Principles of Small-Scale Hydraulic Systems for Human Assistive Machines

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Principles of Small-Scale Hydraulic Systems for Human Assistive Machines A Dissertation SUBMITTED TO THE FACULITY OF UNIVERSITY OF MINNESOTA BY Brett Cullen Neubauer IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Advisor: William K. Durfee, PhD March 2017 © Brett C. Neubauer 2017 Acknowledgements I would like to thank my parents Paul and Linda Neubauer in the continuous support of my academic pursuits. It is their guidance from a young age that led me to pursue my aspirations in education and of knowledge. I would also like to give thanks to my adviser Professor William Durfee at the University of Minnesota for sharing his expertise and guidance during my graduate education. There are several individuals that need to be acknowledged for their efforts in this research. Jonathan Nath is a mechanical engineering student completing his master degree at the University of Minnesota, and he provided assistance in designing and building the electrohydraulic power supply for the hydraulic ankle-foot orthosis. He has also provided assistance and expertise in the design and construction of the ankle actuator assemblies of the pediatric hydraulic ankle-foot orthosis. Sangyoon Lee, a PhD candidate in the mechanical engineering program at the University of Minnesota, assisted in developing the axial piston pump performance model. Dr. Andre Ries is a PhD graduate working at Gillette Children’s Hospital in St. Paul, MN, and he assisted with the collection of AFO stiffness data using the BRUCE measurement system. Dr. Ries also provided gait data collected with 3D motion capture for patients with cerebral palsy. This work was supported the National Institutes of Health, grant number R21 EB 019390-02, and by the Center for Compact and Efficient Fluid Power, a National Science Foundation Engineering Research Center, EEC-0540834. In addition, I had the opportunity and privilege to be receive the National Science Foundation’s Graduate Research Fellowship from 2012-2015 providing additional financial support for my graduate education. i | P a g e Abstract The high power and force density of hydraulic actuators, along with the ability to distribute system weight through the separation of the power supply and actuators makes hydraulic technology ideal for use in human assistive machines. However, hydraulic systems often operate inefficiently due to throttling losses in the control valves and have increased viscous losses in small-scale applications as bore size is decreased. The objective of this research is to address the limitations of small-scale hydraulics using validated modeling techniques to optimize performance and minimize system weight. This research compares and contrasts the use of different hydraulic technology as well as develops detailed models of small-scale hydraulic components. These models are used to construct a software tool that optimizes the design of a hydraulic system using specified input requirements of actuation, conduit lengths, operating pressure, and runtime. A system-level energetics analysis provides estimates of efficiencies and weights, while a heat transfer analysis estimates the working fluid and component surface temperatures. In addition, the dynamic performance of different small-scale pump and valve controlled hydraulic systems are simulated to compare the cycle efficiencies, rise times, and flow rate capabilities as a function of duty cycles. The use of an accumulator, unloading valves, variable displacement pumps, and proportional pressure control are explored to improve the efficiency of the system during intermittent operation. In addition a small-scale, digital, high frequency switching valve is designed and simulated to reduce the throttling losses of a traditional proportional control valve. This body of knowledge is used to design, prototype, and performance test two hydraulic powered ankle-foot orthoses. The first orthosis is an untethered system that provides active gait assistance. Hydraulics allows the system to be separated into two parts as the actuator is secured to the ankle, and the portable electrohydraulic power supply is positioned on the lower back. The second orthosis emulates the dynamics of a passive ankle-foot orthosis providing torque assistance to bring the ankle to a neutral position. This device is specifically designed to reduce the time and resources in the clinical prescription of passive ankle-foot orthoses while providing more quantitative metrics. ii | P a g e Table of Contents Table of Contents------------------------------------------------------------------------------------------------------iii List of Figures----------------------------------------------------------------------------------------------------------viii List of Tables-----------------------------------------------------------------------------------------------------------xiii Chapter 1 Applications, Research Objectives, and Prior Art ------------------------------------------------ 1 1.1 Introduction ----------------------------------------------------------------------------------------------------- 1 1.1.1 Applications ----------------------------------------------------------------------------------------------- 1 1.1.2 Comparison of actuation methods with human muscle --------------------------------------- 2 1.1.3 Limitations of small-scale hydraulic systems ------------------------------------------------------ 5 1.1.4 Research objectives ------------------------------------------------------------------------------------- 6 1.2 Prior art on small-scale hydraulics in human assistive machines ---------------------------------- 7 Chapter 2 Comparisons, Models, and Properties of Small-Scale Hydraulic Components----------- 13 2.1 Introduction ---------------------------------------------------------------------------------------------------- 13 2.2 Working fluids ------------------------------------------------------------------------------------------------- 13 2.3 Cylinders and Seals ------------------------------------------------------------------------------------------- 18 2.4 Hose, Tubing, and Viscous Losses ------------------------------------------------------------------------ 22 2.5 Accumulators -------------------------------------------------------------------------------------------------- 25 2.5.1 Comparison of compressed gas and spring loaded accumulators -------------------------- 26 2.6 Valves ------------------------------------------------------------------------------------------------------------ 32 2.6.1 Valve function ------------------------------------------------------------------------------------------- 34 2.6.2 Electromechanical Valves ----------------------------------------------------------------------------- 35 2.7 Motors and Pumps Technology --------------------------------------------------------------------------- 38 2.7.1 Comparison gear and axial piston pumps -------------------------------------------------------- 40 2.7.2 Model of hydraulic axial piston pump ------------------------------------------------------------- 43 Chapter 3 Steady State Modeling and Optimal Design of Small-Scale Hydraulic Systems ---------- 53 3.1 Objective -------------------------------------------------------------------------------------------------------- 53 3.1.1 Pump and Valve controlled actuation ------------------------------------------------------------- 54 3.1.2 Prior art in the design of small-scale hydraulic systems --------------------------------------- 54 3.2 Methods -------------------------------------------------------------------------------------------------------- 55 iii | P a g e 3.2.1 Cylinder Design ------------------------------------------------------------------------------------------ 56 3.2.2 Conduit Design ------------------------------------------------------------------------------------------ 59 3.2.3 Valve Design---------------------------------------------------------------------------------------------- 61 3.2.4 Axial piston pump design ----------------------------------------------------------------------------- 63 3.2.5 Motor and battery modeling ------------------------------------------------------------------------- 66 3.2.6 Heat Transfer -------------------------------------------------------------------------------------------- 68 3.3 Results ----------------------------------------------------------------------------------------------------------- 70 3.3.1 Ankle-Foot Orthosis Case Study --------------------------------------------------------------------- 70 3.3.2 Design Guidelines for Small-Scale Hydraulic Systems ----------------------------------------- 76 3.4 Discussion ------------------------------------------------------------------------------------------------------ 83 3.4.1 Summary of results & design guidelines ---------------------------------------------------------- 83 3.4.2 Limitations of the design guidelines --------------------------------------------------------------- 85 Chapter 4 Dynamic Modeling of Small-Scale Pump and Servo Valve Controlled Hydraulic Systems ---------------------------------------------------------------------------------------------------------------------------- 87 4.1 Introduction ---------------------------------------------------------------------------------------------------- 87 4.2 Methods -------------------------------------------------------------------------------------------------------- 87 4.2.1 Linearized algebraic models of hydraulic actuation -------------------------------------------
Recommended publications
  • Series 505G2 Silentflo™ Hydraulic Power Unit

    Series 505G2 Silentflo™ Hydraulic Power Unit

    Series 505G2 SilentFlo™ Hydraulic Power Unit Model 505G2.07, Model 505G2.11 100-227-350 C ©2015 MTS Systems Corporation. All rights reserved. MTS Trademark Information MTS, be certain., Bionix, ElastomerExpress, FlatTrac, FlexTest, Just In Case, LevelPlus, MTS Criterion, MTS EM Extend, MTS Insight, MTS Landmark, RPC, ServoSensor, SWIFT, Temposonics, TestWare, TestWorks are registered trademarks of MTS Systems Corporation within the United States. Acumen, AdapTrac, Advantage, Aero ST, Aero-90, AeroPro, Criterion, CRPC, Echo, First Road, Flat- Trac, Landmark, MAST, MicroProfiler, MPT, MTS Acumen, MTS Echo, MTS Fundamentals, MTS TestSuite, ReNew, SilentFlo, TempoGuard, TestLine, Tytron, Virtual Test Lab, and VTL are trademarks of MTS Systems Corporation within the United States. These trademarks may be registered in other countries. All other trademarks are the property of their respective holders. Proprietary Software Software use and license is governed by MTS’s End User License Agreement which defines all rights retained by MTS and granted to the End User. All Software is proprietary, confidential, and owned by MTS Systems Corporation and cannot be copied, reproduced, disassembled, decompiled, reverse engineered, or distributed without express written consent of MTS. Software Verification and Validation MTS software is developed using established quality practices in accordance with the requirements detailed in the ISO 9001 standards. Because MTS-authored software is delivered in binary format, it is not user accessible. This software will not change over time. Many releases are written to be backwards compatible, creating another form of verification. The status and validity of MTS’s operating software is also checked during system verification and routine calibration of MTS hardware.
  • DCA Brochure June 19 V5.0.Indd

    DCA Brochure June 19 V5.0.Indd

    Hydrastore Stockists & partners: hydraulic pumps, valves, motors, actuators, electronics and radio control solutions Fluid PowerDCA Partnership DCA A single UK source for worldwide Fluid Power Partnership hydraulic knowledge, manufacture, Related Valley supply andHydrastore technical supportHydraulic Systems & Components Fluid Power Hydraulics Manufacturers of Manufacturers integrated hydraulic manifolds, of standard and specialist cartridge valves specialist bespoke and mini power units hydraulic cylinders RelatedHydraulic Controls & Power Units specialist cartridge valves + mini power units ValleySpecialist Manufacturers Hydraulics of Hydraulic Cylinders The DCA sales structure We design and manufacture complete systems for all applications and sectors. DCA acts as a central source for sales and technical Established over 50 years assistance, supplying dependable and cost effective ago, DCA has a depth of hydraulic application hydraulic components, systems and electronic experience rivalled by few. solutions through our partner companies. To provide the ideal solution, understanding Our structure is both unique and effective. It provides the application and its a nationally based sales team, an extensive and cost function is critical. Logistics Automotive Process machinery effective equipment portfolio, an accessible engineering At DCA we pride resource, hydraulic design capability and technical ourselves in our application knowledge support. It’s the proven combination and provides our and the associated customers with the total service
  • Modeling of the Manifold Configuration for Maximum Efficiency in a Hydraulic Machine

    Modeling of the Manifold Configuration for Maximum Efficiency in a Hydraulic Machine

    International Journal of Fluid Machinery and Systems DOI: http://dx.doi.org/10.5293/IJFMS.2019.13.1.136 Vol. 13, No. 1, January-March 2020 ISSN (Online): 1882-9554 Original Paper Modeling of the Manifold Configuration for Maximum Efficiency in a Hydraulic Machine Kesar M Kothari 1, R.Udayakumar1, Ram Karthikeyan1, Vishweshwar S1and Nikitha Raj2 1Department of Mechanical Engineering, Bits Pilani Dubai Campus Dubai, United Arab Emirates, [email protected], [email protected], [email protected], [email protected] 2Department of Electrical & Electronics Engineering, Bits Pilani Dubai Campus Dubai, United Arab Emirates, [email protected] Abstract Hydraulic manifolds are metal cuboids machined to realize the compact circuit layout within them. They are introduced in the hydraulic machines to fit the large and complex hydraulic system layouts in narrow spaces available in the machines. Therefore, designing of the manifold in fact is more oriented towards achieving minimum size and weight. But the use of manifold, may introduce high pressure losses in the system. Efficiency of the system decreases and temperature of the fluid increases with pressure drop. This present research work focuses on understanding the pressure losses in the most common channel connections used in the manifold to realize the hydraulic circuit and to understand the efficiency of the manifold at different flow values. To achieve these objectives, a real-time case study is considered, where a manifold for a cable pulling winch machine is modified to reduce the pressure drop and increase the efficiency of the machine. Simple channel models are considered and analyzed using semi empirical equations available in the literature and are compared with results obtained from Computational Fluid Dynamics (CFD) analysis.
  • Design and Development of Prognostic and Health Management System for fly-By-Wire Primary flight Control Electrohydraulic Servoactuators

    Design and Development of Prognostic and Health Management System for fly-By-Wire Primary flight Control Electrohydraulic Servoactuators

    Politecnico di Torino Department of Mechanical and Aerospace Engineering Ph.D. degree in Mechanical Engineering Design and development of prognostic and health management system for fly-by-wire primary flight control electrohydraulic servoactuators Candidate: Andrea Mornacchi Thesis advisor: Prof. G. Jacazio Thesis submitted in 2016 Allegato n.6 COMMISSIONE GIUDICATRICE ll dott. Andrea MORNACCHI ha discusso in data ha discusso in data 29 aprile 2016 presso il Dipartimento di lngegneria Meccanica e Aerospaziale del Politecnico di Torino la tesidi Dottorato avente il seguente titolo: Design and development of prognostic and health management system for fly-by- wire primary fly control electrohydraulic servoactuators Le ricerche oggetto della tesi sono eccellente livello. Le metodologie appaiono molto buone. I risultati sono interessanti ed analizzati con elevato senso critico. Nel colloquio il candidato dimostra ottima conoscenza delle problematiche trattate. La Commissione unanime giudica estremamente positivo il lavoro svolto e propone che al dott. Andrea MORNAGCH| venga conferito il titolo di Dottore di Ricerca Data, 29 aprile 2016 Prof. Carlo Ferraresi (Presidente) Prof. Stefano Beretta (Componente) Prof. Enrico Ravina (Segretario) iii Prediction is very difficult, especially if it’s about the future. Nils Bohr Abstract Electro-Hydraulic Servo Actuators (EHSA) is the principal technology used for primary flight control in new aircrafts and legacy platforms. The devel- opment of Prognostic and Health Management technologies and their appli- cation to EHSA systems is of great interest in both the aerospace industry and the air fleet operators. This Ph.D. thesis is the results of research activity focused on the devel- opment of a PHM system for servovalve of fly-by-wire primary flight EHSA.
  • 350 Autoform Cnc Forming Center

    350 Autoform Cnc Forming Center

    OPERATION, SAFETY AND MAINTENANCE MANUAL 90 – 350 AUTOFORM CNC FORMING CENTER VME II CONTROL FOR MACHINES BUILT BEFORE OCTOBER, 1992 C I N C I N N A T I I N C O R P O R A T E D C I N C I N N A T I , O H I O 4 5 2 1 1 EM-444 (N-09/99) COPYRIGHT 1999 CINCINNATI INCORPORATED AUTOFORM® CNC FORMING CENTER CONTENTS INTRODUCTION SECTION 1 IDENTIFICATION SECTION 2 INSTALLATION UNLOADING 2-1 LIFTING AND MOVING 2-1 FOUNDATION 2-1 ERECTION 2-2 ELECTRICAL ENCLOSURE INSTALLATION 2-3 CLEANING 2-3 LEVELING 2-3 GAGE INSTALLATION 2-4 HYDRAULIC RESERVOIR 2-5 LUBRICATION 2-5 ELECTRICAL CONNECTION 2-5 SECTION 3 SAFETY SAFETY RECOMMENDATIONS 3-1 SAFE OPERATION 3-1 OPERATING RULES 3-2 INSTALLING / REMOVING TOOLING GUIDELINES 3-3 SAFETY SIGNS 3-3 SAFETY GUIDELINES 3-5 SAFETY MAINTENANCE CHECK 3-5 SECTION 4 SPECIFICATIONS PERFORMANCE AND RATINGS 4-1 SPECIFICATIONS CHART 4-2 PRINCIPLE OF OPERATION 4-2 DEFINITION OF TERMS 4-2 CAPACITIES 4-4 PUNCHING CAPACITY 4-4 STRIPPING CAPACITY 4-4 ECCENTRIC LOAD CAPACITY (F-B) 4-4 OFF-CENTER LOAD CAPACITY (L-R) 4-5 SECTION 5 SET-UP & USE TOOL INSTALLATION - SET-UP MENU 5-1 TYPES OF DIES 5-1 TOP OF DIE CALIBRATION FOR UNMEASURED TOOLS 5-5 GAGING - STANDARD BACKGAGES 5-5 CAPACITY 5-5 SELECT GAGE SURFACE 5-6 ADJUST GAGE FINGER POSITION 5-7 GAGE BAR CALIBRATION 5-8 PROGRAM GAGE POSITION(S) 5-8 GAGE FINGER ADJUSTMENT 5-8 WORK SUPPORTS 5-9 OPERATING TECHNIQUES 5-9 TOOLING AND SET-UP 5-9 RUNNING 5-10 SPEED CHANGE/FORMING SPEED 5-10 GAGES 5-10 REMOVING TOOLING 5-10 EM-444 (N-09/99) SECTION 6 MACHINE CONTROLS MACHINE CONTROLS STATION