The Lebesgue Measure and Large Cardinals

Total Page:16

File Type:pdf, Size:1020Kb

The Lebesgue Measure and Large Cardinals The Lebesgue Measure and Large Cardinals Jacinto Carlos Ferreira Monteiro de Freitas França Thesis to obtain the Master of Science Degree in Mathematics and Applications Supervisor: Prof. António Marques Fernandes Examination Committee Chairperson: Prof. Maria Cristina Sales Viana Serôdio Sernadas Supervisor: Prof. António Marques Fernandes Members of the Committee: Prof. Luís Pereira Prof. Fernando Ferreira July 2017 ii Dedicated to my Father and to the Three Gems iii iv Acknowledgments This work would not have been possible without the support of generous people during the research and writing process and throughout my years at Instituto Superior T´ecnico. First I would like to express my gratitude to my supervisor, Prof. Ant´onioMarques Fernandes, for his guidance and expertise during the research and writing of this thesis. In addition to the countless technical corrections, and to the generosity with his time, his advice and thoughtful discussions revealed numerous times the layers of subtlety and complexity in the field of set theory that I had not noticed. I would like to thank Prof. Ana Leonor Silvestre for her support during the MSc. program. I would also like to thank Prof. Jo˜aoRasga for the high quality of his supervision of my BSc. final project. I am grateful to Prof. Paulo Pinto and to Prof. Cristina Cˆamarafor their encouragement and support of my academic aspirations. I am also grateful to Dr. Carlos Filipe for the decisive impact of his help in my life. And I am indebted for the second opportunity that Instituto Superior T´ecnicogave me, and for the high quality of the education provided by this institution and its faculty members. I am thankful to my family for their encouragement, support, and advice during the difficult periods of my life. My deepest gratitude is to my father, Jo˜aoFran¸ca,for the immeasurable help he gave me throughout my life and for the strength of character he so often revealed. Finally, I would like to thank the Triple Gem for providing the invaluable instructions that allowed me to surpass the enormous difficulties that characterized my earlier life. v vi Resumo Um dos factores que motivaram grandes avan¸cosna teoria dos conjuntos foi a medida de Lebesgue. A medida de Lebesgue ´ea componente fundamental da teoria da integra¸c˜aode Lebesgue, que ´euma gener- aliza¸c˜aoda teoria de integra¸c˜aode Riemann. Apesar do integral de Lebesgue ter muitas vantagens, este n˜aoconsegue medir todos os conjuntos de reais. No entanto, existe uma alternativa quando adoptamos uma vers˜aomais fraca do axioma da escolha, nomeadamente o princ´ıpiodas escolhas dependentes (DC). O Teorema de Solovay afirma que se existe um modelo de ZFC com um cardinal inacess´ıvel, ent˜ao existe um modelo de ZF+DC onde todos os conjuntos de reais s˜aomensur´aveis `aLebesgue. Por outro lado, o Teorema de Shelah esclarece que quando existe um modelo de ZF+DC onde todos os conjuntos de reais s˜aomensur´aveis `aLebesgue, tamb´emexiste um modelo de ZFC com um cardinal inacess´ıvel. Esta tese ´euma exposi¸c˜aodetalhada dos teoremas de Solovay e de Shelah, e das respectivas demons- tra¸c˜oes.Os pr´e-requisitos para as demonstra¸c˜oess˜aoprincipalmente a teoria dos modelos para conjuntos; o m´etodo de forcing, em particular o colapso de L´evye a ´algebraaleat´oria;e a teoria descritiva, com foco na mensurabilidade `aLebesgue. Estes pr´e-requisitoss˜aoapresentados ap´osuma revis˜aobreve da medida de Lebesgue. Depois os dois teoremas principais s˜aodemonstrados com o devido detalhe. Palavras-chave: Medida de Lebesgue, Cardinal Inacess´ıvel, Princ´ıpiodas Escolhas Depen- dentes, Colapso de L´evy, Algebra´ Aleat´oria,Filtro R´apido vii viii Abstract One of the significant driving factors behind major developments in set theory has been the Lebesgue measure. The Lebesgue measure is the cornerstone of Lebesgue’s theory of integration, which is a gen- eralization of Riemann’s theory of integration. Despite the many advantages of the Lebesgue integral, it cannot measure every set of reals. However, an alternative can be found if we adopt a weaker version of the axiom of choice, namely the principle of dependent choices (DC). Solovay’s Theorem establishes that if there is a model of ZFC with an inaccessible cardinal, then there is a model of ZF+DC in which every set of reals is Lebesgue measurable. On the other hand, Shelah’s Theorem clarifies that when there is a model of ZF+DC in which every set of reals is Lebesgue measurable, there is also a model of ZFC with an inaccessible cardinal. This thesis is a detailed exposition of the Solovay and Shelah theorems, and their respective proofs. The prerequisites for the proofs are mainly the model theory of sets; the method of forcing, particularly the L´evycollapse and the random algebra; and descriptive set theory, focused on the aspect of Lebesgue measurability. These prerequisites are presented after a brief overview of the Lebesgue measure. Then the two main theorems are shown with due detail. Keywords: Lebesgue Measure, Inaccessible Cardinal, Principle of Dependent Choices, L´evy Collapse, Random Algebra, Rapid Filter ix x Contents Acknowledgments............................................v Resumo................................................. vii Abstract................................................. ix List of Figures............................................. xiii Nomenclature..............................................1 Glossary.................................................1 1 Introduction 1 2 The Lebesgue Measure5 2.1 The Lebesgue Measure......................................6 3 Preliminaries of Set Theory 11 3.1 Models of Set Theory...................................... 11 3.2 Forcing and the L´evyCollapse................................. 18 3.2.1 The Theory of Forcing.................................. 19 3.2.2 Examples......................................... 30 3.2.3 The L´evyCollapse.................................... 32 3.3 The Lebesgue Measure and Descriptive Set Theory...................... 35 4 The Lebesgue Measure and Large Cardinals 51 4.1 Solovay’s Theorem........................................ 51 4.2 Shelah’s Theorem......................................... 55 4.3 Further Results.......................................... 63 5 Conclusions 67 Bibliography 69 A Proof of Solovay’s Technical Lemma 71 B Proof of Shelah’s Auxiliary Lemma 75 xi xii List of Figures 3.1 Geometric representation of the forcing method........................ 23 xiii xiv Chapter 1 Introduction Set theory is a branch of Mathematics pioneered by Georg Cantor in the late XIX century. He established for the first time that there are different sizes of infinities and that there is no upper bound for them. In the subsequent period, set theory was developed and expanded. However, it was still in a nonaxiomatic stage in the early XX century. There was a naive assumption that the set of all sets existed, but Bertrand Russell found a logical paradox following from this assumption. To avoid this kind of paradoxes, mathematicians had to find an appropriate axiomatization for set theory. The set of axioms that eventually became the standard axiomatization of set theory were the Zermelo-Fraenkel axioms with choice, abbreviated to ZFC. From ZFC almost all of Mathematics can be derived. Because of this, set theory is regarded as the foundation of Mathematics. Set theory became a branch of mathematical research in its own right in great part due to Kurt G¨odel.He proved that the axiom of choice (AC) and the continuum hypothesis (CH) are consistent with ZF, provided that ZF is consistent. G¨odelaccomplished this by defining the class L of constructible sets and proving that L is a model of ZFC+CH. This put to rest early concerns about the axiom of choice. G¨odelalso established his famous incompleteness theorems in 1931. These theorems entail that any consistent system of axioms strong enough to interpret first-order arithmetic is necessarily incomplete. These groundbreaking results eliminated the possibility of deciding all statements from a single set of strong enough axioms, such as the axioms of set theory. Among the undecidable statements in ZFC are the large cardinal hypotheses. G¨odelconjectured that if we assumed the existence of a large cardinal, in addition to the ZFC axioms, then we could prove new results that were previously undecidable in ZFC. G¨odelalso conjectured that this process could be repeated by adding even larger cardinals to improve the strength of the previously strengthened axiom system. Since there is no maximum cardinal, the process of adding larger cardinal hypotheses would eventually decide all propositions by resorting to strengthened enough systems of axioms. This was G¨odel’sprogram for set theory. The next great innovation in set theory came from Paul Cohen, in 1963. He proved the independence of AC and CH from ZF using the method of forcing, a mathematical technique that he created. Forcing is a method of adding a convenient object to a proposed model of set theory to force the resulting extended model to satisfy desired properties. This method, in its multiple forms, proved to be incredibly powerful. 1 It has been used to establish that there are propositions that are consistent relative to ZFC, or even independent of ZFC. It has also been used to measure the strength of certain propositions by comparing them with large cardinal hypotheses. Among the most common of these propositions are the axiom of choice, the continuum hypothesis, and the axiom of constructibility (V = L). A (partial) hierarchy of the size of large cardinals was established. As G¨odelconjectured, large cardinals hypotheses allowed to prove new results and to shed light on the other areas of set theory. The study of large cardinals is now inseparably interwoven with other areas of set theory. Despite its many successes, the known large cardinal hypotheses do not decide CH. Set theory is a branch of mathematics that is more isolated from the other branches than the norm. Its direct consequences to mathematics as a whole have been comparatively limited — for now. But the study of large cardinals, for example, may have an enormous impact through the whole of mathematics.
Recommended publications
  • Set Theory, Including the Axiom of Choice) Plus the Negation of CH
    ANNALS OF ~,IATltEMATICAL LOGIC - Volume 2, No. 2 (1970) pp. 143--178 INTERNAL COHEN EXTENSIONS D.A.MARTIN and R.M.SOLOVAY ;Tte RockeJ~'ller University and University (.~t CatiJbrnia. Berkeley Received 2 l)ecemt)er 1969 Introduction Cohen [ !, 2] has shown that tile continuum hypothesis (CH) cannot be proved in Zermelo-Fraenkel set theory. Levy and Solovay [9] have subsequently shown that CH cannot be proved even if one assumes the existence of a measurable cardinal. Their argument in tact shows that no large cardinal axiom of the kind present;y being considered by set theorists can yield a proof of CH (or of its negation, of course). Indeed, many set theorists - including the authors - suspect that C1t is false. But if we reject CH we admit Gurselves to be in a state of ignorance about a great many questions which CH resolves. While CH is a power- full assertion, its negation is in many ways quite weak. Sierpinski [ 1 5 ] deduces propcsitions there called C l - C82 from CH. We know of none of these propositions which is decided by the negation of CH and only one of them (C78) which is decided if one assumes in addition that a measurable cardinal exists. Among the many simple questions easily decided by CH and which cannot be decided in ZF (Zerme!o-Fraenkel set theory, including the axiom of choice) plus the negation of CH are tile following: Is every set of real numbers of cardinality less than tha't of the continuum of Lebesgue measure zero'? Is 2 ~0 < 2 ~ 1 ? Is there a non-trivial measure defined on all sets of real numbers? CIhis third question could be decided in ZF + not CH only in the unlikely event t Tile second author received support from a Sloan Foundation fellowship and tile National Science Foundation Grant (GP-8746).
    [Show full text]
  • Geometric Integration Theory Contents
    Steven G. Krantz Harold R. Parks Geometric Integration Theory Contents Preface v 1 Basics 1 1.1 Smooth Functions . 1 1.2Measures.............................. 6 1.2.1 Lebesgue Measure . 11 1.3Integration............................. 14 1.3.1 Measurable Functions . 14 1.3.2 The Integral . 17 1.3.3 Lebesgue Spaces . 23 1.3.4 Product Measures and the Fubini–Tonelli Theorem . 25 1.4 The Exterior Algebra . 27 1.5 The Hausdorff Distance and Steiner Symmetrization . 30 1.6 Borel and Suslin Sets . 41 2 Carath´eodory’s Construction and Lower-Dimensional Mea- sures 53 2.1 The Basic Definition . 53 2.1.1 Hausdorff Measure and Spherical Measure . 55 2.1.2 A Measure Based on Parallelepipeds . 57 2.1.3 Projections and Convexity . 57 2.1.4 Other Geometric Measures . 59 2.1.5 Summary . 61 2.2 The Densities of a Measure . 64 2.3 A One-Dimensional Example . 66 2.4 Carath´eodory’s Construction and Mappings . 67 2.5 The Concept of Hausdorff Dimension . 70 2.6 Some Cantor Set Examples . 73 i ii CONTENTS 2.6.1 Basic Examples . 73 2.6.2 Some Generalized Cantor Sets . 76 2.6.3 Cantor Sets in Higher Dimensions . 78 3 Invariant Measures and the Construction of Haar Measure 81 3.1 The Fundamental Theorem . 82 3.2 Haar Measure for the Orthogonal Group and the Grassmanian 90 3.2.1 Remarks on the Manifold Structure of G(N,M).... 94 4 Covering Theorems and the Differentiation of Integrals 97 4.1 Wiener’s Covering Lemma and its Variants .
    [Show full text]
  • Shape Analysis, Lebesgue Integration and Absolute Continuity Connections
    NISTIR 8217 Shape Analysis, Lebesgue Integration and Absolute Continuity Connections Javier Bernal This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8217 NISTIR 8217 Shape Analysis, Lebesgue Integration and Absolute Continuity Connections Javier Bernal Applied and Computational Mathematics Division Information Technology Laboratory This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8217 July 2018 INCLUDES UPDATES AS OF 07-18-2018; SEE APPENDIX U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary National Institute of Standards and Technology Walter Copan, NIST Director and Undersecretary of Commerce for Standards and Technology ______________________________________________________________________________________________________ This Shape Analysis, Lebesgue Integration and publication Absolute Continuity Connections Javier Bernal is National Institute of Standards and Technology, available Gaithersburg, MD 20899, USA free of Abstract charge As shape analysis of the form presented in Srivastava and Klassen’s textbook “Functional and Shape Data Analysis” is intricately related to Lebesgue integration and absolute continuity, it is advantageous from: to have a good grasp of the latter two notions. Accordingly, in these notes we review basic concepts and results about Lebesgue integration https://doi.org/10.6028/NIST.IR.8217 and absolute continuity. In particular, we review fundamental results connecting them to each other and to the kind of shape analysis, or more generally, functional data analysis presented in the aforeme- tioned textbook, in the process shedding light on important aspects of all three notions. Many well-known results, especially most results about Lebesgue integration and some results about absolute conti- nuity, are presented without proofs.
    [Show full text]
  • A List of Arithmetical Structures Complete with Respect to the First
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Theoretical Computer Science 257 (2001) 115–151 www.elsevier.com/locate/tcs A list of arithmetical structures complete with respect to the ÿrst-order deÿnability Ivan Korec∗;X Slovak Academy of Sciences, Mathematical Institute, Stefanikovaà 49, 814 73 Bratislava, Slovak Republic Abstract A structure with base set N is complete with respect to the ÿrst-order deÿnability in the class of arithmetical structures if and only if the operations +; × are deÿnable in it. A list of such structures is presented. Although structures with Pascal’s triangles modulo n are preferred a little, an e,ort was made to collect as many simply formulated results as possible. c 2001 Elsevier Science B.V. All rights reserved. MSC: primary 03B10; 03C07; secondary 11B65; 11U07 Keywords: Elementary deÿnability; Pascal’s triangle modulo n; Arithmetical structures; Undecid- able theories 1. Introduction A list of (arithmetical) structures complete with respect of the ÿrst-order deÿnability power (shortly: def-complete structures) will be presented. (The term “def-strongest” was used in the previous versions.) Most of them have the base set N but also structures with some other universes are considered. (Formal deÿnitions are given below.) The class of arithmetical structures can be quasi-ordered by ÿrst-order deÿnability power. After the usual factorization we obtain a partially ordered set, and def-complete struc- tures will form its greatest element. Of course, there are stronger structures (with respect to the ÿrst-order deÿnability) outside of the class of arithmetical structures.
    [Show full text]
  • Hausdorff Measure
    Hausdorff Measure Jimmy Briggs and Tim Tyree December 3, 2016 1 1 Introduction In this report, we explore the the measurement of arbitrary subsets of the metric space (X; ρ); a topological space X along with its distance function ρ. We introduce Hausdorff Measure as a natural way of assigning sizes to these sets, especially those of smaller \dimension" than X: After an exploration of the salient properties of Hausdorff Measure, we proceed to a definition of Hausdorff dimension, a separate idea of size that allows us a more robust comparison between rough subsets of X. Many of the theorems in this report will be summarized in a proof sketch or shown by visual example. For a more rigorous treatment of the same material, we redirect the reader to Gerald B. Folland's Real Analysis: Modern techniques and their applications. Chapter 11 of the 1999 edition served as our primary reference. 2 Hausdorff Measure 2.1 Measuring low-dimensional subsets of X The need for Hausdorff Measure arises from the need to know the size of lower-dimensional subsets of a metric space. This idea is not as exotic as it may sound. In a high school Geometry course, we learn formulas for objects of various dimension embedded in R3: In Figure 1 we see the line segment, the circle, and the sphere, each with it's own idea of size. We call these length, area, and volume, respectively. Figure 1: low-dimensional subsets of R3: 2 4 3 2r πr 3 πr Note that while only volume measures something of the same dimension as the host space, R3; length, and area can still be of interest to us, especially 2 in applications.
    [Show full text]
  • The Axiom of Choice and Its Implications
    THE AXIOM OF CHOICE AND ITS IMPLICATIONS KEVIN BARNUM Abstract. In this paper we will look at the Axiom of Choice and some of the various implications it has. These implications include a number of equivalent statements, and also some less accepted ideas. The proofs discussed will give us an idea of why the Axiom of Choice is so powerful, but also so controversial. Contents 1. Introduction 1 2. The Axiom of Choice and Its Equivalents 1 2.1. The Axiom of Choice and its Well-known Equivalents 1 2.2. Some Other Less Well-known Equivalents of the Axiom of Choice 3 3. Applications of the Axiom of Choice 5 3.1. Equivalence Between The Axiom of Choice and the Claim that Every Vector Space has a Basis 5 3.2. Some More Applications of the Axiom of Choice 6 4. Controversial Results 10 Acknowledgments 11 References 11 1. Introduction The Axiom of Choice states that for any family of nonempty disjoint sets, there exists a set that consists of exactly one element from each element of the family. It seems strange at first that such an innocuous sounding idea can be so powerful and controversial, but it certainly is both. To understand why, we will start by looking at some statements that are equivalent to the axiom of choice. Many of these equivalences are very useful, and we devote much time to one, namely, that every vector space has a basis. We go on from there to see a few more applications of the Axiom of Choice and its equivalents, and finish by looking at some of the reasons why the Axiom of Choice is so controversial.
    [Show full text]
  • The Infinite and Contradiction: a History of Mathematical Physics By
    The infinite and contradiction: A history of mathematical physics by dialectical approach Ichiro Ueki January 18, 2021 Abstract The following hypothesis is proposed: \In mathematics, the contradiction involved in the de- velopment of human knowledge is included in the form of the infinite.” To prove this hypothesis, the author tries to find what sorts of the infinite in mathematics were used to represent the con- tradictions involved in some revolutions in mathematical physics, and concludes \the contradiction involved in mathematical description of motion was represented with the infinite within recursive (computable) set level by early Newtonian mechanics; and then the contradiction to describe discon- tinuous phenomena with continuous functions and contradictions about \ether" were represented with the infinite higher than the recursive set level, namely of arithmetical set level in second or- der arithmetic (ordinary mathematics), by mechanics of continuous bodies and field theory; and subsequently the contradiction appeared in macroscopic physics applied to microscopic phenomena were represented with the further higher infinite in third or higher order arithmetic (set-theoretic mathematics), by quantum mechanics". 1 Introduction Contradictions found in set theory from the end of the 19th century to the beginning of the 20th, gave a shock called \a crisis of mathematics" to the world of mathematicians. One of the contradictions was reported by B. Russel: \Let w be the class [set]1 of all classes which are not members of themselves. Then whatever class x may be, 'x is a w' is equivalent to 'x is not an x'. Hence, giving to x the value w, 'w is a w' is equivalent to 'w is not a w'."[52] Russel described the crisis in 1959: I was led to this contradiction by Cantor's proof that there is no greatest cardinal number.
    [Show full text]
  • (Measure Theory for Dummies) UWEE Technical Report Number UWEETR-2006-0008
    A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 UWEE Technical Report Number UWEETR-2006-0008 May 2006 Department of Electrical Engineering University of Washington Box 352500 Seattle, Washington 98195-2500 PHN: (206) 543-2150 FAX: (206) 543-3842 URL: http://www.ee.washington.edu A Measure Theory Tutorial (Measure Theory for Dummies) Maya R. Gupta {gupta}@ee.washington.edu Dept of EE, University of Washington Seattle WA, 98195-2500 University of Washington, Dept. of EE, UWEETR-2006-0008 May 2006 Abstract This tutorial is an informal introduction to measure theory for people who are interested in reading papers that use measure theory. The tutorial assumes one has had at least a year of college-level calculus, some graduate level exposure to random processes, and familiarity with terms like “closed” and “open.” The focus is on the terms and ideas relevant to applied probability and information theory. There are no proofs and no exercises. Measure theory is a bit like grammar, many people communicate clearly without worrying about all the details, but the details do exist and for good reasons. There are a number of great texts that do measure theory justice. This is not one of them. Rather this is a hack way to get the basic ideas down so you can read through research papers and follow what’s going on. Hopefully, you’ll get curious and excited enough about the details to check out some of the references for a deeper understanding.
    [Show full text]
  • A Measure Blowup Sam Chow∗∗∗, Gus Schrader∗∗∗∗ and J.J
    A measure blowup Sam Chow∗∗∗, Gus Schrader∗∗∗∗ and J.J. Koliha∗ ∗∗∗∗ Last year Sam Chow and Gus Schrader were third-year students at the Uni- versity of Melbourne enrolled in Linear Analysis, a subject involving — among other topics — Lebesgue measure and integration. This was based on parts of the recently published book Metrics, Norms and Integrals by the lecturer in the subject, Associate Professor Jerry Koliha. In addition to three lectures a week, the subject had a weekly practice class. The lecturer introduced an extra weekly practice class with a voluntary attendance, but most stu- dents chose to attend, showing a keen interest in the subject. The problems tackled in the extra practice class ranged from routine to very challenging. The present article arose in this environment, as Sam and Gus independently attacked one of the challenging problems. Working in the Euclidean space Rd we can characterise Lebesgue measure very simply by relying on the Euclidean volume of the so-called d-cells.Ad-cell C in Rd is the Cartesian product C = I1 ×···×Id of bounded nondegenerate one-dimensional intervals Ik; its Euclidean d-volume is d the product of the lengths of the Ik. Borel sets in R are the members of the least family Bd of subsets of Rd containing the empty set, ∅, and all d-cells which are closed under countable unions and complements in Rd. Since every open set in Rd can be expressed as the countable union of suitable d-cells, the open sets are Borel, as are all sets obtained from them by countable unions and intersections, and complements.
    [Show full text]
  • RANDOMNESS – BEYOND LEBESGUE MEASURE Most
    RANDOMNESS – BEYOND LEBESGUE MEASURE JAN REIMANN ABSTRACT. Much of the recent research on algorithmic randomness has focused on randomness for Lebesgue measure. While, from a com- putability theoretic point of view, the picture remains unchanged if one passes to arbitrary computable measures, interesting phenomena occur if one studies the the set of reals which are random for an arbitrary (contin- uous) probability measure or a generalized Hausdorff measure on Cantor space. This paper tries to give a survey of some of the research that has been done on randomness for non-Lebesgue measures. 1. INTRODUCTION Most studies on algorithmic randomness focus on reals random with respect to the uniform distribution, i.e. the (1/2, 1/2)-Bernoulli measure, which is measure theoretically isomorphic to Lebesgue measure on the unit interval. The theory of uniform randomness, with all its ramifications (e.g. computable or Schnorr randomness) has been well studied over the past decades and has led to an impressive theory. Recently, a lot of attention focused on the interaction of algorithmic ran- domness with recursion theory: What are the computational properties of random reals? In other words, which computational properties hold effec- tively for almost every real? This has led to a number of interesting re- sults, many of which will be covered in a forthcoming book by Downey and Hirschfeldt [12]. While the understanding of “holds effectively” varied in these results (depending on the underlying notion of randomness, such as computable, Schnorr, or weak randomness, or various arithmetic levels of Martin-Lof¨ randomness, to name only a few), the meaning of “for almost every” was usually understood with respect to Lebesgue measure.
    [Show full text]
  • The Reverse Mathematics of Cousin's Lemma
    VICTORIAUNIVERSITYOFWELLINGTON Te Herenga Waka School of Mathematics and Statistics Te Kura Matai Tatauranga PO Box 600 Tel: +64 4 463 5341 Wellington 6140 Fax: +64 4 463 5045 New Zealand Email: sms-offi[email protected] The reverse mathematics of Cousin’s lemma Jordan Mitchell Barrett Supervisors: Rod Downey, Noam Greenberg Friday 30th October 2020 Submitted in partial fulfilment of the requirements for the Bachelor of Science with Honours in Mathematics. Abstract Cousin’s lemma is a compactness principle that naturally arises when study- ing the gauge integral, a generalisation of the Lebesgue integral. We study the ax- iomatic strength of Cousin’s lemma for various classes of functions, using Fried- arXiv:2011.13060v1 [math.LO] 25 Nov 2020 man and Simpson’s reverse mathematics in second-order arithmetic. We prove that, over RCA0: (i) Cousin’s lemma for continuous functions is equivalent to the system WKL0; (ii) Cousin’s lemma for Baire 1 functions is at least as strong as ACA0; (iii) Cousin’s lemma for Baire 2 functions is at least as strong as ATR0. Contents 1 Introduction 1 2 Integration and Cousin’s lemma 5 2.1 Riemann integration . .5 2.2 Gauge integration . .6 2.3 Cousin’s lemma . .7 3 Logical prerequisites 9 3.1 Computability . .9 3.2 Second-order arithmetic . 12 3.3 The arithmetical and analytical hierarchies . 13 4 Subsystems of second-order arithmetic 17 4.1 Formal systems . 17 4.2 RCA0 .......................................... 18 4.3 WKL0 .......................................... 19 4.4 ACA0 .......................................... 21 4.5 ATR0 .......................................... 22 1 4.6 P1-CA0 ......................................... 23 5 Analysis in second-order arithmetic 25 5.1 Number systems .
    [Show full text]
  • Regularity Properties and Determinacy
    Regularity Properties and Determinacy MSc Thesis (Afstudeerscriptie) written by Yurii Khomskii (born September 5, 1980 in Moscow, Russia) under the supervision of Dr. Benedikt L¨owe, and submitted to the Board of Examiners in partial fulfillment of the requirements for the degree of MSc in Logic at the Universiteit van Amsterdam. Date of the public defense: Members of the Thesis Committee: August 14, 2007 Dr. Benedikt L¨owe Prof. Dr. Jouko V¨a¨an¨anen Prof. Dr. Joel David Hamkins Prof. Dr. Peter van Emde Boas Brian Semmes i Contents 0. Introduction............................ 1 1. Preliminaries ........................... 4 1.1 Notation. ........................... 4 1.2 The Real Numbers. ...................... 5 1.3 Trees. ............................. 6 1.4 The Forcing Notions. ..................... 7 2. ClasswiseConsequencesofDeterminacy . 11 2.1 Regularity Properties. .................... 11 2.2 Infinite Games. ........................ 14 2.3 Classwise Implications. .................... 16 3. The Marczewski-Burstin Algebra and the Baire Property . 20 3.1 MB and BP. ......................... 20 3.2 Fusion Sequences. ...................... 23 3.3 Counter-examples. ...................... 26 4. DeterminacyandtheBaireProperty.. 29 4.1 Generalized MB-algebras. .................. 29 4.2 Determinacy and BP(P). ................... 31 4.3 Determinacy and wBP(P). .................. 34 5. Determinacy andAsymmetric Properties. 39 5.1 The Asymmetric Properties. ................. 39 5.2 The General Definition of Asym(P). ............. 43 5.3 Determinacy and Asym(P). ................. 46 ii iii 0. Introduction One of the most intriguing developments of modern set theory is the investi- gation of two-player infinite games of perfect information. Of course, it is clear that applied game theory, as any other branch of mathematics, can be modeled in set theory. But we are talking about the converse: the use of infinite games as a tool to study fundamental set theoretic questions.
    [Show full text]