPA REASSESSMENT ACTION Action: Reassessment of three inert exemptions from the requirement of a tolerance. The reassessment decision is to maintain the inert tolerance exemptions "as-is." Table 1. Tolerance Exemptions Being Reassessed in this Document CM~fl,~aa,it Appeara in the CFR CAS iT01muw Registry Number @.I@,- Bxemption $in$@ Uses Name %SOa ,. Exprmsion. Antifreeze, deactivator for all pesticides 107-21-1 920 Ethylene glycol - - - used before crop emerges from soil and in 1,2-Ethanediol herbicides before or after crop emerges Deactivator, adjuvant for formulations used before crop emerges from soil and 11 1-46-6 920 Diethylene glycol --- deactivator for formulations used before Ethanol, 2,2'-oxybis- (9CI) crop emerges from soil, stabilizer Diethylene glycol 1 11-77-3 monomethyl ether Ethanol, 2-(2-methoxyethoxy)- 920 Diethylene glycol monoethyl - - - Deactivator for formulations used before 1 1 1-90-0 ether crop emerges from soil, stabilizer Ethanol, 2-(2-ethoxyethoxy)- Diethylene glycol monobutyl 112-34-5 ether Ethanol, 2-(2-butoxyethoxy)- a. Residues listed in 40 CFR 180.920 are exempted from the requirement of a tolerance when used in accordance with good agricultural practice as inert (or occasionally active) ingredients in pesticide formulations applied to growing crops only.
    [Show full text]
  • Reactions of Alkenes and Alkynes
    05 Reactions of Alkenes and Alkynes Polyethylene is the most widely used plastic, making up items such as packing foam, plastic bottles, and plastic utensils (top: © Jon Larson/iStockphoto; middle: GNL Media/Digital Vision/Getty Images, Inc.; bottom: © Lakhesis/iStockphoto). Inset: A model of ethylene. KEY QUESTIONS 5.1 What Are the Characteristic Reactions of Alkenes? 5.8 How Can Alkynes Be Reduced to Alkenes and 5.2 What Is a Reaction Mechanism? Alkanes? 5.3 What Are the Mechanisms of Electrophilic Additions HOW TO to Alkenes? 5.1 How to Draw Mechanisms 5.4 What Are Carbocation Rearrangements? 5.5 What Is Hydroboration–Oxidation of an Alkene? CHEMICAL CONNECTIONS 5.6 How Can an Alkene Be Reduced to an Alkane? 5A Catalytic Cracking and the Importance of Alkenes 5.7 How Can an Acetylide Anion Be Used to Create a New Carbon–Carbon Bond? IN THIS CHAPTER, we begin our systematic study of organic reactions and their mecha- nisms. Reaction mechanisms are step-by-step descriptions of how reactions proceed and are one of the most important unifying concepts in organic chemistry. We use the reactions of alkenes as the vehicle to introduce this concept. 129 130 CHAPTER 5 Reactions of Alkenes and Alkynes 5.1 What Are the Characteristic Reactions of Alkenes? The most characteristic reaction of alkenes is addition to the carbon–carbon double bond in such a way that the pi bond is broken and, in its place, sigma bonds are formed to two new atoms or groups of atoms. Several examples of reactions at the carbon–carbon double bond are shown in Table 5.1, along with the descriptive name(s) associated with each.
    [Show full text]