An Archaeologist's Guide to Chert and Flint- for Additional Research
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Key to Rocks & Minerals Collections
STATE OF MICHIGAN MINERALS DEPARTMENT OF NATURAL RESOURCES GEOLOGICAL SURVEY DIVISION A mineral is a rock substance occurring in nature that has a definite chemical composition, crystal form, and KEY TO ROCKS & MINERALS COLLECTIONS other distinct physical properties. A few of the minerals, such as gold and silver, occur as "free" elements, but by most minerals are chemical combinations of two or Harry O. Sorensen several elements just as plants and animals are Reprinted 1968 chemical combinations. Nearly all of the 90 or more Lansing, Michigan known elements are found in the earth's crust, but only 8 are present in proportions greater than one percent. In order of abundance the 8 most important elements Contents are: INTRODUCTION............................................................... 1 Percent composition Element Symbol MINERALS........................................................................ 1 of the earth’s crust ROCKS ............................................................................. 1 Oxygen O 46.46 IGNEOUS ROCKS ........................................................ 2 Silicon Si 27.61 SEDIMENTARY ROCKS............................................... 2 Aluminum Al 8.07 METAMORPHIC ROCKS.............................................. 2 Iron Fe 5.06 IDENTIFICATION ............................................................. 2 Calcium Ca 3.64 COLOR AND STREAK.................................................. 2 Sodium Na 2.75 LUSTER......................................................................... 2 Potassium -
Fire and Emergency Medical Services Operations and Data Analysis Flint, Michigan Center for Public Safety Management
Fire and Emergency Medical Services Operations and Data Analysis Flint, Michigan December 2014 FIRE EMS Operational Analysis Center for Public Safety Management 474 K Street, NW, Suite 702 Washington, DC 20001 www.cpsm.us – 716-969-1360 Exclusive Provider of Public Safety Technical Assistance for the International City/County Management Association General Information About ICMA The International City/County Management Association (ICMA) is a 100-year-old, nonprofit professional association of local government administrators and managers, with approximately 9,000 members located in 32 countries. Since its inception in 1914, ICMA has been dedicated to assisting local governments in providing services to its citizens in an efficient and effective manner. Its work spans all of the activities of local government—parks, libraries, recreation, public works, economic development, code enforcement, brownfields, public safety, etc. ICMA advances the knowledge of local government best practices across a wide range of platforms including publications, research, training, and technical assistance. ICMA’s work includes both domestic and international activities in partnership with local, state, and federal governments as well as private foundations. For example, it is involved in a major library research project funded by the Bill &Melinda Gates Foundation and it is providing community policing training in Panama working with the U.S. State Department. It worked in Afghanistan assisting with building wastewater treatment plants and has teams in Central America working with SOUTHCOM to provide training in disaster relief. Center for Public Safety Management LLC The ICMA Center for Public Safety Management (ICMA/CPSM) is one of four Centers within the Information and Assistance Division of ICMA providing support to local governments in the areas of police, fire, EMS, emergency management, and homeland security. -
Origin of Fibrosity and Banding in Agates from Flood Basalts: American Journal of Science, V
Agates: a literature review and Electron Backscatter Diffraction study of Lake Superior agates Timothy J. Beaster Senior Integrative Exercise March 9, 2005 Submitted in partial fulfillment of the requirements for a Bachelor of Arts degree from Carleton College, Northfield, Minnesota. 2 Table of Contents AGATES: A LITERATURE REVEW………………………………………...……..3 Introduction………………....………………………………………………….4 Structural and compositional description of agates………………..………..6 Some problems concerning agate genesis………………………..…………..11 Silica Sources…………………………………………..………………11 Method of Deposition………………………………………………….13 Temperature of Formation…………………………………………….16 Age of Agates…………………………………………………………..17 LAKE SUPERIOR AGATES: AN ELECTRON BACKSCATTER DIFFRACTION (EBSD) ANALYSIS …………………………………………………………………..19 Abstract………………………………………………………………………...19 Introduction……………………………………………………………………19 Geologic setting………………………………………………………………...20 Methods……………………………………………………...…………………20 Results………………………………………………………….………………22 Discussion………………………………………………………………………26 Conclusions………………………………………………….…………………26 Acknowledgments……………………………………………………..………………28 References………………………………………………………………..……………28 3 Agates: a literature review and Electron Backscatter Diffraction study of Lake Superior agates Timothy J. Beaster Carleton College Senior Integrative Exercise March 9, 2005 Advisor: Cam Davidson 4 AGATES: A LITERATURE REVEW Introduction Agates, valued as semiprecious gemstones for their colorful, intricate banding, (Fig.1) are microcrystalline quartz nodules found in veins and cavities -
Part 629 – Glossary of Landform and Geologic Terms
Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition. -
Data of Geochemistry
Data of Geochemistry * Chapter T. Nondetrital Siliceous Sediments GEOLOGICAL SURVEY PROFESSIONAL PAPER 440-T Data of Geochemistry Michael Fleischer, Technical Editor Chapter T. Nondetrital Siliceous Sediments By EARLE R. CRESSMAN GEOLOGICAL SURVEY PROFESSIONAL PAPER 440-T Tabulation and discussion of chemical analyses of chert with respect to mineralogic composition, petrographic type, and geologic occurrence UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEW ART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. DATA OP GEOCHEMISTRY, SIXTH EDITION Michael Fleischer, Technical Editor The first edition of the Data of Geochemistry, by F. W. Clarke, was published in 1908 as U.S. Geological Survey Bulletin 330. Later editions, also by Clarke, were published in 1911, 1916, 1920, and 1924 as Bul letins 491, 616, 695, and 770. This, the sixth edition, has been written by several scientists in the Geological Survey and in other institutions in the United States and abroad, each preparing a chapter on his special field. The current edition is being published in individual chapters, titles of which are listed below. Chapters already published are indicated by boldface type. CHAPTER A. The chemical elements B. Cosmochemistry C. Internal structure and composition of the Earth D. Composition of the earth's crust E. Chemistry of the atmosphere F. Chemical composition of subsurface waters, by Donald E. White, John D. Hem, and G. A. Waring G. Chemical composition of rivers and lakes, by Daniel A. Livingstone H. Chemistry of the oceans I. -
Mineral Collecting Sites in North Carolina by W
.'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami nation, survey, and mapping of the geology, mineralogy, and topo graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa tional Series, Geologic Maps, and Special Publications. -
The Geological Distribution of Chert in the Brooks Range
August 30,1995 Price: $2.00 Division of Geological & Geophysical Surveys PUBLIC-DATA FILE 95-32 THE GEOLOGICAL DISTRIBUTION OF CHERT IN THE BROOKS RANGE by C.G. Mull August 1995 THIS REPORT HAS NOT BEEN REVIEWED FOR TECHNICAL CONTENT (EXCEPT AS NOTED IN TEXT) OR FOR CONFORMITY TO THE EDITORIAL STANDARDS OF DGGS. Released by STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES Division of Geological & Geophysical Surveys 794 University Avenue, Suite 200 Fairbanks, Alaska 99709-3645 THE GEOLOGICAL DISTRIBUTION OF QHERT IN THE BROOKS RANGE CONTENTS ABSTRACT THE ORIGIN OF CHERT IN THE BROOKS RANGE DISTRIBUTION OF CHERT IN THE BROOKS RANGE Banded Cav to black chert fLisburne Group) Jet black chert (Akmalik Ched Gray and m-wn n chert @JcsIkpuJs. Fo-atchak . CheN Tan to gray to black banded chert fOt& Formation) Bri~htred, maroon. and gem chert SUMMARY FIGURES Fig. 1. Distribution of Lisburne Group limestone Fig. 2. Distribution of Akrnalik Chert. Fig. 3. Distribution of Siksikpuk Fonnation and Imnaitchiak Chert Fig. 4. Distribution of Otuk Formation. Fig. 5. Distribution of red and green chert THE GEOLOGICAL DISTRIBUTION OF CHERT IN THE BROOKS RANGE Text of a paper read at Alaska Anthropological Association 22nd Annual Meeting, March 23-25,1995, Anchorage, Alaska ABSTRACT Geological mapping in the Brooks Range shows that high quality chert for tool making is abundant in sedimentary rocks in a number of areas along the northern flank and particularly in the foothills of the central and western Brooks Range. These cherts are dominantly black, light to dark gray, greenish gray, banded gray to black, or tan. -
Making Fire with Flint and Steel
Making Fire with Flint and Steel. Early Failures Many survival or scouting books give different instructions on how one can start a fire with flint and steel. These books suggest various materials that are supposed to catch the spark (punk – the powdery dry rot from the insides of fallen logs, cottonwood fluff, fine dry grass, fine wood shavings, dry moss, and various lichens. The people who wrote those books had obviously never tried it. None of these materials work well, although they all make excellent small kindling once you have a fire started. Problem Solved The Oxford Universal Dictionary defines tinder as "a flammable substance used to kindle a fire, especially charred linen". When a spark hits charred cloth, it creates a tiny red spot, which slowly grows like a glowing fairy ring. It is impossible to blow out; in fact, the more wind there is the better, as the spark simply gets hotter and hotter. The only way to put it out is by suffocation (which preserves the rest of the charred cloth for future use), or by dousing it with water (which ruins the char cloth). The amazing thing is that charred cloth in windy weather makes it easier to start a fire with flint and steel than a match. Well, almost! Making Charred Cloth Here is how to put together your own tinder box, so that you can make a fire the same way that people did two hundred years ago. First, you will need some cloth. Linen is the traditional fabric, but 100% cotton works just fine, and it is a lot cheaper! Do not use synthetic or synthetic blend fabrics. -
“Lithic Sourcing and Prehistoric Cultural Geography in The
Lithic Sourcing and Prehistoric Cultural Geography in the Champlain Valley by Adrian Burke Introduction torically in the Northeast can be identified macroscopical- ly with some ease by experienced archaeologists (e.g. Western Onondaga chert or Ramah quartzite), the majority The purpose of this paper is to demonstrate the usefulness of materials can be confused and misidentified because of and the necessity of analytical techniques developed in their macroscopic similarities (Calogero 1992). This is physics and chemistry in studying prehistoric cultural especially true for the most common lithic material used geography. My primary interest is understanding the prehistorically in the Northeast - chert. Geographically nature and extent of interactions between aboriginal groups distant sources of chert can often resemble one another in prior to European contact. This in turn provides insight color, luster, and texture. This is in part due to their simi- into various prehistoric processes and in some cases to his- lar geological genesis. In order to differentiate among toric processes in the Northeast. these cherts archaeologists are increasingly turning to physico-chemical analyses (Luedtke 1992; Leute 1987). I The question I will be tackling here is modest in scope; will discuss here one of these techniques called X-ray flu- basically I wish to accurately identify the geographic and orescence or XRF. geological sources of lithic materials found on a small Woodland period site near Montreal (Figure 1). This site was found during CRM work conducted by the Ministry of The BiFi-lO Site Transportation of Quebec (Arkeos 1994). The lithic mate- rials used by the occupants of site BiFi-lO to make their The BiFi-lO site is a small site covering less than 200 tools can not be found in the immediate vicinity of the site. -
Fire Before Matches
Fire before matches by David Mead 2020 Sulang Language Data and Working Papers: Topics in Lexicography, no. 34 Sulawesi Language Alliance http://sulang.org/ SulangLexTopics034-v2 LANGUAGES Language of materials : English ABSTRACT In this paper I describe seven methods for making fire employed in Indonesia prior to the introduction of friction matches and lighters. Additional sections address materials used for tinder, the hearth and its construction, some types of torches and lamps that predate the introduction of electricity, and myths about fire making. TABLE OF CONTENTS 1 Introduction; 2 Traditional fire-making methods; 2.1 Flint and steel strike- a-light; 2.2 Bamboo strike-a-light; 2.3 Fire drill; 2.4 Fire saw; 2.5 Fire thong; 2.6 Fire plow; 2.7 Fire piston; 2.8 Transporting fire; 3 Tinder; 4 The hearth; 5 Torches and lamps; 5.1 Palm frond torch; 5.2 Resin torch; 5.3 Candlenut torch; 5.4 Bamboo torch; 5.5 Open-saucer oil lamp; 5.6 Footed bronze oil lamp; 5.7 Multi-spout bronze oil lamp; 5.8 Hurricane lantern; 5.9 Pressurized kerosene lamp; 5.10 Simple kerosene lamp; 5.11 Candle; 5.12 Miscellaneous devices; 6 Legends about fire making; 7 Additional areas for investigation; Appendix: Fire making in Central Sulawesi; References. VERSION HISTORY Version 2 [13 June 2020] Minor edits; ‘candle’ elevated to separate subsection. Version 1 [12 May 2019] © 2019–2020 by David Mead All Rights Reserved Fire before matches by David Mead Down to the time of our grandfathers, and in some country homes of our fathers, lights were started with these crude elements—flint, steel, tinder—and transferred by the sulphur splint; for fifty years ago matches were neither cheap nor common. -
Glossary of Geological Terms
GLOSSARY OF GEOLOGICAL TERMS These terms relate to prospecting and exploration, to the regional geology of Newfoundland and Labrador, and to some of the geological environments and mineral occurrences preserved in the province. Some common rocks, textures and structural terms are also defined. You may come across some of these terms when reading company assessment files, government reports or papers from journals. Underlined words in definitions are explained elsewhere in the glossary. New material will be added as needed - check back often. - A - A-HORIZON SOIL: the uppermost layer of soil also referred to as topsoil. This is the layer of mineral soil with the most organic matter accumulation and soil life. This layer is not usually selected in soil surveys. ADIT: an opening that is driven horizontally (into the side of a mountain or hill) to access a mineral deposit. AIRBORNE SURVEY: a geophysical survey done from the air by systematically crossing an area or mineral property using aircraft outfitted with a variety of sensitive instruments designed to measure variations in the earth=s magnetic, gravitational, electro-magnetic fields, and/or the radiation (Radiometric Surveys) emitted by rocks at or near the surface. These surveys detect anomalies. AIRBORNE MAGNETIC (or AEROMAG) SURVEYS: regional or local magnetic surveys that measures deviations in the earth=s magnetic field and carried out by flying a magnetometer along flight lines on a pre-determined grid pattern. The lower the aircraft and the closer the flight lines, the more sensitive is the survey and the more detail in the resultant maps. Aeromag maps produced from these surveys are important exploration tools and have played a major role in many major discoveries (e.g., the Olympic Dam deposit in Australia). -
The Pyrogenic Archives of Anthropogenically Transformed Soils in Central Russia
geosciences Article The Pyrogenic Archives of Anthropogenically Transformed Soils in Central Russia Alexandra Golyeva 1,* , Konstantin Gavrilov 2 , Asya Engovatova 2, Nikita Mergelov 1,* and Nailya Fazuldinova 3 1 Institute of Geography, Russian Academy of Sciences, 119017 Moscow, Russia 2 Institute of Archaeology, Russian Academy of Sciences, 117036 Moscow, Russia; [email protected] (K.G.); [email protected] (A.E.) 3 Faculty of Soil Science, Moscow State University, 119991 Moscow, Russia; [email protected] * Correspondence: [email protected] (A.G.); [email protected] (N.M.); Tel.: +7-916-329-4335 (A.G.) Abstract: Charred materials (anthracomass) stored within a soil constitute a major part of its py- rogenic archive and could provide evidence of past fire events, both natural and anthropogenic. However, the dynamics of man-made contributions to the total anthracomass of soil at different time scales are insufficiently understood. In this study, we determined the anthracomass concentrations, stocks, and particle-size distribution in anthropogenically transformed soils of different genesis and ages. Materials were collected from the following archaeological sites within Central Russia—3 Upper Paleolithic sites (Avdeevo, Khotylevo-2 and Yudinovo-1), 2 Early Iron Age settlements (Khotylevo-2 and Yaroslavl), and 1 Medieval site (Yaroslavl). Samples from different cultural layers (CLs), plough layers, and native soils (control) were studied. We identified anthracomass accumulation over a wide chronological scale starting from the Upper Paleolithic Period. The high degree of preservation of anthracomass in ancient anthropogenically transformed soils was explained by the presence of Citation: Golyeva, A.; Gavrilov, K.; large fragments of charred bones, which are more durable in comparison to wood charcoal.