On the Stability of Archimedean Tilings Formed by Patchy Particles

Total Page:16

File Type:pdf, Size:1020Kb

On the Stability of Archimedean Tilings Formed by Patchy Particles Home Search Collections Journals About Contact us My IOPscience On the stability of Archimedean tilings formed by patchy particles This content has been downloaded from IOPscience. Please scroll down to see the full text. 2011 J. Phys.: Condens. Matter 23 404206 (http://iopscience.iop.org/0953-8984/23/40/404206) View the table of contents for this issue, or go to the journal homepage for more Download details: This content was downloaded by: kukitxu IP Address: 128.131.48.66 This content was downloaded on 28/01/2014 at 16:48 Please note that terms and conditions apply. IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 23 (2011) 404206 (8pp) doi:10.1088/0953-8984/23/40/404206 On the stability of Archimedean tilings formed by patchy particles Moritz Antlanger1,Gunther¨ Doppelbauer1 and Gerhard Kahl Institut fur¨ Theoretische Physik and Centre for Computational Materials Science (CMS), Technische Universitat¨ Wien, Wien, Austria E-mail: [email protected] Received 28 July 2011, in final form 30 August 2011 Published 19 September 2011 Online at stacks.iop.org/JPhysCM/23/404206 Abstract We have investigated the possibility of decorating, using a bottom-up strategy, patchy particles in such a way that they self-assemble in (two-dimensional) Archimedean tilings. Except for the trihexagonal tiling, we have identified conditions under which this is indeed possible. The more compact tilings, i.e., the elongated triangular and the snub square tilings (which are built up by triangles and squares only) are found to be stable up to intermediate pressure values in the vertex representation, i.e., where the tiling is decorated with particles at its vertices. The other tilings, which are built up by rather large hexagons, octagons and dodecagons, are stable over a relatively large pressure range in the centre representation where the particles occupy the centres of the polygonal units. S Online supplementary data available from stacks.iop.org/JPhysCM/23/404206/mmedia (Some figures in this article are in colour only in the electronic version) 1. Introduction establish bonds with other particles in a highly selective fashion. As a consequence of their strongly anisotropic Is it possible to design colloidal particles so that interactions and their selectivity in the formation of bonds, they self-assemble into a desired target structure? Recent patchy particles are considered to be very promising building experiments [1,2] have impressively demonstrated that such blocks for larger entities on a mesoscopic scale [5]. a bottom-up strategy can indeed be successfully realized. To Overviews of recent progress in experimental and theoretical be more specific, Chen et al designed and fabricated so-called investigations on patchy particles can be found in [6] and [7], patchy colloidal particles, carrying hydrophobic caps on the respectively. two opposite poles, as reported in [1]. Under suitable external In the present contribution we deal with the question conditions, the colloids did indeed self-organize in the of whether—via a bottom-up strategy similar to the one targeted two-dimensional kagome lattice. Simulations [3,4] mentioned above—patchy particles can be designed in such complemented these experimental observations and provided a way as to self-assemble in even more complex ordered in addition exhaustive information about the phase behaviour two-dimensional particle arrangements. As target structures of the system in terms of a temperature versus density phase we have chosen Archimedean tilings. The eight Archimedean diagram. (or semiregular) tilings are presumably known and have The term ‘patchy particles’ stands for a particular class been used since antiquity. They are characterized by an of colloidal particles whose surfaces have been treated with edge-to-edge tiling of the plane with at least two regular suitable physical or chemical methods, creating thereby polygons such that all vertices are of the same type [8]. The regions which differ in their interaction behaviour from polygons involved are the equilateral triangle, the square, the untreated, naked surface of the particle. Via those the regular hexagon, the regular octagon, and the regular well-defined regions (‘patches’) the particles are able to dodecagon. For completeness, we have also included the three related edge-to-edge tilings of the plane formed by a 1 Authors who contributed equally to this work. single regular polygon in our investigations; these tilings are C08$33.00 10953-8984/11/404206 c 2011 IOP Publishing Ltd Printed in the UK & the USA J. Phys.: Condens. Matter 23 (2011) 404206 M Antlanger et al Table 1. List of the three Platonic and eight Archimedean tilings experimental realization. However, this representation has (first column) and their vertex specifications (second column). In the serious problems in minimizing the volume contribution to two other columns parameters are collected that specify patchy the thermodynamic potential. In particular one encounters particles for the vertex representation (see the text): N stands for the number of particles required per unit cell (cf figure1). The last problems for those tilings that are built up by polygonal column specifies the patch positions along the circumference via the units with six vertices or more. The centre representation, indicated angles. Note that in the vertex representation all particles on the other hand, requires considerably more complex have the same size; only for the truncated trihexagonal tiling are two unit cells and at least two particle species, characterized particle species of equal size but different chirality in their by a large size disparity and a relatively large number of decoration required. patches. These issues might represent a particular challenge Vertex representation in an experimental realization. This representation allows one, Tiling Vertices N Patch angles (deg) however, to stabilize tilings that are built up by hexagons, octagons, and dodecagons. 6 Triangular 3 1 f0; 60; 120; 180; 240; 300g Based on these considerations we have addressed the 4 f g Square 4 1 0; 90; 180; 270 following two questions. (i) Can patchy particles be suitably Hexagonal 63 2 f0; 120; 240g decorated to self-assemble in Archimedean tilings? (ii) How Elongated triangular 33:42 2 f0; 60; 120; 180; 270g Snub square 32:4:3:4 4 f0; 60; 120; 210; 270g stable are these self-assembly scenarios as the pressure Snub hexagonal 34:6 6 f0; 60; 120; 180; 240g increases? Working in the NPT ensemble, by construction Trihexagonal 3:6:3:6 3 f0; 60; 180; 240g the desired target structures are stable at vanishing pressure. Rhombitrihexagonal 3:4:6:4 6 f0; 60; 150; 270g However, as the system is exposed even to a tiny pressure, the Truncated square 4:82 4 f0; 90; 225g competition between the energy and the volume contributions 2 Truncated hexagonal 3:12 6 f0; 60; 210g to the thermodynamic potential sets in, leading possibly to f g Truncated trihexagonal 4:6:12 6 0; 90; 240 structures other than the desired target structure. As will be 4:12:6 6 f0; 90; 210g discussed in detail in the body of the paper (in particular in section3), all tilings, except for the trihexagonal tiling, can be stabilized at low, sometimes even at intermediate also known as regular or Platonic tilings [8]. In table1 we pressure values via either of the two representations. We have listed the resulting 11 tilings, introducing the commonly emphasize at this point that we only consider the case used nomenclature and specification via their vertices; further of vanishing temperature, T D 0. Thus from the results information compiled in this table will be discussed below. In presented in this contribution no conclusions can be drawn as figure1 we have depicted these planar tilings; their decoration regards which of the structures identified will survive at finite with particles will be addressed later and can therefore be temperature. ignored for the moment. The paper is organized as follows. In the next section At this point one might argue that the formation of we briefly summarize the characteristic features of our Archimedean tilings by patchy particles represents a rather model for patchy particles and of our optimization strategy academic problem. At least two examples can be put forward (referring the reader to the literature for more details to refute these objections: (i) experiments on colloids, exposed in both cases). Section3 is dedicated to a thorough to a force field induced by interfering laser beams, give discussion of the results. In the final section the results are evidence [9] of a self-assembly scenario of those particles into summarized. an Archimedean-like tiling; (ii) theoretical investigations [10] indicate that deformable spheres form Archimedean tilings in 2. The model and theoretical tools coexistence regions of the phase diagram. Finally, some of the more open Archimedean tilings might show some interesting 2.1. The model features in their phonon spectra. In an effort to demonstrate a successful bottom-up In the present contribution we have used a model for patchy strategy for forming the desired target structures via suitably particles proposed by Doye et al [11], suitably adapted to the decorated patchy particles, Platonic and Archimedean tilings two-dimensional case. In this model the interaction between are ideal candidates: all vertices are of the same type and all two particles is given by a pair potential V.rij; piα; pjβ /, the distances between two vertices are the same. These two discussed below; here rij D ri − rj is the vector between features make an appropriate ‘guess’ for the decoration of the particles i and j and the patch vector, piα, specifies the patch particles with patches rather easy. α of particle i. The explicit expression for V.rij; piα; pjβ / In realizing our bottom-up strategy there are essentially consists of a spherically symmetric Lennard-Jones potential two options for positioning the particles on the tilings: either modulated by an angular factor taking into account the relative at the vertices or at the centres of the polygons (to be orientation of the two interacting particles.
Recommended publications
  • On the Archimedean Or Semiregular Polyhedra
    ON THE ARCHIMEDEAN OR SEMIREGULAR POLYHEDRA Mark B. Villarino Depto. de Matem´atica, Universidad de Costa Rica, 2060 San Jos´e, Costa Rica May 11, 2005 Abstract We prove that there are thirteen Archimedean/semiregular polyhedra by using Euler’s polyhedral formula. Contents 1 Introduction 2 1.1 RegularPolyhedra .............................. 2 1.2 Archimedean/semiregular polyhedra . ..... 2 2 Proof techniques 3 2.1 Euclid’s proof for regular polyhedra . ..... 3 2.2 Euler’s polyhedral formula for regular polyhedra . ......... 4 2.3 ProofsofArchimedes’theorem. .. 4 3 Three lemmas 5 3.1 Lemma1.................................... 5 3.2 Lemma2.................................... 6 3.3 Lemma3.................................... 7 4 Topological Proof of Archimedes’ theorem 8 arXiv:math/0505488v1 [math.GT] 24 May 2005 4.1 Case1: fivefacesmeetatavertex: r=5. .. 8 4.1.1 At least one face is a triangle: p1 =3................ 8 4.1.2 All faces have at least four sides: p1 > 4 .............. 9 4.2 Case2: fourfacesmeetatavertex: r=4 . .. 10 4.2.1 At least one face is a triangle: p1 =3................ 10 4.2.2 All faces have at least four sides: p1 > 4 .............. 11 4.3 Case3: threefacesmeetatavertes: r=3 . ... 11 4.3.1 At least one face is a triangle: p1 =3................ 11 4.3.2 All faces have at least four sides and one exactly four sides: p1 =4 6 p2 6 p3. 12 4.3.3 All faces have at least five sides and one exactly five sides: p1 =5 6 p2 6 p3 13 1 5 Summary of our results 13 6 Final remarks 14 1 Introduction 1.1 Regular Polyhedra A polyhedron may be intuitively conceived as a “solid figure” bounded by plane faces and straight line edges so arranged that every edge joins exactly two (no more, no less) vertices and is a common side of two faces.
    [Show full text]
  • Simple Closed Geodesics on Regular Tetrahedra in Lobachevsky Space
    Simple closed geodesics on regular tetrahedra in Lobachevsky space Alexander A. Borisenko, Darya D. Sukhorebska Abstract. We obtained a complete classification of simple closed geodesics on regular tetrahedra in Lobachevsky space. Also, we evaluated the number of simple closed geodesics of length not greater than L and found the asymptotic of this number as L goes to infinity. Keywords: closed geodesics, simple geodesics, regular tetrahedron, Lobachevsky space, hyperbolic space. MSC: 53С22, 52B10 1 Introduction A closed geodesic is called simple if this geodesic is not self-intersecting and does not go along itself. In 1905 Poincare proposed the conjecture on the existence of three simple closed geodesics on a smooth convex surface in three-dimensional Euclidean space. In 1917 J. Birkhoff proved that there exists at least one simple closed geodesic on a Riemannian manifold that is home- omorphic to a sphere of arbitrary dimension [1]. In 1929 L. Lyusternik and L. Shnirelman obtained that there exist at least three simple closed geodesics on a compact simply-connected two-dimensional Riemannian manifold [2], [3]. But the proof by Lyusternik and Shnirelman contains substantial gaps. I. A. Taimanov gives a complete proof of the theorem that on each smooth Riemannian manifold homeomorphic to the two-dimentional sphere there exist at least three distinct simple closed geodesics [4]. In 1951 L. Lyusternik and A. Fet stated that there exists at least one closed geodesic on any compact Riemannian manifold [5]. In 1965 Fet improved this results. He proved that there exist at least two closed geodesics on a compact Riemannian manifold under the assumption that all closed geodesics are non-degenerate [6].
    [Show full text]
  • JMM 2017 Student Poster Session Abstract Book
    Abstracts for the MAA Undergraduate Poster Session Atlanta, GA January 6, 2017 Organized by Eric Ruggieri College of the Holy Cross and Chasen Smith Georgia Southern University Organized by the MAA Committee on Undergraduate Student Activities and Chapters and CUPM Subcommittee on Research by Undergraduates Dear Students, Advisors, Judges and Colleagues, If you look around today you will see over 300 posters and nearly 500 student presenters, representing a wide array of mathematical topics and ideas. These posters showcase the vibrant research being conducted as part of summer programs and during the academic year at colleges and universities from across the United States and beyond. It is so rewarding to see this session, which offers such a great opportunity for interaction between students and professional mathematicians, continue to grow. The judges you see here today are professional mathematicians from institutions around the world. They are advisors, colleagues, new Ph.D.s, and administrators. We have acknowledged many of them in this booklet; however, many judges here volunteered on site. Their support is vital to the success of the session and we thank them. We are supported financially by Tudor Investments and Two Sigma. We are also helped by the mem- bers of the Committee on Undergraduate Student Activities and Chapters (CUSAC) in some way or other. They are: Dora C. Ahmadi; Jennifer Bergner; Benjamin Galluzzo; Kristina Cole Garrett; TJ Hitchman; Cynthia Huffman; Aihua Li; Sara Louise Malec; Lisa Marano; May Mei; Stacy Ann Muir; Andy Nieder- maier; Pamela A. Richardson; Jennifer Schaefer; Peri Shereen; Eve Torrence; Violetta Vasilevska; Gerard A.
    [Show full text]
  • Geometric Algorithms for Optimal Airspace Design and Air Traffic
    Geometric Algorithms for Optimal Airspace Design and Air Traffic Controller Workload Balancing AMITABH BASU Carnegie Mellon University JOSEPH S. B. MITCHELL Stony Brook University and GIRISHKUMAR SABHNANI Stony Brook University The National Airspace System (NAS) is designed to accommodate a large number of flights over North America. For purposes of workload limitations for air traffic controllers, the airspace is partitioned into approximately 600 sectors; each sector is observed by one or more controllers. In order to satisfy workload limitations for controllers, it is important that sectors be designed carefully according to the traffic patterns of flights, so that no sector becomes overloaded. We formulate and study the airspace sectorization problem from an algorithmic point of view, model- ing the problem of optimal sectorization as a geometric partition problem with constraints. The novelty of the problem is that it partitions data consisting of trajectories of moving points, rather than static point set partitioning that is commonly studied. First, we formulate and solve the 1D version of the problem, showing how to partition a line into “sectors” (intervals) according to historical trajectory data. Then, we apply the 1D solution framework to design a 2D sectoriza- tion heuristic based on binary space partitions. We also devise partitions based on balanced “pie partitions” of a convex polygon. We evaluate our 2D algorithms experimentally, applying our algorithms to actual historical flight track data for the NAS. We compare the workload balance of our methods to that of the existing set of sectors for the NAS and find that our resectorization yields competitive and improved workload balancing.
    [Show full text]
  • Coloring Copoints of a Planar Point Set
    Coloring Copoints of a Planar Point Set Walter Morris Department of Mathematical Sciences George Mason University 4400 University Drive, Fairfax, VA 22030, USA Abstract To a set of n points in the plane, one can associate a graph that has less than n2 vertices and has the property that k-cliques in the graph correspond vertex sets of convex k-gons in the point set. We prove an upper bound of 2k¡1 on the size of a planar point set for which the graph has chromatic number k, matching the bound con- jectured by Szekeres for the clique number. Constructions of Erd}os and Szekeres are shown to yield graphs that have very low chromatic number. The constructions are carried out in the context of pseudoline arrangements. 1 Introduction Let X be a ¯nite set of points in IR2. We will assume that X is in general position, that is, no three points of X are on a line. A subset C of X is called closed if C = K \ X for some convex subset K of IR2. The set C of closed subsets of X, partially ordered by inclusion, is a lattice. If x 2 X and A is a closed subset of X that does not contain x and is inclusion-maximal among all closed subsets of X that do not contain x, then A is called a copoint of X attached to x. In the more general context of antimatroids, or convex geometries, co- points have been studied in [1], [2] and [3]. It is shown in these references that every copoint is attached to a unique point of X, and that the copoints are the meet-irreducible elements of the lattice of closed sets.
    [Show full text]
  • 30 ARRANGEMENTS Dan Halperin and Micha Sharir
    30 ARRANGEMENTS Dan Halperin and Micha Sharir INTRODUCTION Given a finite collection of geometric objects such as hyperplanes or spheres in Rd, the arrangement ( S) is the decomposition of Rd into connected open cells of dimensions 0, 1,...,d AinducedS by . Besides being interesting in their own right, ar- rangements of hyperplanes have servedS as a unifying structure for many problems in discrete and computational geometry. With the recent advances in the study of arrangements of curved (algebraic) surfaces, arrangements have emerged as the underlying structure of geometric problems in a variety of “physical world” applica- tion domains such as robot motion planning and computer vision. This chapter is devoted to arrangements of hyperplanes and of curved surfaces in low-dimensional Euclidean space, with an emphasis on combinatorics and algorithms. In the first section we introduce basic terminology and combinatorics of ar- rangements. In Section 30.2 we describe substructures in arrangements and their combinatorial complexity. Section 30.3 deals with data structures for representing arrangements and with special refinements of arrangements. The following two sections focus on algorithms: algorithms for constructing full arrangements are described in Section 30.4, and algorithms for constructing substructures in Sec- tion 30.5. In Section 30.6 we discuss the relation between arrangements and other structures. Several applications of arrangements are reviewed in Section 30.7. Sec- tion 30.8 deals with robustness issues when implementing algorithms and data structures for arrangements and Section 30.9 surveys software implementations. We conclude in Section 30.10 with a brief review of Davenport-Schinzel sequences, a combinatorial structure that plays an important role in the analysis of arrange- ments.
    [Show full text]
  • Archimedean Solids
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-2008 Archimedean Solids Anna Anderson University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/mathmidexppap Part of the Science and Mathematics Education Commons Anderson, Anna, "Archimedean Solids" (2008). MAT Exam Expository Papers. 4. https://digitalcommons.unl.edu/mathmidexppap/4 This Article is brought to you for free and open access by the Math in the Middle Institute Partnership at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in MAT Exam Expository Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Archimedean Solids Anna Anderson In partial fulfillment of the requirements for the Master of Arts in Teaching with a Specialization in the Teaching of Middle Level Mathematics in the Department of Mathematics. Jim Lewis, Advisor July 2008 2 Archimedean Solids A polygon is a simple, closed, planar figure with sides formed by joining line segments, where each line segment intersects exactly two others. If all of the sides have the same length and all of the angles are congruent, the polygon is called regular. The sum of the angles of a regular polygon with n sides, where n is 3 or more, is 180° x (n – 2) degrees. If a regular polygon were connected with other regular polygons in three dimensional space, a polyhedron could be created. In geometry, a polyhedron is a three- dimensional solid which consists of a collection of polygons joined at their edges. The word polyhedron is derived from the Greek word poly (many) and the Indo-European term hedron (seat).
    [Show full text]
  • Electronic Reprint a Coloring-Book Approach to Finding Coordination
    electronic reprint ISSN: 2053-2733 journals.iucr.org/a A coloring-book approach to finding coordination sequences C. Goodman-Strauss and N. J. A. Sloane Acta Cryst. (2019). A75, 121–134 IUCr Journals CRYSTALLOGRAPHY JOURNALS ONLINE Copyright c International Union of Crystallography Author(s) of this paper may load this reprint on their own web site or institutional repository provided that this cover page is retained. Republication of this article or its storage in electronic databases other than as specified above is not permitted without prior permission in writing from the IUCr. For further information see http://journals.iucr.org/services/authorrights.html Acta Cryst. (2019). A75, 121–134 Goodman-Strauss and Sloane · Finding coordination sequences research papers A coloring-book approach to finding coordination sequences ISSN 2053-2733 C. Goodman-Straussa and N. J. A. Sloaneb* aDepartment of Mathematical Sciences, University of Arkansas, Fayetteville, AR 72701, USA, and bThe OEIS Foundation Inc., 11 So. Adelaide Ave., Highland Park, NJ 08904, USA. *Correspondence e-mail: [email protected] Received 30 May 2018 Accepted 14 October 2018 An elementary method is described for finding the coordination sequences for a tiling, based on coloring the underlying graph. The first application is to the two kinds of vertices (tetravalent and trivalent) in the Cairo (or dual-32.4.3.4) tiling. Edited by J.-G. Eon, Universidade Federal do Rio The coordination sequence for a tetravalent vertex turns out, surprisingly, to be de Janeiro, Brazil 1, 4, 8, 12, 16, ..., the same as for a vertex in the familiar square (or 44) tiling.
    [Show full text]
  • Fundamental Principles Governing the Patterning of Polyhedra
    FUNDAMENTAL PRINCIPLES GOVERNING THE PATTERNING OF POLYHEDRA B.G. Thomas and M.A. Hann School of Design, University of Leeds, Leeds LS2 9JT, UK. [email protected] ABSTRACT: This paper is concerned with the regular patterning (or tiling) of the five regular polyhedra (known as the Platonic solids). The symmetries of the seventeen classes of regularly repeating patterns are considered, and those pattern classes that are capable of tiling each solid are identified. Based largely on considering the symmetry characteristics of both the pattern and the solid, a first step is made towards generating a series of rules governing the regular tiling of three-dimensional objects. Key words: symmetry, tilings, polyhedra 1. INTRODUCTION A polyhedron has been defined by Coxeter as “a finite, connected set of plane polygons, such that every side of each polygon belongs also to just one other polygon, with the provision that the polygons surrounding each vertex form a single circuit” (Coxeter, 1948, p.4). The polygons that join to form polyhedra are called faces, 1 these faces meet at edges, and edges come together at vertices. The polyhedron forms a single closed surface, dissecting space into two regions, the interior, which is finite, and the exterior that is infinite (Coxeter, 1948, p.5). The regularity of polyhedra involves regular faces, equally surrounded vertices and equal solid angles (Coxeter, 1948, p.16). Under these conditions, there are nine regular polyhedra, five being the convex Platonic solids and four being the concave Kepler-Poinsot solids. The term regular polyhedron is often used to refer only to the Platonic solids (Cromwell, 1997, p.53).
    [Show full text]
  • Conformal Tilings & Type
    Florida State University Libraries 2016 Conformal Tilings and Type Dane Mayhook Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES CONFORMAL TILINGS & TYPE By DANE MAYHOOK A Dissertation submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2016 Copyright c 2016 Dane Mayhook. All Rights Reserved. Dane Mayhook defended this dissertation on July 13, 2016. The members of the supervisory committee were: Philip L. Bowers Professor Directing Dissertation Mark Riley University Representative Wolfgang Heil Committee Member Eric Klassen Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii To my family. iii ACKNOWLEDGMENTS The completion of this document represents the end of a long and arduous road, but it was not one that I traveled alone, and there are several people that I would like to acknowledge and offer my sincere gratitude to for their assistance in this journey. First, I would like to give my infinite thanks to my Ph.D. adviser Professor Philip L. Bowers, without whose advice, expertise, and guidance over the years this dissertation would not have been possible. I could not have hoped for a better adviser, as his mentorship—both on this piece of work, and on my career as a whole—was above and beyond anything I could have asked for. I would also like to thank Professor Ken Stephenson, whose assistance—particularly in using his software CirclePack, which produced many of the figures in this document—has been greatly appreciated.
    [Show full text]
  • Uniform Panoploid Tetracombs
    Uniform Panoploid Tetracombs George Olshevsky TETRACOMB is a four-dimensional tessellation. In any tessellation, the honeycells, which are the n-dimensional polytopes that tessellate the space, Amust by definition adjoin precisely along their facets, that is, their ( n!1)- dimensional elements, so that each facet belongs to exactly two honeycells. In the case of tetracombs, the honeycells are four-dimensional polytopes, or polychora, and their facets are polyhedra. For a tessellation to be uniform, the honeycells must all be uniform polytopes, and the vertices must be transitive on the symmetry group of the tessellation. Loosely speaking, therefore, the vertices must be “surrounded all alike” by the honeycells that meet there. If a tessellation is such that every point of its space not on a boundary between honeycells lies in the interior of exactly one honeycell, then it is panoploid. If one or more points of the space not on a boundary between honeycells lie inside more than one honeycell, the tessellation is polyploid. Tessellations may also be constructed that have “holes,” that is, regions that lie inside none of the honeycells; such tessellations are called holeycombs. It is possible for a polyploid tessellation to also be a holeycomb, but not for a panoploid tessellation, which must fill the entire space exactly once. Polyploid tessellations are also called starcombs or star-tessellations. Holeycombs usually arise when (n!1)-dimensional tessellations are themselves permitted to be honeycells; these take up the otherwise free facets that bound the “holes,” so that all the facets continue to belong to two honeycells. In this essay, as per its title, we are concerned with just the uniform panoploid tetracombs.
    [Show full text]
  • REPLICATING TESSELLATIONS* ANDREW Vincet Abstract
    SIAM J. DISC. MATH. () 1993 Society for Industrial and Applied Mathematics Vol. 6, No. 3, pp. 501-521, August 1993 014 REPLICATING TESSELLATIONS* ANDREW VINCEt Abstract. A theory of replicating tessellation of R is developed that simultaneously generalizes radix representation of integers and hexagonal addressing in computer science. The tiling aggregates tesselate Eu- clidean space so that the (m + 1)st aggregate is, in turn, tiled by translates of the ruth aggregate, for each m in exactly the same way. This induces a discrete hierarchical addressing systsem on R'. Necessary and sufficient conditions for the existence of replicating tessellations are given, and an efficient algorithm is provided to de- termine whether or not a replicating tessellation is induced. It is shown that the generalized balanced ternary is replicating in all dimensions. Each replicating tessellation yields an associated self-replicating tiling with the following properties: (1) a single tile T tesselates R periodically and (2) there is a linear map A, such that A(T) is tiled by translates of T. The boundary of T is often a fractal curve. Key words, tiling, self-replicating, radix representation AMS(MOS) subject classifications. 52C22, 52C07, 05B45, 11A63 1. Introduction. The standard set notation X + Y {z + y z E X, y E Y} will be used. For a set T c Rn denote by Tx z + T the translate of T to point z. Throughout this paper, A denotes an n-dimensional lattice in l'. A set T tiles a set R by translation by lattice A if R [-JxsA T and the intersection of the interiors of distinct tiles T and Tu is empty.
    [Show full text]