Towards the Development of a Marine Protected Area at the Prince Edward Islands

Total Page:16

File Type:pdf, Size:1020Kb

Towards the Development of a Marine Protected Area at the Prince Edward Islands WWF South Africa Report Series - 2008/Marine/001 Deon Nel and Aaniyah Omardien (Editors) Towards the Development of a Marine Protected Area at the Prince Edward Islands WWF South Africa Report Series – 2008/Marine/001 Compiled and edited by: Deon Nel & Aaniyah Omardien WWF Sanlam Living Waters Partnership, WWF South Africa, Private Bag X2, Die Boord, 7613, South Africa Email: [email protected] Email: [email protected] JULY 2008 Towards the Development of a Marine Protected Area at the Prince Edward Islands Contents Pg Executive Summary __________________________________________________ ii PART 1: Conserving pattern and process in the Southern Ocean: Designing a 1 Marine Protected Area for the Prince Edward Islands PART 2: Updated maps and statistics of the legal Patagonian Toothfish 36 (Dissostichus Eleginoides) fishery in South Africa’s exclusive economic zone at the Prince Edward Islands PART 3: South Africa’s proposed Marine Protected Area at the Prince Edward 50 Islands: an analysis of legal obligations, options and opportunities PART 4: Draft Management Plan for the Prince Edward Islands Marine 101 Protected Area PART 5: Proposal for the proclamation of the Prince Edward Islands Marine 175 Protected Area Pg i Towards the Development of a Marine Protected Area at the Prince Edward Islands Executive Summary In June 2004, the South African Minister of Environmental Affairs and Tourism, Minister van Schalkwyk, announced South Africa’s intention to declare one of the largest Marine Protected Areas (MPAs) in the world around its sub-Antarctic Prince Edward Islands. This catalyzed a partnership between WWF and the Department of Environmental Affairs and Tourism (DEAT) to guide the implementation of this commitment. This report is a compilation of the work undertaken by this partnership over three years. Firstly, in order to ensure that the Minister’s commitment was implemented in a way which maximized its ecological significance and minimized its impact on the legal fishery operations, WWF and DEAT commissioned a systematic marine conservation plan for the Exclusive Economic Zone (EEZ) surrounding the Prince Edward Islands (Part 1). After collating all available distributional data on species, benthic habitats, ecosystem processes and fishing activities, and discussions with all stakeholders, C-Plan software was used to delineate a proposed MPA, with three management zones. Compromises between conservation target achievement and the commercial fishery are apparent in the final reserve design. It was recognised that this was the best delineation that could be made on the information available at the time and that the proposed MPA boundaries could change over time as new data become available and as impacts of climate change become more evident. Subsequent to this report, further analyses were undertaken on new fisheries data to quantify the potential impact that the proposed MPA would have on the legal fishery operating around the islands. The outputs of these analyses (Part 2) were the subject of further negotiations with the industry. In these discussions it was clear that the legal fishery played an important surveillance role around the islands and that compromising the economic viability of the legal fishery could compromise the objectives of the MPA. These discussions were significant in agreeing on a set of recommended proposed regulations for each of the management zones. An analysis of the legal context for such a MPA was also undertaken (Part 3). This analysis revealed that the declaration of this MPA was consistent with South Africa’s commitments and obligations under several international legal agreements. Whilst the Prince Edward Islands themselves are declared as a Special Nature Reserve under the National Environmental Management: Protected Areas Act of 2003 (NEMPA), it is recommended that the entire Prince Edward Islands MPA is designated under the section 43 of the Marine Living Resources Act of 1998. Pg ii Towards the Development of a Marine Protected Area at the Prince Edward Islands Further it is noted that national and international legal mechanisms exist for regulating marine traffic, which would greatly assist in the prosecution of illegal vessels in the area, by obviating the difficult challenge of proving that the errant vessel was in fact fishing at the time of detection. It was also recommended that South Africa, speedily conclude its bilateral compliance agreements with both France and Australia. Subsequent to the development of the above reports it was made clear to WWF that the Minister would not move ahead with the declaration until a management plan was developed for the MPA. WWF therefore commissioned the development of a draft management plan which is found in Part 4. The draft management plan includes biophysical, governance and compliance, and socio-economic strategic components and puts forward an integrated compliance framework for this MPA. Importantly, the draft management plan points out that the enforcement of an MPA around the Prince Edward Islands would not require the commitment of additional resources, over and above those already required to fulfill South Africa’s obligations to manage and protect the marine resources of this area as required by the Law of the Sea Convention (Articles 192 and 194). In fact the MPA is merely a spatial delineation that should facilitate more efficient protection of the most important biodiversity assets of the area. Finally, after consideration of the outputs of the above processes and following five separate stakeholder consultation processes, a set of recommendations were put forward (Part 5) for the declaration of the Prince Edward Islands, in October 2007. The marine biodiversity of the Prince Edward Islands is globally important and worthy of protection. So much so, that South Africa is in process of nominating the Islands as a World Heritage Site which would include a marine component. Unfortunately, the protection of these resources in the past has been poor, with the area dogged by rampant illegal poaching of Patagonian toothfish during the mid to late 1990’s. Four years after the Ministers’ announcement of his intentions, it is hoped that the work presented in this publication will finally culminate in the declaration of this important MPA. Pg iii Designing the Prince Edward Islands Marine Protected Area CONSERVING PATTERN AND PROCESS IN THE SOUTHERN OCEAN: DESIGNING A MARINE PROTECTED AREA FOR THE PRINCE EDWARD ISLANDS A.T. Lombard1, B. Reyers2, L. Schonegevel2, J. Cooper3, L. Smith-Adao2, D. Nel4, W. Froneman5, I. Ansorge6, M. Bester7, C. Tosh7, T. Strauss8, T. Akkers9, O. Gon10, R. Leslie9, S. Chown11 1Marine Biology Research Institute, University of Cape Town, Rondebosch 7701, South Africa Email: [email protected] 2Natural Resources and the Environment, CSIR, P O Box 320, Stellenbosch 7599, South Africa 3Avian Demography Unit, Department of Statistical Sciences, University of Cape Town, Rondebosch 7701, South Africa 4WWF-SA, Millennia Park, 16 Stellentia Avenue, Stellenbosch, 7613, South Africa 5Department of Zoology and Entomology, Southern Ocean Group, Rhodes University, PO Box 94, Rhodes University, 6140, Grahamstown, South Africa 6Department of Oceanography, University of Cape Town, 7701, Rondebosch, South Africa 7Mammal Research Institute, Department of Zoology & Entomology, School of Biological Sciences, University of Pretoria, Pretoria 0002, South Africa 8Department of Nature Conservation, Nelson Mandela Metropolitan University, Private Bag X6531, George 6530, South Africa 9Marine and Coastal Management, Private Bag X2, Roggebaai 8012, South Africa 10South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown 6140, South Africa 11DST Centre of Excellence for Invasion Biology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa ABSTRACT The role of marine protected areas (MPAs) in conserving marine biodiversity while maximizing fishery benefits is gaining increased recognition internationally and was the basis for a proposal by the South African government to proclaim a major new MPA in the Exclusive Economic Zone (EEZ) around the Prince Edward Islands. This MPA would serve dual roles of 1) restoring populations of the commercially important Patagonian toothfish (Dissotichus eleginoides), while reducing the bycatch of the fishery, and 2) forming part of a representative global system of MPAs to protect marine biodiversity. This study follows systematic conservation planning methods to identify an MPA that will: (1) conserve biodiversity patterns and processes; (2) allow fishing to continue sustainably in the region; and (3) comprise sensible marine management boundaries. Following a significant data collation effort of distribution data on species, benthic habitats, ecosystem processes and fishing activities, we used C-Plan software to identify boundaries for a proposed MPA. The MPA consists of three zones: four IUCN Category 1A reserves (13% of EEZ), a Category IV reserve (21% of EEZ) and three Category VI reserves which cover the rest of the EEZ. The combined “no-take” area of the MPA (i.e. the Category 1A and IV reserves) thus covers 34% of the EEZ, which is greater than the 20% global recommendation but is necessary if the MPA is to achieve its objectives. Although MPA design has received much attention in recent times and management of the Southern Ocean is well developed, this study plays a vital role in ensuring the protection of representative habitats and will hopefully provide
Recommended publications
  • Towards the Trophic Structure of the Bouvet Island Marine Ecosystem
    Polar Biol (2006) 29: 106–113 DOI 10.1007/s00300-005-0071-8 ORIGINAL PAPER U. Jacob Æ T. Brey Æ I. Fetzer Æ S. Kaehler K. Mintenbeck Æ K. Dunton Æ K. Beyer Æ U. Struck E.A. Pakhomov Æ W.E. Arntz Towards the trophic structure of the Bouvet Island marine ecosystem Received: 6 June 2005 / Revised: 7 September 2005 / Accepted: 14 September 2005 / Published online: 19 October 2005 Ó Springer-Verlag 2005 Abstract Although Bouvet Island is of considerable importance for Southern Ocean species conservation, Introduction information on the marine community species inventory and trophic functioning is scarce. Our combined study Bouvet Island (Bouvetøya, 54°72¢60S, 3°24¢E) is located of stable isotopes and feeding relationships shows that just south of the Antarctic Polar Front (APF) and (1) the marine system conforms to the trophic pattern within the Antarctic circumpolar current (ACC, Fig. 1, described for other Antarctic systems within the Ant- Foldvik et al. 1981; Perissinotto et al. 1992). Owing to arctic circumpolar current (ACC); (2) both the benthic its geographical isolation (i.e. 2,590 km downstream of and the pelagic subsystem are almost exclusively linked the South Sandwich Islands, 2,570 km upstream of the via suspended particulate organic matter (SPOM); and Prince Edward Islands and 1,600 km north of Queen (3) there is no evidence of a subsystem driven by mac- Maud Land, Antarctica) the island represents a pristine roalgae. Bouvet Island can therefore be characterized as environment and has been identified as an important a benthic ‘‘oasis’’ within a self-sustaining open ocean case study for the conservation of intact ecosystems pelagic system.
    [Show full text]
  • First Record of a Broad-Billed Prion Pachyptila Vittata at Coronation Island, South Orkney Islands
    Blight & Woehler: First record of a Broad-billed Prion at Coronation Island 191 FIRST RECORD OF A BROAD-BILLED PRION PACHYPTILA VITTATA AT CORONATION ISLAND, SOUTH ORKNEY ISLANDS LOUISE K. BLIGHT1,2 & ERIC J. WOEHLER3 1Procellaria Research and Consulting, 944 Dunsmuir Road, Victoria, British Columbia, V9A 5C3, Canada 2Current address: Centre for Applied Conservation Research, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada ([email protected]) 3School of Zoology, University of Tasmania, Hobart, Tasmania, 7005, Australia Received 15 April 2008, accepted 2 August 2008 The known breeding distribution of Broad-billed Prions Pachyptila or as a bird blown out of its normal at-sea range by strong winds vittata is restricted to Tristan da Cunha and Gough Islands in the during poor weather. Alternatively, there may be low numbers of South Atlantic Ocean and to offshore islands around New Zealand Broad-billed Prions breeding at poorly-surveyed sub-Antarctic and the Snares and Chatham Islands, with the range at sea believed colonies, such as the South Orkney Islands. Antarctic Prions are one to extend to coastal South Africa in the South Atlantic Ocean and of the most numerous seabird species in the Antarctic (Marchant & near-shore waters around New Zealand (Marchant & Higgins 1990). Higgins 1990); they nest in the South Orkney Islands (Marchant & The taxonomy of prions remains controversial, with most authors Higgins 1990). It is possible that low numbers of breeding Broad- recognising up to six species, but varying numbers of subspecies. billed Prions have been overlooked amongst their congeners. The at-sea ranges of many Southern Ocean seabird species are Although no sympatric breeding sites are known for the two species still incompletely described, with relatively few surveys obtaining (Shirihai 2002) and the presence of this bird may have been an at-sea data for prions.
    [Show full text]
  • Birdlife Australia Rarities Committee Unusual Record Report Form
    BirdLife Australia Rarities Committee Unusual Record Report Form This form is intended to aid observers in the preparation of a submission for a major rarity in Australia. (It is not a mandatory requirement) Please complete all sections ensuring that you attach all relevant information including any digital images (email to [email protected] or [email protected]). Submissions to BARC should be submitted electronically wherever possible. Full Name: Rob Morris Office Use Address: Phone No: Robert P. Morris, Email: Full Name: Andrew Sutherland (first noticed the second bird) Address: Phone No: Email: Species Name: Broad-billed Prion Scientific Name: Pachyptila vittata Date(s) and time(s) of observation: 11 August 2019 First individual photographed at 12.22 – last bird photographed at 13.11. How long did you watch the bird(s)? c30+ minutes – multiple sightings of 2 birds (possibly 3) and then an additional sighting of 1 bird 20 minutes later whilst travelling, flying past and photographed. First and last date of occurrence: 11 August 2019 Distance to bird: Down to approximately 20-30 m Site Location: SE Tasmania. Approximately 42°50'36.30"S 148°24'46.23"E 22NM ENE of Pirates Bay, Eaglehawk Neck. We went north in an attempt to seek lighter winds and less swell and avoid heading straight into the strong SE winds and southerly swell. Habitat (describe habitat in which the bird was seen): Continental slope waters at a depth of approximately 260 fathoms. Sighting conditions (weather, visibility, light conditions etc.): Weather: Both days were mostly cloudy with occasional periods of bright sunshine.
    [Show full text]
  • DIET and ASPECTS of FAIRY PRIONS BREEDING at SOUTH GEORGIA by P.A
    DIET AND ASPECTS OF FAIRY PRIONS BREEDING AT SOUTH GEORGIA By P.A. PRINCE AND P.G. COPESTAKE ABSTRACT A subantarctic population of the Fairy Prion (Pachyprzla turtur) was studied at South Georgia in 1982-83. Full measurements of breeding birds are given, together with details of breeding habitat, the timing of the main breeding cycle events, and chick growth (weight and wing, culmen and tarsus length). Regurgitated food samples showed the diet to be mainly Crustacea (96% by weight), fish and squid comprising the rest. Of crustaceans, Antarctic krill made up 38% of items and 80% by weight. Copepods (four species, mostly Rhincalanus gigas) made up 39% of items but only 4% by weight; amphipods [three species, principally Themisto gaudichaudii made up 22% of items and 16% by weight. Diet and frequency of chick feeding are compared with those of Antarctic Prions and Blue Petrels at the same site; Fairy Prions are essentially intermediate. INTRODUCTION The Fairy Prion (Pachyptila turtur) is one of six members of a genus confined to the temperate and subantarctic regions of the Southern Hemisphere. With the Fulmar Prion (P. crassirostris), it forms the subgenus Pseudoprion. Its main area of breeding distribution is between the Antarctic Polar Front and the Subtropical Convergence. It is widespread in the New Zealand region, from the north of the North Island south to the Antipodes Islands and Macquarie Island, where only about 40 pairs survive (Brothers 1984). Although widespread in the Indian Ocean at the Prince Edward, Crozet and Kerguelen Islands, in the South Atlantic Ocean it is known to breed only on Beauchene Island (Falkland Islands) (Strange 1968, Smith & Prince 1985) and South Georgia (Prince & Croxall 1983).
    [Show full text]
  • Krill Caught by Predators and Nets: Differences Between Species and Techniques
    MARINE ECOLOGY PROGRESS SERIES Vol. 140: 13-20. 1996 Published September 12 Mar Ecol Prog Ser Krill caught by predators and nets: differences between species and techniques K. Reid*, P. N. Trathan, J. P. Croxall, H. J. Hill British Antarctic Survey, Natural Environment Research Council, High Cross. Madingley Road, Cambridge CB3 OET, United Kingdom ABSTRACT. Samples of Antarchc krill collected from 6 seabird species and Antarctic fur seal dunng February 1986 at South Georgia were compared to krill from scientific nets fished in the area at the same time. The length-frequency d~stributionof krill was broadly similar between predators and nets although the krill taken by diving species formed a homogeneous group wh~chshowed significant dif- ferences from knll taken by other predators and by nets There were significant differences In the maturity/sex stage composition between nets and predators; in particular all predator species showed a consistent sex bias towards female krill. Similarities in the knll taken by macaroni [offshore feeding) and gentoo (inshore feeding) penguins and differences between krill taken by penguins and alba- trosses suggest that foraging techniques were more important than foraging location in influencing the type of krill in predator diets. Most krill taken by predators were adult; most female krill were sexually active (particularly when allowance is made for lnisclassification bias arising from predator digestion). Because female krill are larger, and probably less manouverable, than males, the biased sex ratio In predator diets at thls t~meof year may reflect some comblnat~onof selectivity by predators and superior escape responses of male krill.
    [Show full text]
  • Biological Survey of the Prince Edward Islands, December 2008
    Research Letters South African Journal of Science 105, July/August 2009 317 drafted in 2006 to replace the current plan adopted in 1996; the Biological survey of the declaration of a large Marine Protected Area, including all terri- torial waters out to 12 nautical miles (nm) and extending in Prince Edward Islands, several directions to the limit of the islands’ 200-nm Exclusive December 2008 Economic Zone; and the nomination of the islands as a Natural Site to the World Heritage Convention4–8 (see also http://whc. unesco.org/en/tentativelists/1923). J. Coopera,b*, M.N. Besterc, S.L.Chownb, In the main, biological research conducted on the Prince a,d e e Edward Islands has been restricted to the larger Marion Island, R.J.M. Crawford , R. Daly , E. Heyns , d f b which supports a combined weather and research station, T. Lamont , P.G. Ryan and J.D. Shaw relieved annually.9 Visits to uninhabited Prince Edward Island occur more rarely and normally only during the annual relief voyages to Marion Island in April/May. Such visits are subject to strict controls on party size, duration and interval.4,5 In addition, A biological survey of the Prince Edward Islands took place in most physical, chemical and biological oceanographic research December 2008. The survey repeated an earlier survey of the conducted in the vicinity of the islands has been carried out populations of surface-nesting seabirds on both islands and of fur during annual relief voyages. seals (Arctocephalus spp.) and alien plants on Prince Edward The Prince Edward Islands are internationally-important Island in December 2001.
    [Show full text]
  • Terrestrial Invasions on Sub-Antarctic Marion and Prince Edward Islands
    Bothalia - African Biodiversity & Conservation ISSN: (Online) 2311-9284, (Print) 0006-8241 Page 1 of 21 Original Research Terrestrial invasions on sub-Antarctic Marion and Prince Edward Islands Authors: Background: The sub-Antarctic Prince Edward Islands (PEIs), South Africa’s southernmost 1 Michelle Greve territories have high conservation value. Despite their isolation, several alien species have Rabia Mathakutha1 Christien Steyn1 established and become invasive on the PEIs. Steven L. Chown2 Objectives: Here we review the invasion ecology of the PEIs. Affiliations: Methods: We summarise what is known about the introduction of alien species, what 1Department of Plant and Soil Sciences, University of influences their ability to establish and spread, and review their impacts. Pretoria, South Africa Results: Approximately 48 alien species are currently established on the PEIs, of which 26 are 2School of Biological Sciences, known to be invasive. Introduction pathways for the PEIs are fairly well understood – species Monash University, Australia have mainly been introduced with ship cargo and building material. Less is known about establishment, spread and impact of aliens. It has been estimated that less than 5% of the PEIs Corresponding author: is covered by invasive plants, but invasive plants have attained circuminsular distributions on Michelle Greve, [email protected] both PEIs. Studies on impact have primarily focussed on the effects of vertebrate invaders, of which the house mouse, which is restricted to Marion Island, probably has the greatest impact Dates: on the biodiversity of the islands. Because of the risk of alien introductions, strict biosecurity Received: 01 Aug. 2016 regulations govern activities at the PEIs. These are particularly aimed at stemming the Accepted: 05 Dec.
    [Show full text]
  • The Skull of a Fossil Prion (Aves: Procellariiformes) from the Neogene (Late Miocene) of Northern Chile Andean Geology, Vol
    Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Sallaberry, Michel; Rubilar-Rogers, David; Suárez, Mario E.; Gutstein, Carolina S. The skull of a fossil Prion (Aves: Procellariiformes) from the Neogene (Late Miocene) of northern Chile Andean Geology, vol. 34, núm. 1, enero, 2007, pp. 147-154 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173918593008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative PALEONTOLOGICAL NOTE The skull of a fossil Prion (Aves: Procellariiformes) from the Neogene (Late Miocene) of northern Chile Michel Sallaberry Laboratorio de Zoología de Vertebrados, Universidad de Chile, Facultad de Ciencias, David Rubilar-Rogers Las Palmeras 3425, Ñuñoa, Santiago [email protected] [email protected] Mario E. Suárez Museo Paleontológico de Caldera, Av. Wheelwrigh 001, Caldera, Chile Carolina S. Gutstein [email protected] [email protected] ABSTRACT The fossil skull of a procellariid, Pachyptila sp., from Late Miocene marine sediments of the Bahía Inglesa Formation (Midde Miocene-Pliocene) of Northern Chile is described. The fossil is compared with extant species of the family Procellariidae. This discovery represents the first Neogene fossil record of the genus Pachyptila from South America. Key words: Fossil Prion, Pachyptila, Procellariiformes, Neogene, Chile. RESUMEN El cráneo de un Petrel-paloma fósil (Aves: Procellariiformes) del Neógeno (Mioceno Tardío) del norte de Chile. Se describe un cráneo fósil de un procelláriido, Pachyptila sp., proveniente de sedimentos marinos del Mioceno Tardío de la Formación Bahía Inglesa (Mioceno Medio-Plioceno) del norte de Chile.
    [Show full text]
  • 1 Spatial Distribution of Predator/Prey Interactions in the Scotia
    Spatial distribution of predator/prey interactions in the Scotia Sea: implications for measuring predator/ fisheries overlap. Keith Reid 1*, Michelle Sims 1, Richard W. White 2,3, Keith W. Gillon 2,3 1 British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, United Kingdom. 2 Falklands Conservation, Jetty Visitor Centre, Stanley, Falklands Islands. 3 Joint Nature Conservancy Committee, Monkstone House, City Road. Peterborough, PE1 1JY * Correspondence - email [email protected] Fax +44 1223 221259 1 Abstract The measurement of spatial overlap between predators and fisheries exploiting a common prey source is dependent upon the measurement scale used and the use of inappropriate scales may provide misleading results. Previous assessments of the level of overlap between predators and fisheries for Antarctic krill Euphausia superba in the South Shetland Islands have used different measurement scales and arrives at contradictory conclusions. At-sea data from observations of krill predators during the CCAMLR 2000 krill survey were used to identify the areas of potential overlap with fisheries in the Scotia Sea and to determine the scale at which such overlap should be measured. The relationship between auto-correlation and sampling distance was used to identify the characteristic scales of the distribution of predators, krill and krill fisheries and an effort- corrected index of relative abundance as a function of distance from land was used to identify the characteristics of areas of high potential for overlap. Despite distinct differences in foraging ecology a group of krill-dependent species including chinstrap penguin Pygoscelis antarctica, (Antarctic) fur seal Arctocephalus sp.
    [Show full text]
  • Salvin's Prion Pachyptila Salvini Captured Alive on Beach at Black Rocks, Victoria, 27Th July 1974
    1 Salvin’s Prion Pachyptila salvini captured alive on beach at Black Rocks, Victoria, 27th July 1974 by Mike Carter Fig. 1. Ailing Salvin’s Prion captured alive on beach at Black Rocks, Victoria, 27 July 1974 During a gale on 27th July 1974, a Salvin’s Prion was observed flying over the breakers just beyond the rocks on the beach at Black Rocks, Victoria. Obviously debilitated, it came ashore and sought refuge in rock pools. It was rescued but died within five hours. This observation was made by a group of local and international seabird enthusiasts that included Dr Bill Bourne (from the UK), Gavin Johnstone & Noels Kerry from the Australian Antarctic Division, Peter Menkhorst, Richard Loyn, Paul Chick and me. Overseas and interstate visitors had joined locals to attend an International Ornithological Congress in Melbourne. The attached photos are recent digital copies of transparencies taken immediately after capture. Dimensions in mm measured as described in Marchant & Higgins (1990) on 29-07-74. (L = left, R = right), Wing 191; Tail 94; Tarsus (L) 36.4, (R) 35.9; Middle toe (L) 45.2, (R) 45.7; Claw (L) 8.8, (R) 8.0. Culmen (C) 31.8; Width (W) 16.4; Ratio (C)/ (W) 1.94: Bill depth max 13.2; Bill depth min 7.2. Apparent bulk = 1/4CW(BDmax+BDmin) = 2661 cub mm. I find this generated number to be a good discriminator for identifying Victorian prion corpses. 2 Figs. 2 to 5. Ailing Salvin’s Prion captured alive on beach at Black Rocks, Victoria, 27 July 1974 Identification Identification at the time was based mainly on information in Serventy, Serventy & Warham (1971).
    [Show full text]
  • Surface Temperature Field in the Crozet and Kerguelen Whaling Grounds
    SURFACE TEMPERATURE FIELD IN THE CROZET AND KERGUELEN WHALING GROUNDS SABURO MACHIDA Whales Research Institute, Tokyo ABSTRACT Some oceanographic conditions in the summer season at the surface in the Crozet and Kerguelen Ridge regions, where the good whaling grounds of baleen whales occur, are discussed on the basis of the distribution of the surface temperature observed by the Japanese whaling fleets in the 1965/66 to 1972/73 Antarctic seasons. The surface isotherms bend northwards over the submarine rising around the Prince Edward, Crozet and Kerguelen Islands. These bends of the iso­ therms suggest to reflect the bending of the surface current, and that it is presumably influenced by the bottom topography. They may be also sug­ gested that the convergence efficiency of the current is comparatively intense north and east of these submarine risings. INTRODUCTION It is well known that the good whaling grounds of baleen whales occur in the Crozet and Kerguelen Ridge regions. In these two regions right whales were taken by the old American whalers mainly in the 19th century and pigmy blue whales were also taken there in the early 1960's. Recently the Japanese whaling fleets have been often searching for the favorite haunts of the sei and fin whales in the regions. We have little knowledge of the general oceangoraphic conditions in the Crozet and Kerguelen whaling grounds, though the oceanographic conditions are the close living evnvironment to the whales. A knowledge of oceanographic conditions is fundamentally necessary to think systematic study on the environment of the habits of various marine organisms. From this point of view, therefore, the purpose of the present study is to discuss the oceanographic conditions at the surface in the Crozet and Kerguelen Ridge regions on the basis of the surface temperature distribu­ tion, which was observed by the Japanese whaling fleets.
    [Show full text]
  • Densities of Antarctic Seabirds at Sea and the Presence of the Krill Eupha Usia Superba
    DENSITIES OF ANTARCTIC SEABIRDS AT SEA AND THE PRESENCE OF THE KRILL EUPHA USIA SUPERBA BRYAN S. OBST Departmentof Biology,University of California,Los Angeles, California 90024 USA ABSTRACT.--Theantarctic krill Euphausiasuperba forms abundant,well-organized schools in the watersoff the AntarcticPeninsula. Mean avian densityis 2.6 timesgreater in waters where krill schoolsare present than in waters without krill schools.Seabird density is a good predictorof the presenceof krill. Seabirddensity did not correlatewith krill density or krill schooldepth. Disoriented krill routinely were observedswimming near the surface above submergedschools, providing potential prey for surface-feedingbirds. Responsesof seabird speciesto the distribution of krill schoolsvaried. The small to me- dium-sizeprocellariiform species were the best indicatorsof krill schools;large procellari- iforms and coastalspecies were poor indicators.Pygoscelis penguins occurredat high den- sitiesonly in the presenceof krill schools.These responses are consistentwith the constraints imposedby the metabolicrequirements and reproductivestrategies of eachof thesegroups. Krill schoolswere detectednear the seasurface throughout the day. Correlationsbetween seabirddensity and the presenceof krill during daylight hourssuggest that diurnal foraging is important to the seabirdsof this region. Received19 December1983, accepted4 December 1984. RELATIVELY little is known about the factors birds depend on directly or indirectly for food influencing the distribution of seabirdsin the (Haury et al. 1978). These observationssuggest marine habitat. The past decade has produced that relatively small-scalephenomena, such as a number of studiesattempting to correlatepat- local concentrationsof prey, may be of major terns of avian abundance and distribution with importance in determining the patterns of sea- physical featuresof the oceansuch as currents bird distribution within the broad limits set by and convergences,water masses,and temper- featuresof the physical ocean.
    [Show full text]