Characterization of Global Fields by Dirichlet L-Series

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Global Fields by Dirichlet L-Series Cornelissen et al. Res. Number Theory (2019) 5:7 https://doi.org/10.1007/s40993-018-0143-9 RESEARCH Characterization of global fields by Dirichlet L-series Gunther Cornelissen1,BartdeSmit2,XinLi3, Matilde Marcolli4,5,6 and Harry Smit1* *Correspondence: [email protected] Abstract 1Mathematisch Instituut, Universiteit Utrecht, Postbus We prove that two global fields are isomorphic if and only if there is an isomorphism of 80.010, 3508 TA Utrecht, The groups of Dirichlet characters that preserves L-series. Netherlands Keywords: L Full list of author information is Class field theory, -series, Arithmetic equivalence available at the end of the article Mathematics Subject Classification: 11R37, 11R42, 11R56, 14H30 Part of this work was done whilst the first and third author enjoyed the hospitality of the University of Warwick (special thanks to Richard Sharp for making it 1 Introduction possible). As was discovered by Gaßmann in 1926 [10], number fields are not uniquely determined up to isomorphism by their zeta functions. A theorem of Tate [20] from 1966 implies the same for global function fields. At the other end of the spectrum, results of Neukirch and Uchida [15,21,22] around 1970 state that the absolute Galois group does uniquely determine a global field. The better understood abelianized Galois group again does not determine the field up to isomorphism at all, as follows from the description of its character group by Kubota in 1957 ([13], compare [1,17]). Funakura ([9,§I],using[8, Thm. 5]) has shown in 1980 that there exists a number field k (of degree 255! over Q) and two non- isomorphic abelian extensions K/k and L/k of degree 4 with a bijection between all Artin L-series of K/k and L/k (or, equivalently, between the L-series of the four occurring characters). In this paper, we prove that two global fields K and L are isomorphic if and only if there q q ab ∼ q ab exists an isomorphism of groups of Dirichlet characters ψ : GK −→ GL that preserves q q ab L-series: LK(χ) = LL(ψ(χ)) for all χ ∈ GK . A more detailed series of equivalences can be found in the Main Theorem 3.1 below. To connect this theorem to the discussion in the previous paragraph, observe that the existence of ψq without equality of L-series is the same as K and L having abelianized Galois groups that are isomorphic as topological groups, and that for the trivial character χtriv,wehaveLK(χtriv) = ζK, so that preserving L-series at χtriv is the same as K and L having the same zeta function. Contrary to the result of Funakura, our characters do not factor over a fixed Galois group. In global function fields we explicitly construct the isomorphism of function fields via a map of kernels of reciprocity maps (much akin to the final step in Uchida’s proof [22]). For number fields, we do not need the full hypothesis: we can prove the stronger result that for every number field, there exists a character of any chosen order > 2 for which the L-series does not equal any other Dirichlet L-series of any other field (see Theorem 10.1). © The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 123 provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. 0123456789().,–: volV 7 Page 2 of 15 Cornelissen et al. Res. Number Theory (2019) 5:7 The method here is not via the kernel of the reciprocity map, but rather via representation theory. We briefly indicate the relation of our work to previous results. The main result was first stated in a 2010 preprint by two of the current authors, who discovered it through methods from mathematical physics ([4], now split into two parts [5]and[6]). For function fields, the main result was proven by one of the authors in [3], using dynamical systems, referring, however, to [4] for some auxiliary results, of which we present the first published proofs in the current paper. Sections 9 and 10 contain an independent proof for the number field case that was found by the second author in 2011. The current paper not only presents full and simplified proofs, but also uses only classical methods from number theory (class field theory, Chebotarev, Grunwald-Wang, and inverse Galois theory). In [19], reconstruction of field extensions of a fixed rational function field from relative L-series is treated from the point of view of the method in Sects. 9 and 10 of this paper. After some preliminaries in the first section, we state the main result in Sect. 3.The next few sections outline the proof of the various equivalences in the main theorem, using basic class field theory and work of Uchida and Hoshi. In the final sections, we deal with number fields, and use representation theory to prove some stronger results. 2 Preliminaries In this section, we set notation and introduce the main object of study. A monoid is a semigroup with identity element. If R is a ring, we let R∗ denote its group of invertible elements. Given a global field K,weusethewordprime to denote a non-zero prime ideal if K is a number field, and to denote an irreducible effective divisor if K is a global function field. Let PK be the set of primes of K.Ifp ∈ PK,letvp be the normalized (additive) valuation corresponding to p, Kp the local field at p,andOp its ring of integers. Let AK,f be the finite ∗ K OK A adele ring of , its ring of finite integral adeles and K,f the group of ideles (invertible finite adeles), all with their usual topology. Note that in the function field case, infinite placesdonotexist,sothatinthatcase,AK,f = AK is the adele ring, OK is the ring of A∗ = A∗ K integral adeles and K,f K is the full group of ideles. If is a number field, we denote by OK its ring of integers. If K is a global function field, we denote by q the cardinality of the constant field. Let IK be the multiplicative monoid of non-zero integral ideals/effective divisors of our K P m ∈ global field ,soIK is generated by K. We extend the valuation to ideals: if IK p ∈ P m ∈ Z m = pvp(m) and K,wedefinevp( ) ≥0 by requiring p∈P K .LetN be the norm function on the monoid IK: it is the multiplicative function defined on primes p by p N(p):= #OK/p if K is a number field and N(p) = qdeg( ) if K is a function field. Given two global fields K and L, we call a monoid homomorphism ϕ : IK → IL norm-preserving if N(ϕ(m)) = N(m) for all m ∈ IK. We have a surjective monoid homomorphism · A∗ ∩ O → → pvp(xp) ( )K : K,f K IK, (xp)p , p a restriction of the usual homomorphism from ideles to fractional ideals—we use the monoid version in Sect. 6.1 and in the companion paper [6]. A split for (·)K is by definition ∗ K K → A ∩ OK p K p = a monoid homomorphism s : I K,f such that for every prime , s ( ) ... π ... π ∈ K · ◦ = ( , 1, p, 1, ) for some uniformizer p p. It follows that ( )K sK idIK . Cornelissen et al. Res. Number Theory (2019) 5:7 Page 3 of 15 7 ab ab Let GK be the Galois group of a maximal abelian extension K of K, a profinite topo- ∗ ab logical group. There is an Artin reciprocity map AK → GK . In the number field case, we A∗ A∗ A∗ → ∈ A∗ embed K,f into the group of ideles K via K,f x (1,x) K, restrict the Artin ∗ A K K reciprocity map to K,f and call this restriction rec . In the function field case, rec is just the (full) Artin reciprocity map. q ab ab Let T denote the unit circle, equipped with the usual topology, and GK = Hom (GK , T) ab q ab the group of continuous linear characters of GK . Given χ ∈ GK ,wewrite χ = p ∈ P χ| ∗ = U( ): K: recK(Op) 1 χ χ for the set of primes where is unramified .Wedenoteby U( ) the submonoid of IK χ m ∈ χ m = p ∈ P \ χ generated by U( ), i.e., IK is in U( ) if and only if vp( ) 0 for all K U( ). ∗ For m ∈ U(χ) , we set (in a well-defined way, as the choice of sK is up to an element of OK): χ(m):= χ(recK(sK(m))), and for m ∈ IK\ U(χ) we set χ(m) = 0. q ab ab For any χ ∈ GK , the kernel ker χ is an open subgroup of GK . Therefore, the fixed field of χ, denoted Kχ , is a finite abelian extension of K. Even more: as the extension is finite, there is an n such that χ n is the trivial character. It follows that im χ is a subgroup of ∼ the nth roots of unity, hence cyclic. As we have an isomorphism im χ −→ Gal(Kχ /K), we obtain that Kχ /K is a finite cyclic extension. Conversely, for any finite cyclic extension K q ab ab of K there exists a character χ ∈ GK such that ker χ = Gal(K /K ). The following two lemmas are easy, but we include a proof in the terminology of this paper for lack of a suitable reference.
Recommended publications
  • 8 Complete Fields and Valuation Rings
    18.785 Number theory I Fall 2016 Lecture #8 10/04/2016 8 Complete fields and valuation rings In order to make further progress in our investigation of finite extensions L=K of the fraction field K of a Dedekind domain A, and in particular, to determine the primes p of K that ramify in L, we introduce a new tool that will allows us to \localize" fields. We have already seen how useful it can be to localize the ring A at a prime ideal p. This process transforms A into a discrete valuation ring Ap; the DVR Ap is a principal ideal domain and has exactly one nonzero prime ideal, which makes it much easier to study than A. By Proposition 2.7, the localizations of A at its prime ideals p collectively determine the ring A. Localizing A does not change its fraction field K. However, there is an operation we can perform on K that is analogous to localizing A: we can construct the completion of K with respect to one of its absolute values. When K is a global field, this process yields a local field (a term we will define in the next lecture), and we can recover essentially everything we might want to know about K by studying its completions. At first glance taking completions might seem to make things more complicated, but as with localization, it actually simplifies matters considerably. For those who have not seen this construction before, we briefly review some background material on completions, topological rings, and inverse limits.
    [Show full text]
  • Little Survey on Large Fields – Old & New –
    Little survey on large fields { Old & New { Florian Pop ∗ Abstract. The large fields were introduced by the author in [59] and subsequently acquired several other names. This little survey includes earlier and new developments, and at the end of each section we mention a few open questions. 2010 Mathematics Subject Classification. Primary 12E, 12F, 12G, 12J. Secondary 12E30, 12F10, 12G99. Keywords. Large fields, ultraproducts, PAC, pseudo closed fields, Henselian pairs, elementary equivalence, algebraic varieties, rational points, function fields, (inverse) Galois theory, embedding problems, model theory, rational connectedness, extremal fields. Introduction The notion of large field was introduced in Pop [59] and proved to be the \right class" of fields over which one can do a lot of interesting mathematics, like (inverse) Galois theory, see Colliot-Th´el`ene[7], Moret-Bailly [45], Pop [59], [61], the survey article Harbater [30], study torsors of finite groups Moret- Bailly [46], study rationally connected varieties Koll´ar[37], study the elementary theory of function fields Koenigsmann [35], Poonen{Pop [55], characterize extremal valued fields as introduced by Ershov [12], see Azgin{Kuhlmann{Pop [1], etc. Maybe that is why the \large fields” acquired several other names |google it: ´epais,fertile, weite K¨orper, ample, anti-Mordellic. Last but not least, see Jarden's book [34] for more about large fields (which he calls \ample fields” in his book [34]), and Kuhlmann [41] for relations between large fields and local uniformization (`ala Zariski). Definition. A field k is called a large field, if for every irreducible k-curve C the following holds: If C has a k-rational smooth point, then C has infinitely many k-rational points.
    [Show full text]
  • Local-Global Methods in Algebraic Number Theory
    LOCAL-GLOBAL METHODS IN ALGEBRAIC NUMBER THEORY ZACHARY KIRSCHE Abstract. This paper seeks to develop the key ideas behind some local-global methods in algebraic number theory. To this end, we first develop the theory of local fields associated to an algebraic number field. We then describe the Hilbert reciprocity law and show how it can be used to develop a proof of the classical Hasse-Minkowski theorem about quadratic forms over algebraic number fields. We also discuss the ramification theory of places and develop the theory of quaternion algebras to show how local-global methods can also be applied in this case. Contents 1. Local fields 1 1.1. Absolute values and completions 2 1.2. Classifying absolute values 3 1.3. Global fields 4 2. The p-adic numbers 5 2.1. The Chevalley-Warning theorem 5 2.2. The p-adic integers 6 2.3. Hensel's lemma 7 3. The Hasse-Minkowski theorem 8 3.1. The Hilbert symbol 8 3.2. The Hasse-Minkowski theorem 9 3.3. Applications and further results 9 4. Other local-global principles 10 4.1. The ramification theory of places 10 4.2. Quaternion algebras 12 Acknowledgments 13 References 13 1. Local fields In this section, we will develop the theory of local fields. We will first introduce local fields in the special case of algebraic number fields. This special case will be the main focus of the remainder of the paper, though at the end of this section we will include some remarks about more general global fields and connections to algebraic geometry.
    [Show full text]
  • Branching Laws for Classical Groups: the Non-Tempered Case
    BRANCHING LAWS FOR CLASSICAL GROUPS: THE NON-TEMPERED CASE WEE TECK GAN, BENEDICT H. GROSS AND DIPENDRA PRASAD August 18, 2020 ABSTRACT. This paper generalizes the GGP conjectures which were earlier formulated for tempered or more generally generic L-packets to Arthur packets, especially for the nongeneric L-packets arising from Arthur parameters. The paper introduces the key no- tionof a relevant pair of A-parameters which governs the branching laws for GLn and all classical groups overboth local fields and global fields. It plays a role for all the branching problems studied in [GGP] including Bessel models and Fourier-Jacobi models. CONTENTS 1. Introduction 1 2. Notation and Preliminaries 8 3. Relevant Pair of A-Parameters 10 4. Correlator 12 5. Local Conjecture for GLn 15 6. Local Conjecture for Classical Groups 23 7. A Conjecture for A-packets 25 8. A Special Case of the Conjecture 31 9. Global Conjecture 34 10. Revisiting the Global Conjecture 43 11. Low Rank Examples 46 12. Automorphic Descent 55 13. L-functions: GL case 59 14. L-functions: Classical Groups 63 References 67 arXiv:1911.02783v2 [math.RT] 17 Aug 2020 1. INTRODUCTION This paper is a sequel to our earlier work [GP1, GP2, GGP, GGP2], which discussed several restriction (or branching) problems in the representation theory of classical groups. In the local case, the conjectural answer was given in terms of symplectic root numbers 1991 Mathematics Subject Classification. Primary 11F70; Secondary 22E55. WTG is partially supported by an MOE Tier 2 grant R146-000-233-112. DP thanks Science and En- gineering research board of the Department of Science and Technology, India for its support through the JC Bose National Fellowship of the Govt.
    [Show full text]
  • Number Theory
    Number Theory Alexander Paulin October 25, 2010 Lecture 1 What is Number Theory Number Theory is one of the oldest and deepest Mathematical disciplines. In the broadest possible sense Number Theory is the study of the arithmetic properties of Z, the integers. Z is the canonical ring. It structure as a group under addition is very simple: it is the infinite cyclic group. The mystery of Z is its structure as a monoid under multiplication and the way these two structure coalesce. As a monoid we can reduce the study of Z to that of understanding prime numbers via the following 2000 year old theorem. Theorem. Every positive integer can be written as a product of prime numbers. Moreover this product is unique up to ordering. This is 2000 year old theorem is the Fundamental Theorem of Arithmetic. In modern language this is the statement that Z is a unique factorization domain (UFD). Another deep fact, due to Euclid, is that there are infinitely many primes. As a monoid therefore Z is fairly easy to understand - the free commutative monoid with countably infinitely many generators cross the cyclic group of order 2. The point is that in isolation addition and multiplication are easy, but together when have vast hidden depth. At this point we are faced with two potential avenues of study: analytic versus algebraic. By analytic I questions like trying to understand the distribution of the primes throughout Z. By algebraic I mean understanding the structure of Z as a monoid and as an abelian group and how they interact.
    [Show full text]
  • Arithmetic Deformation Theory Via Arithmetic Fundamental Groups and Nonarchimedean Theta-Functions, Notes on the Work of Shinichi Mochizuki
    ARITHMETIC DEFORMATION THEORY VIA ARITHMETIC FUNDAMENTAL GROUPS AND NONARCHIMEDEAN THETA-FUNCTIONS, NOTES ON THE WORK OF SHINICHI MOCHIZUKI IVAN FESENKO ABSTRACT. These notes survey the main ideas, concepts and objects of the work by Shinichi Mochizuki on inter- universal Teichmüller theory [31], which might also be called arithmetic deformation theory, and its application to diophantine geometry. They provide an external perspective which complements the review texts [32] and [33]. Some important developments which preceded [31] are presented in the first section. Several key aspects of arithmetic deformation theory are discussed in the second section. Its main theorem gives an inequality–bound on the size of volume deformation associated to a certain log-theta-lattice. The application to several fundamental conjectures in number theory follows from a further direct computation of the right hand side of the inequality. The third section considers additional related topics, including practical hints on how to study the theory. This text was published in Europ. J. Math. (2015) 1:405–440. CONTENTS Foreword 2 1. The origins 2 1.1. From class field theory to reconstructing number fields to coverings of P1 minus three points2 1.2. A development in diophantine geometry3 1.3. Conjectural inequalities for the same property4 1.4. A question posed to a student by his thesis advisor6 1.5. On anabelian geometry6 2. On arithmetic deformation theory8 2.1. Texts related to IUT8 2.2. Initial data 9 2.3. A brief outline of the proof and a list of some of the main concepts 10 2.4. Mono-anabelian geometry and multiradiality 12 2.5.
    [Show full text]
  • On the Structure of Galois Groups As Galois Modules
    ON THE STRUCTURE OF GALOIS GROUPS AS GALOIS MODULES Uwe Jannsen Fakult~t f~r Mathematik Universit~tsstr. 31, 8400 Regensburg Bundesrepublik Deutschland Classical class field theory tells us about the structure of the Galois groups of the abelian extensions of a global or local field. One obvious next step is to take a Galois extension K/k with Galois group G (to be thought of as given and known) and then to investigate the structure of the Galois groups of abelian extensions of K as G-modules. This has been done by several authors, mainly for tame extensions or p-extensions of local fields (see [10],[12],[3] and [13] for example and further literature) and for some infinite extensions of global fields, where the group algebra has some nice structure (Iwasawa theory). The aim of these notes is to show that one can get some results for arbitrary Galois groups by using the purely algebraic concept of class formations introduced by Tate. i. Relation modules. Given a presentation 1 + R ÷ F ÷ G~ 1 m m of a finite group G by a (discrete) free group F on m free generators, m the factor commutator group Rabm = Rm/[Rm'R m] becomes a finitely generated Z[G]-module via the conjugation in F . By Lyndon [19] and m Gruenberg [8]§2 we have 1.1. PROPOSITION. a) There is an exact sequence of ~[G]-modules (I) 0 ÷ R ab + ~[G] m ÷ I(G) + 0 , m where I(G) is the augmentation ideal, defined by the exact sequence (2) 0 + I(G) ÷ Z[G] aug> ~ ÷ 0, aug( ~ aoo) = ~ a .
    [Show full text]
  • Notes on Galois Cohomology—Modularity Seminar
    Notes on Galois Cohomology—Modularity seminar Rebecca Bellovin 1 Introduction We’ve seen that the tangent space to a deformation functor is a Galois coho- mology group H1, and we’ll see that obstructions to a deformation problem will be in H2. So if we want to know things like the dimension of R or whether a deformation functor is smooth, we need to be able to get our hands on the cohomology groups. Secondarily, if we want to “deform sub- ject to conditions”, we’ll want to express the tangent space and obstruction space of those functors as cohomology groups, and cohomology groups we can compute in terms of an unrestricted deformation problem. For the most part, we will assume the contents of Serre’s Local Fields and Galois Cohomology. These cover the cases when G is finite (and discrete) and M is discrete, and G is profinite and M is discrete, respectively. References: Serre’s Galois Cohomology Neukirch’s Cohomology of Number Fields Appendix B of Rubin’s Euler Systems Washington’s article in CSS Darmon, Diamond, and Taylor (preprint on Darmon’s website) 2 Generalities Let G be a group, and let M be a module with an action by G. Both G and M have topologies; often both will be discrete (and G will be finite), 1 or G will be profinite with M discrete; or both will be profinite. We always require the action of G on M to be continuous. Let’s review group cohomology, using inhomogenous cocycles. For a topological group G and a topological G-module M, the ith group of continuous cochains Ci(G, M) is the group of continuous maps Gi → M.
    [Show full text]
  • Class Field Theory and the Local-Global Property
    Class Field Theory and the Local-Global Property Noah Taylor Discussed with Professor Frank Calegari March 18, 2017 1 Classical Class Field Theory 1.1 Lubin Tate Theory In this section we derive a concrete description of a relationship between the Galois extensions of a local field K with abelian Galois groups and the open subgroups of K×. We assume that K is a finite extension of Qp, OK has maximal ideal m, and we suppose the residue field k of K has size q, a power of p. Lemma 1.1 (Hensel). If f(x) is a polynomial in O [x] and a 2 O with f(a) < 1 then there is K K f 0(a)2 some a with f(a ) = 0 and ja − a j ≤ f(a) . 1 1 1 f 0(a) f(a) Proof. As in Newton's method, we continually replace a with a− f 0(a) . Careful consideration of the valuation of f(a) shows that it decreases while f 0(a) does not, so that f(a) tends to 0. Because K is complete, the sequence of a's we get has a limit a1, and we find that f(a1) = 0. The statement about the distance between a and a1 follows immediately. We can apply this first to the polynomial f(x) = xq − x and a being any representative of any element in k to find that K contains the q − 1'st roots of unity. It also follows that if L=K is an unramified extension of degree n, then L = K(ζ) for a qn − 1'st root of unity ζ.
    [Show full text]
  • Course Notes, Global Class Field Theory Caltech, Spring 2015/16
    COURSE NOTES, GLOBAL CLASS FIELD THEORY CALTECH, SPRING 2015/16 M. FLACH 1. Global class field theory in classical terms Recall the isomorphism Z Z × −!∼ Q Q 7! 7! a ( =m ) Gal( (ζm)= ); a (ζm ζm) where ζm is a primitive m-th root of unity. This is the reciprocity isomorphism of global class field theory for the number field Q. What could a generalization of this to any number field K be? Of course one has a natural map (going the other way) ∼ × Gal(K(ζm)=K) ! Aut(µm) = (Z=mZ) ; σ 7! (ζ 7! σ(ζ)) called the cyclotomic character. It is even an isomorphism if K is linearly disjoint from Q(ζm). But that's not class field theory, or rather it's only a tiny part of class field theory for the field K. The proper, and much more stunning generalisation is a reciprocity isomorphism ∼ Hm −! Gal(K(m)=K) between so called ray class groups Hm of modulus m and Galois groups of corre- sponding finite abelian extensions K(m)=K. In a first approximation one can think of a modulus m as an integral ideal in OK but it is slightly more general. The ray m × class group H isn't just (OK =m) although the two groups are somewhat related. In any case Hm is explicit, or one should say easily computable as soon as one can O× O compute the unit group K and the class group Cl( K ) of the field K. Note that both are trivial for K = Q, so that ray class groups are particularly easy for K = Q.
    [Show full text]
  • Global Class Field Theory 1. the Id`Ele Group of a Global Field Let K Be a Global Field. for Every Place V of K We Write K V
    Global class field theory 1. The id`ele group of a global field Let K be a global field. For every place v of K we write Kv for the completion of K at v and Uv for the group of units of Kv (which is by definition the group of positive elements of Kv if v is a × real place and the whole group Kv if v is a complex place). We have seen the definition of the id`ele group of K: × JK =−→ lim Kv × Uv , S ∈ 6∈ vYS vYS where S runs over all finite sets of places of K. This is a locally compact topological group containing K× as a discrete subgroup. 2. The reciprocity map Let L/K be an extension of global fields and (L/K)ab the maximal Abelian extension of K in- side L. For any place v of K, we choose a place v′|v in (L/K)ab, and we denote the corresponding ab Abelian extension by ((L/K) )v. The Galois group of this extension can be idenfied with the decomposition group of v in Gal((L/K)ab). For every place v of K we have the local norm residue symbol ab × ab ( , ((L/K) )v): Kv → Gal(((L/K) )v). This local norm residue symbol gives rise to group homomorphisms , (L/K)ab : K× → Gal((L/K)ab) v v ab ab ab by identifying Gal(((L/K) )v) with the decomposition group of v in Gal((L/K) ). Since (L/K) is Abelian, this map does not depend on the choice of a place of L above v.
    [Show full text]
  • Math 676. Global Extensions Approximating Local Extensions 1
    Math 676. Global extensions approximating local extensions 1. Motivation A very useful tool in number theory is the ability to construct global extensions with specified local behavior. This problem can arise in several different forms. For example, if F is a global field and v1, . , vn 0 is a finite set of distinct places of F equipped with finite separable extensions Ki/Fvi , and if S is an auxiliary finite set of non-archimedean places of F , does there exist a finite separable extension F 0/F unramified at S 0 0 0 such that the completion of F at some place vi over vi is Fvi -isomorphic to Ki? Moreover, if all extensions 0 0 Ki/Fvi have degree d then can we arrange that [F : F ] has degree d? If so, are there infinitely many such F 0 (up to F -isomorphism)? 0 An alternative problem is the following: if the extensions Ki/Fvi are Galois (and so have solvable Galois group, which is obvious when vi is archimedean and which we saw in class in the non-archimedean case via the cyclicity of the Galois theory of the finite fields), then can we arrange for F 0/F as above to also be 0 Galois with solvable Galois group? If the extensions Ki/Fvi are abelian (resp. cyclic) then can we arrange for F 0/F is have abelian (resp. cyclic) Galois group? A typical example of much importance in practice is this: construct a totally real solvable extension L/Q that is unramified over a specified finite set of primes S of Q and induces a specified extension of Qp for p in another disjoint finite set of primes.
    [Show full text]