Диссертация / Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

Диссертация / Dissertation САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ На правах рукописи Скучас Павел Петрович Ранние этапы эволюции саламандр (Lissamphibia, Caudata) и переход от стволовых к кроновым саламандрам Специальность 03.02.04 – ЗООЛОГИЯ ДИССЕРТАЦИЯ на соискание ученой степени доктора биологических наук Санкт-Петербург – 2018 2 Coдержание Введение……………………………………………………………………………………… 3 Глава 1. Морфологические признаки Caudata…………………........... 10 Глава 2. Саламандры стволовой группы………………………….………… 13 Глава 3. Стволовые саламандры и происхождение Caudata…………………………………………………………………………... 26 Глава 4. Происхождение современных (= кроновая группа; Urodela) саламандр………………………………….……………………. 31 Глава 5. Саламандры в мезозойских фаунах: эволюционный и палеобиогеографический аспекты………………………….………………………………………......... 37 5.1. Среднеюрская гомогенность фаун……………….......... 37 5.2. Юрское совместное распространение не- лиссамфибийных темноспондил и саламандр…………… 39 5.3. Раннемеловой сибирский рефугиум для юрских позвоночных………………………………………………………………….. 40 5.4. Позднемеловая азиатская летопись саламандр……………………………………………………………………… 43 Заключение…………………………………………………………………………………. 46 Благодарности…………………………………………………………………………….. 49 Список литературы……………………………………………………………………… 50 3 Введение Саламандры (Caudata) - одна из трёх ныне живущих клад лиссамфибий. Они характеризуются поверхностно примитивной внешней морфологией (т.е. хорошо развитым хвостом, а также передними и задними конечностями примерно одного размера) и преимущественно лавразийским распространением (например, Milner 2000). Первые саламандры появляются в ископаемой летописи в средней юре (бат) и представлены таксонами различных эволюционных уровней (а именно стволовыми и кроновыми саламандрами), некоторые из которых встречаются в одних и тех же местонахождениях (Evans et al. 1988; Nesov 1988; Evans and Waldman 1996; Milner 2000; Skutschas 2016a). Представители двух основных современных клад кроновой группы саламандр (Cryptobranchoidea (= Cryptobranchiformes в Milner 2000) и Salamandroidea (= Salamandriformes в Milner 2000)) появляются в ископаемой летописи в течении средней-поздней юры (Evans et al. 2005; Gao and Shubin 2003, 2012; Gao et al. 2013; Jia and Gao 2016). После своего первого появления, саламандры претерпели несколько основных эпизодов диверсификации, последние два из которых имели место в позднем мелу и во время палеоцен-эоценового термального максимума (Vieites et al. 2007). 4 Происхождение саламандр (как и происхождение лиссамфибий: саламандры, лягушки, червяги и вымершие альбанерпетонтиды) – один из самых противоречивых вопросов эволюции позвоночных. Большинство морфологических и палеонтологических исследований современных и ископаемых амфибий поддерживает гипотезу, что саламандры и лягушки являются сестринскими линиями и вместе эти таксоны образуют монофилетическую кладу Batrachia (например, Ruta and Coates 2007; Anderson et al. 2008; Marjanović and Laurin 2008; Sigurdsen and Green 2011; Skutschas and Martin 2011). Современные исследования также поддерживают происхождение Lissamphibia (или по крайней мере Batrachia) внутри темноспондильной клады Dissorophoidea (например, Ruta and Coates 2007; Anderson et al. 2008; Skutschas and Martin 2011; Maddin et al. 2012; для альтернативного мнения см. Marjanović and Laurin 2008, 2009). Наши знания о ранних этапах эволюции саламандр и появлении современных групп саламандр затруднены редкостью ископаемого материала, особенно для юрских базальных стволовых саламандр (Milner 2000). Современные открытия стволовых и кроновых саламандр в юрских и меловых отложениях (включая изученные мной находки из 5 Средней Азии, Казахстана и Сибири) начинают заполнять географические, временные, таксономические и анатомические пробелы в ископаемой летописи саламандр и, таким образом, улучшать наше понимание некоторых аспектов их ранней эволюции. Тем не менее, мы всё еще сравнительно мало знаем о мезозойских саламандрах и эта ситуация не улучшится до открытия новых местонахождений и образцов и без изучения и детального описания «ключевых саламандровых ископаемых и таксонов» (например, Karaurus и большинство других стволовых саламандр). Рисунок 1. Схема стратиграфической корреляции мезозойских свит Средней Азии, Казахстана и Сибири, содержащих остатки саламандр. Корреляции по работе Averianov and Sues (2012). 6 Основное внимание в моих исследованиях уделено саламандровым ископаемым и таксонам из мезозойских отложений Средней Азии, Казахстана и Сибири (Рис. 1, 2). Средняя Азия (регион охватывающий Киргизстан, Таджикистан, Туркменистан и Узбекистан), Казахстан и Сибирь вместе образуют огромную азиатскую территорию, которая содержит широко распространенные мезозойские наземные отложения (Несов 1997). Двенадцать геологических свит на этой территории содержат остатки саламандр (шесть в Средней Азии, две в Сибири и четыре в Казахстане). Мезозойские саламандры из этих регионов представляют особый интерес по следующим причинам: (1) юрские саламандры из Средней Азии, Сибири и Казахстана одни из геологически древнейших саламандр в ископаемой летописи; (2) летопись позднемеловых саламандр в Азии известна только из Средней Азии и Казахстана; (3) в Западной Сибири, среднеюрские и раннемеловые местонахождения содержащие остатки саламандр, позволяют проследить региональную эволюционную историю саламандр в течении примерно 40-милионного временного интервала; и (4) в Средней Азии и в Казахстане, хорошо задокументированная последовательность верхнемеловых наземных отложений (с сеномана по кампан) 7 содержащая остатки саламандр, позволяет проследить региональную эволюционную историю саламандр в течении примерно 20-милионного временного интервала. Рисунок 2. Карта, показывающая основные мезозойские местонахождения саламандр в Средней Азии, Казахстане и Сибири. На вставочной карте центральных и северных частей азиатского континента территория Средней Азии показана светло- серым, Казахстана – серым и Сибирь – тёмно-серым. 1 Ходжакуль (ходжакульская свита, сеноман), Средняя Азия, Узбекистан. 2 Итемир (джаракудукская свита, сеноман), Джаракудук (биссектинская свита, турон) и Айтым (айтымская свита, коньяк– сантон), все в Средней Азии, Узбекистан. 3 Тюлькели (жиркиндекская свита, турон), Казахстан. 4 Шах-Шах и Байбише (бостобинская свита, сантон–ранний кампан), все в Казахстане. 5 8 “Грей Меза” (= Алымтау 1) (дарбазинская свита, кампон), Казахстан. 6 Михайловка (карабастауская свита, киммеридж), Казахстан. 7 Кансай (яловачская свита, сантон), Средняя Азия, Таджикистан. 8 Кызылсу 1, Кугарт 1 и Ничке 1 (нижняя часть балабансайской свиты, бат), все в Средней Азии, Kyrgyzstan. 9 Шестаково (илекская свита, апт–альб), Сибирь, Россия. 10 Березовский карьер (итатская свита, бат), Сибирь, Россия. В дополнение к моему исследованию саламандр из мезозойских отложений Средней Азии, Казахстана и Сибири (Averianov et al. 2008; Skutschas 2009, 2013, 2014, 2016a, b; Skutschas and Krasnolutskii 2011; Skutschas and Martin 2011; Skutschas and Stein 2015; Skutschas and Boitsova 2017), я также провел исследования морфологии позвоночника и черепа саламандр (Skutschas and Baleeva 2012; Zhou et al. 2017), патологий у позднемеловых саламандр (Skutschas et al. in press), палеогеновых саламандр и родственных связей среди основных клад кроновых саламандр (Skutschas and Gubin 2012), и исследования по составу и эволюции амфибийного компонента наземных фаун позвоночных в Азии (Leshchinsky et al. 2003; Skutschas 2007; Skutschas et al. 2009, 2016; Averianov et al. 2015a, b, 2016a, b; Skutschas and Kolchanov 2017). Вместе данные исследования дали новые 9 представления о различных аспектах эволюционной истории саламандр. Основные методы, используемые в моих исследованиях, включают (1) классическое морфологическое описание, (2) микроКT (рентгеновская компьютерная микротомография), (3) гистологический анализ для документирования и интерпретации морфологии и гистологии, а также (4) кладистический анализ для выяснения филогенетических отношений изученных саламандровых таксонов. Основная цель моей исследовательской программы - осветить раннюю эволюционную историю саламандр (особенно по юрско-меловым стволовым и кроновым саламандрам из Средней Азии, Казахстана и Сибири). В дополнение новым представлениям о таксономии, палеобиогеографии и палеобиологии мезозойских саламандр, мои исследования также имеют значение для понимания происхождения саламандр и перехода от стволовой к кроновой группе саламандр. 10 Глава 1. Морфологические признаки Caudata Саламандры харктеризуются следующей уникальной комбинацией скелетных признаков: педицеллярные и двухвершинные зубы (непедицеллярные и одновершинные у некоторых неотенических саламандр, включая стволовые таксоны саламандр); укороченный передний отросток птеригоида, который спереди не контактирует с другими костями (удлиненный передний отросток птеригоида у некоторых неотенических саламандр); контакт теменной и чешуйчатой костей (отсутствует у некоторых продвинутых саламандр); отсутствие зубчиков на парасфеноиде; единое коракоидно-лопаточное окостенение (раздельные лопатка и коракоид у современных сиреновых саламандр); двуглавые поперечные отростки (плотно прижатые или одноголовчатые у некоторых саламандр); межкотилярный бугорок (= tuberculum interglenoideum) атласа (редуцирован у некоторых саламандр); опоры спинного мозга (= костные утолщения вдающиеся внутрь спинномозгового канала позвонков); бедренная кость, несущая гребень вертела и вертел (гребень вертела редуцирован у некоторых саламандр); basale commune (слившиеся дистальные 11 тарзалии 1 и 2) в стопе (например, Milner 2000; Gardner
Recommended publications
  • Ancient Roaches Further Exemplify 'No Land Return' in Aquatic Insects
    Gondwana Research 68 (2019) 22–33 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr Ancient roaches further exemplify ‘no land return’ in aquatic insects Peter Vršanský a,b,c,d,1, Hemen Sendi e,⁎,1, Danil Aristov d,f,1, Günter Bechly g,PatrickMüllerh, Sieghard Ellenberger i, Dany Azar j,k, Kyoichiro Ueda l, Peter Barna c,ThierryGarciam a Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovakia b Slovak Academy of Sciences, Institute of Physics, Research Center for Quantum Information, Dúbravská cesta 9, Bratislava 84511, Slovakia c Earth Science Institute, Slovak Academy of Sciences, Dúbravská cesta 9, P.O. BOX 106, 840 05 Bratislava, Slovakia d Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya 123, 117868 Moscow, Russia e Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava 84215, Slovakia f Cherepovets State University, Cherepovets 162600, Russia g Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, D-70191 Stuttgart, Germany h Friedhofstraße 9, 66894 Käshofen, Germany i Bodelschwinghstraße 13, 34119 Kassel, Germany j State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, PR China k Lebanese University, Faculty of Science II, Fanar, Natural Sciences Department, PO Box 26110217, Fanar - Matn, Lebanon l Kitakyushu Museum, Japan m River Bigal Conservation Project, Avenida Rafael Andrade y clotario Vargas, 220450 Loreto, Orellana, Ecuador article info abstract Article history: Among insects, 236 families in 18 of 44 orders independently invaded water. We report living amphibiotic cock- Received 13 July 2018 roaches from tropical streams of UNESCO BR Sumaco, Ecuador.
    [Show full text]
  • A New Pterosaur (Pterodactyloidea, Tapejaridae) from the Early
    ARTICLES Chinese Science Bulletin 2003 Vol. 48 No.1 16— 23 choidea from the Yixian Formation. In the past two years a number of pterodactyloid A new pterosaur pterosaurs have been discovered from the Jiufotang For- mation, which represents the second horizon of the Jehol (Pterodactyloidea, Group preserving pterosaurs. In this paper we will report a complete skeleton of a new pterodactyloid pterosaur from Tapejaridae) from the Early the Jiufotang Formation in Dongdadao of Chaoyang, Cretaceous Jiufotang western Liaoning Province. The fossil is referred to the family Tapejaridae. Members of the Tapejaridae have pre- Formation of western viously been known only in the late Early Cretaceous Santana Formation (Aptian/Albian) of Brazil[14,15]. Sinop- Liaoning, China and its terus represents the earliest record of this family. Two pterosaur assemblages appear to be present in implications for the Jehol Group, represented by taxa from the lower * Yixian Formation and the upper Jiufotang Formation, biostratigraphy respectively. These two pterosaur assemblages are more or less comparable to those of the Solnhofen and the Santana WANG Xiaolin & ZHOU Zhonghe pterosaur assemblages. The age of the Jehol pterosaur Institute of Vertebrate Paleontology and Paleoanthropology, Chinese assemblages is between the Solnhofen lithographic lime- Academy of Sciences, Beijing 100044, China stone (Tithonian) and the Santana Formation (Ap- Correspondence should be addressed to Wang Xiaolin (e-mail: xlinwang tian/Albian). @263.net) 1 Systematic paleontology Abstract In this article we describe a new and excep- tionally well-preserved pterodactyloid pterosaur, Sinopterus Order Pterosauria Kaup, 1834 dongi gen. et sp. nov. from the Jiufotang Formation in west- Suborder Pterodactyloidea Plieninger, 1901 ern Liaoning Province of northeast China.
    [Show full text]
  • BOA2.1 Caecilian Biology and Natural History.Key
    The Biology of Amphibians @ Agnes Scott College Mark Mandica Executive Director The Amphibian Foundation [email protected] 678 379 TOAD (8623) 2.1: Introduction to Caecilians Microcaecilia dermatophaga Synapomorphies of Lissamphibia There are more than 20 synapomorphies (shared characters) uniting the group Lissamphibia Synapomorphies of Lissamphibia Integumen is Glandular Synapomorphies of Lissamphibia Glandular Skin, with 2 main types of glands. Mucous Glands Aid in cutaneous respiration, reproduction, thermoregulation and defense. Granular Glands Secrete toxic and/or noxious compounds and aid in defense Synapomorphies of Lissamphibia Pedicellate Teeth crown (dentine, with enamel covering) gum line suture (fibrous connective tissue, where tooth can break off) basal element (dentine) Synapomorphies of Lissamphibia Sacral Vertebrae Sacral Vertebrae Connects pelvic girdle to The spine. Amphibians have no more than one sacral vertebrae (caecilians have none) Synapomorphies of Lissamphibia Amphicoelus Vertebrae Synapomorphies of Lissamphibia Opercular apparatus Unique to amphibians and Operculum part of the sound conducting mechanism Synapomorphies of Lissamphibia Fat Bodies Surrounding Gonads Fat Bodies Insulate gonads Evolution of Amphibians † † † † Actinopterygian Coelacanth, Tetrapodomorpha †Amniota *Gerobatrachus (Ray-fin Fishes) Lungfish (stem-tetrapods) (Reptiles, Mammals)Lepospondyls † (’frogomander’) Eocaecilia GymnophionaKaraurus Caudata Triadobatrachus Anura (including Apoda Urodela Prosalirus †) Salientia Batrachia Lissamphibia
    [Show full text]
  • Early Tetrapod Relationships Revisited
    Biol. Rev. (2003), 78, pp. 251–345. f Cambridge Philosophical Society 251 DOI: 10.1017/S1464793102006103 Printed in the United Kingdom Early tetrapod relationships revisited MARCELLO RUTA1*, MICHAEL I. COATES1 and DONALD L. J. QUICKE2 1 The Department of Organismal Biology and Anatomy, The University of Chicago, 1027 East 57th Street, Chicago, IL 60637-1508, USA ([email protected]; [email protected]) 2 Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire SL57PY, UK and Department of Entomology, The Natural History Museum, Cromwell Road, London SW75BD, UK ([email protected]) (Received 29 November 2001; revised 28 August 2002; accepted 2 September 2002) ABSTRACT In an attempt to investigate differences between the most widely discussed hypotheses of early tetrapod relation- ships, we assembled a new data matrix including 90 taxa coded for 319 cranial and postcranial characters. We have incorporated, where possible, original observations of numerous taxa spread throughout the major tetrapod clades. A stem-based (total-group) definition of Tetrapoda is preferred over apomorphy- and node-based (crown-group) definitions. This definition is operational, since it is based on a formal character analysis. A PAUP* search using a recently implemented version of the parsimony ratchet method yields 64 shortest trees. Differ- ences between these trees concern: (1) the internal relationships of aı¨stopods, the three selected species of which form a trichotomy; (2) the internal relationships of embolomeres, with Archeria
    [Show full text]
  • A Relict Stem Salamander: Evidence from the Early Cretaceous of Siberia
    A relict stem salamander: Evidence from the Early Cretaceous of Siberia PAVEL P. SKUTSCHAS The early evolution of salamanders, which are one of the possible “stem salamander” from the Kimmeridgian–early three living groups of lissamphibians, is not well known. Tithonian (Morrison Formation) of the USA (Nesov 1992; Both stem- and crown-group salamanders first appeared Evans and Milner 1996; Gardner and DeMar 2013). Outside in the Middle Jurassic (Bathonian), but subsequently had China, all Bathonian vertebrate assemblages containing sala- different evolutionary histories: stem salamanders were manders are dominated by stem-group salamanders but later, thought to have gone extinct in the Late Jurassic, while at the end of the Middle Jurassic and into the Late Jurassic, crown salamanders persist to the present day. Here, I re- crown-group salamanders became the dominant salamander port the discovery of an indeterminate stem salamander in component in vertebrate assemblages everywhere. the Lower Cretaceous (Aptian–Albian) Ilek Formation of There has been only one report of possible stem sala- Western Siberia. This is new evidence that the most basal manders in post Jurassic deposits: three atlantal centra from salamanders survived beyond the Jurassic–Cretaceous the Aptian–Albian Cloverly Formation of Wyoming, USA boundary and co-existed with crown-group salamanders (Gardner and DeMar 2013: 486, fig. 1d). These atlantal centra during approximately the first 40 million years of the known could not be referred to any crown-group salamander family history of salamanders. The recognition of stem salaman- currently known from the North American Early Cretaceous, ders in the Early Cretaceous of Western Siberia adds to the and generally resemble some Jurassic stem salamander atlantal inventory of taxa that suggest this area was a refugium for centra (Gardner and DeMar 2013: 486).
    [Show full text]
  • A New Genus and Species of Basal Salamanders from the Middle Jurassic of Western Siberia, Russia P.P
    Proceedings of the Zoological Institute RAS Vol. 315, No. 2, 2011, рр. 167–175 УДК 57.072:551.762.2 A NEW GENUS AND SPECIES OF BASAL SALAMANDERS FROM THE MIDDLE JURASSIC OF WESTERN SIBERIA, RUSSIA P.P. Skutschas1* and S.A. Krasnolutskii2 1Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 Saint Petersburg, Russia; e-mail: [email protected] 2Sharypovo Regional Museum, 2nd microrayon 10, Sharypovo, 662311 Krasnoyarsk Territory, Russia; e-mail: [email protected] ABSTRACT A new basal stem salamander, Urupia monstrosa gen. et sp. nov., is described based on an atlantal centrum (holotype), fragments of trunk vertebrae, and some associated elements (fragmentary dentaries and a femur) from the Middle Jurassic (Bathonian) Itat Formation of Krasnoyarsk Territory in Western Siberia, Russia. The new taxon is characterized by the following combination of characters: lack of the spinal nerve foramina in the atlas, presence atlantal transverse processes and a deep depression on the ventral surface of the atlas; lateral surface of anterior part of the dentary is sculptured by oval and rounded pits; very short diaphyseal part of femur. The absence of intercotylar tubercle on the atlas and presence of atlantal transverse processes support for neotenic nature of Urupia monstrosa gen. et sp. nov. Large size, presence of sculpture on vertebrae, and the absence of spinal nerve foramina in the atlas suggest that Urupia monstrosa gen. et sp. nov. is a stem group salamander. The phylogenetic relationships of Urupia monstrosa gen. et sp. nov. with other stem group salamanders cannot be established on the available material. Key words: Caudata, Itat Formation, Jurassic, Russia НОВЫЙ РОД И ВИД БАЗАЛЬНЫХ ХВОСТАТЫХ АМФИБИЙ ИЗ СРЕДНЕЙ ЮРЫ ЗАПАДНОЙ СИБИРИ, РОССИЯ П.П.
    [Show full text]
  • Phylogeny and Evolution of the Dissorophoid Temnospondyls
    Journal of Paleontology, 93(1), 2019, p. 137–156 Copyright © 2018, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/15/0088-0906 doi: 10.1017/jpa.2018.67 The putative lissamphibian stem-group: phylogeny and evolution of the dissorophoid temnospondyls Rainer R. Schoch Staatliches Museum für Naturkunde, Rosenstein 1, D-70191 Stuttgart, Germany 〈[email protected]〉 Abstract.—Dissorophoid temnospondyls are widely considered to have given rise to some or all modern amphibians (Lissamphibia), but their ingroup relationships still bear major unresolved questions. An inclusive phylogenetic ana- lysis of dissorophoids gives new insights into the large-scale topology of relationships. Based on a TNT 1.5 analysis (33 taxa, 108 characters), the enigmatic taxon Perryella is found to nest just outside Dissorophoidea (phylogenetic defintion), but shares a range of synapomorphies with this clade. The dissorophoids proper are found to encompass a first dichotomy between the largely paedomorphic Micromelerpetidae and all other taxa (Xerodromes). Within the latter, there is a basal dichotomy between the large, heavily ossified Olsoniformes (Dissorophidae + Trematopidae) and the small salamander-like Amphibamiformes (new taxon), which include four clades: (1) Micropholidae (Tersomius, Pasawioops, Micropholis); (2) Amphibamidae sensu stricto (Doleserpeton, Amphibamus); (3) Branchiosaur- idae (Branchiosaurus, Apateon, Leptorophus, Schoenfelderpeton); and (4) Lissamphibia. The genera Platyrhinops and Eos- copus are here found to nest at the base of Amphibamiformes. Represented by their basal-most stem-taxa (Triadobatrachus, Karaurus, Eocaecilia), lissamphibians nest with Gerobatrachus rather than Amphibamidae, as repeatedly found by former analyses.
    [Show full text]
  • 3Systematics and Diversity of Extant Amphibians
    Systematics and Diversity of 3 Extant Amphibians he three extant lissamphibian lineages (hereafter amples of classic systematics papers. We present widely referred to by the more common term amphibians) used common names of groups in addition to scientifi c Tare descendants of a common ancestor that lived names, noting also that herpetologists colloquially refer during (or soon after) the Late Carboniferous. Since the to most clades by their scientifi c name (e.g., ranids, am- three lineages diverged, each has evolved unique fea- bystomatids, typhlonectids). tures that defi ne the group; however, salamanders, frogs, A total of 7,303 species of amphibians are recognized and caecelians also share many traits that are evidence and new species—primarily tropical frogs and salaman- of their common ancestry. Two of the most defi nitive of ders—continue to be described. Frogs are far more di- these traits are: verse than salamanders and caecelians combined; more than 6,400 (~88%) of extant amphibian species are frogs, 1. Nearly all amphibians have complex life histories. almost 25% of which have been described in the past Most species undergo metamorphosis from an 15 years. Salamanders comprise more than 660 species, aquatic larva to a terrestrial adult, and even spe- and there are 200 species of caecilians. Amphibian diver- cies that lay terrestrial eggs require moist nest sity is not evenly distributed within families. For example, sites to prevent desiccation. Thus, regardless of more than 65% of extant salamanders are in the family the habitat of the adult, all species of amphibians Plethodontidae, and more than 50% of all frogs are in just are fundamentally tied to water.
    [Show full text]
  • The Paleoenvironments of Azhdarchid Pterosaurs Localities in the Late Cretaceous of Kazakhstan
    A peer-reviewed open-access journal ZooKeys 483:The 59–80 paleoenvironments (2015) of azhdarchid pterosaurs localities in the Late Cretaceous... 59 doi: 10.3897/zookeys.483.9058 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research The paleoenvironments of azhdarchid pterosaurs localities in the Late Cretaceous of Kazakhstan Alexander Averianov1,2, Gareth Dyke3,4, Igor Danilov5, Pavel Skutschas6 1 Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, 199034 Saint Petersburg, Russia 2 Department of Sedimentary Geology, Geological Faculty, Saint Petersburg State University, 16 liniya VO 29, 199178 Saint Petersburg, Russia 3 Ocean and Earth Science, National Oceanography Centre, Sou- thampton, University of Southampton, Southampton SO14 3ZH, UK 4 MTA-DE Lendület Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032 Debrecen, Egyetem tér 1, Hungary 5 Zoological Institute of the Russian Academy of Sciences, Universi- tetskaya nab. 1, 199034 Saint Petersburg, Russia 6 Department of Vertebrate Zoology, Biological Faculty, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia Corresponding author: Alexander Averianov ([email protected]) Academic editor: Hans-Dieter Sues | Received 3 December 2014 | Accepted 30 January 2015 | Published 20 February 2015 http://zoobank.org/C4AC8D70-1BC3-4928-8ABA-DD6B51DABA29 Citation: Averianov A, Dyke G, Danilov I, Skutschas P (2015) The paleoenvironments of azhdarchid pterosaurs localities in the Late Cretaceous of Kazakhstan. ZooKeys 483: 59–80. doi: 10.3897/zookeys.483.9058 Abstract Five pterosaur localities are currently known from the Late Cretaceous in the northeastern Aral Sea region of Kazakhstan. Of these, one is Turonian-Coniacian in age, the Zhirkindek Formation (Tyulkili), and four are Santonian in age, all from the early Campanian Bostobe Formation (Baibishe, Akkurgan, Buroinak, and Shakh Shakh).
    [Show full text]
  • A Triassic Stem-Salamander from Kyrgyzstan and the Origin of Salamanders
    A Triassic stem-salamander from Kyrgyzstan and the origin of salamanders Rainer R. Schocha,1, Ralf Werneburgb, and Sebastian Voigtc aStaatliches Museum für Naturkunde in Stuttgart, D-70191 Stuttgart, Germany; bNaturhistorisches Museum Schloss Bertholdsburg, D-98553 Schleusingen, Germany; and cUrweltmuseum GEOSKOP/Burg Lichtenberg (Pfalz), D-66871 Thallichtenberg, Germany Edited by Neil H. Shubin, University of Chicago, Chicago, IL, and approved April 3, 2020 (received for review January 24, 2020) The origin of extant amphibians remains largely obscure, with Cretaceous in northwestern China, providing much data on the only a few early Mesozoic stem taxa known, as opposed to a much early evolution and diversification of the clade. better fossil record from the mid-Jurassic on. In recent time, an- Recently, a German team excavating in the Kyrgyz Madygen urans have been traced back to Early Triassic forms and caecilians Formation (16) recovered a second find of Triassurus that is not have been traced back to the Late Jurassic Eocaecilia, both of only larger and better preserved, but also adds significantly more which exemplify the stepwise acquisition of apomorphies. Yet data on this taxon. Reexamination of the type has revealed the most ancient stem-salamanders, known from mid-Jurassic shared apomorphic features between the two Madygen speci- rocks, shed little light on the origin of the clade. The gap between mens, some of which turned out to be stem-salamander (uro- salamanders and other lissamphibians, as well as Paleozoic tetra- pods, remains considerable. Here we report a new specimen of dele) autapomorphies. The present findings demonstrate not Triassurus sixtelae, a hitherto enigmatic tetrapod from the Middle/ only that Triassurus is a valid tetrapod taxon, but also, and more Late Triassic of Kyrgyzstan, which we identify as the geologically oldest importantly, that it forms a very basal stem-salamander, com- stem-group salamander.
    [Show full text]
  • (Amphibia, Urodela) from the Late Jurassic of Qinglong, Hebei Province, China
    RESEARCH ARTICLE A New Basal Salamandroid (Amphibia, Urodela) from the Late Jurassic of Qinglong, Hebei Province, China Jia Jia, Ke-Qin Gao* School of Earth and Space Sciences, Peking University, 5 Yiheyuan Road, Beijing, 100871, China * [email protected] a11111 Abstract A new salamandroid salamander, Qinglongtriton gangouensis (gen. et sp. nov.), is named and described based on 46 fossil specimens of juveniles and adults collected from the Upper Jurassic (Oxfordian) Tiaojishan Formation cropping out in Hebei Province, China. OPEN ACCESS The new salamander displays several ontogenetically and taxonomically significant fea- Citation: Jia J, Gao K-Q (2016) A New Basal tures, most prominently the presence of a toothed palatine, toothed coronoid, and a unique Salamandroid (Amphibia, Urodela) from the Late pattern of the hyobranchium in adults. Comparative study of the new salamander with previ- Jurassic of Qinglong, Hebei Province, China. PLoS ONE 11(5): e0153834. doi:10.1371/journal. ously known fossil and extant salamandroids sheds new light on the early evolution of the pone.0153834 Salamandroidea, the most species-diverse clade in the Urodela. Cladistic analysis places Editor: William Oki Wong, Institute of Botany, CHINA the new salamander as the sister taxon to Beiyanerpeton, and the two taxa together form the basalmost clade within the Salamandroidea. Along with recently reported Beiyanerpe- Received: December 11, 2015 ton from the same geological formation in the neighboring Liaoning Province, the discovery Accepted: April 2, 2016 of Qinglongtriton indicates that morphological disparity had been underway for the sala- Published: May 4, 2016 mandroid clade by early Late Jurassic (Oxfordian) time. Copyright: © 2016 Jia, Gao.
    [Show full text]
  • Brief Report Acta Palaeontologica Polonica 60 (X): Xxx–Xxx, 2016
    Brief report Acta Palaeontologica Polonica 60 (x): xxx–xxx, 2016 A relict stem salamander: Evidence from the Early Cretaceous of Siberia PAVEL P. SKUTSCHAS The early evolution of salamanders, which are one of the possible “stem salamander” from the Kimmeridgian–early three living groups of lissamphibians, is not well known. Tithonian (Morrison Formation) of the USA (Nesov 1992; Both stem- and crown-group salamanders first appeared Evans and Milner 1996; Gardner and DeMar 2013). Outside in the Middle Jurassic (Bathonian), but subsequently had China, all Bathonian vertebrate assemblages containing sala- different evolutionary histories: stem salamanders were manders are dominated by stem-group salamanders but later, thought to have gone extinct in the Late Jurassic, while at the end of the Middle Jurassic and into the Late Jurassic, crown salamanders persist to the present day. Here, I re- crown-group salamanders became the dominant salamander port the discovery of an indeterminate stem salamander in component in vertebrate assemblages everywhere. the Lower Cretaceous (Aptian–Albian) Ilek Formation of There has been only one report of possible stem sala- Western Siberia. This is new evidence that the most basal manders in post Jurassic deposits: three atlantal centra from salamanders survived beyond the Jurassic–Cretaceous the Aptian–Albian Cloverly Formation of Wyoming, USA boundary and co-existed with crown-group salamanders (Gardner and DeMar 2013: 486, fig. 1d). These atlantal centra during approximately the first 40 million years of the could not be referred to any crown-group salamander family known history of salamanders. The recognition of stem currently known from the North American Early Cretaceous, salamanders in the Early Cretaceous of Western Siberia and generally resemble some Jurassic stem salamander atlantal adds to the inventory of taxa that suggest this area was a centra (Gardner and DeMar 2013: 486).
    [Show full text]