A Gentle Depilation of the Niche: Dicean Resource Sets in Resource Hyperspace
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Human Niche Construction in Interdisciplinary Focus
Downloaded from rstb.royalsocietypublishing.org on February 14, 2011 Human niche construction in interdisciplinary focus Jeremy Kendal, Jamshid J. Tehrani and John Odling-Smee Phil. Trans. R. Soc. B 2011 366, 785-792 doi: 10.1098/rstb.2010.0306 References This article cites 46 articles, 16 of which can be accessed free http://rstb.royalsocietypublishing.org/content/366/1566/785.full.html#ref-list-1 Rapid response Respond to this article http://rstb.royalsocietypublishing.org/letters/submit/royptb;366/1566/785 Subject collections Articles on similar topics can be found in the following collections behaviour (1807 articles) evolution (2433 articles) Receive free email alerts when new articles cite this article - sign up in the box at the top Email alerting service right-hand corner of the article or click here To subscribe to Phil. Trans. R. Soc. B go to: http://rstb.royalsocietypublishing.org/subscriptions This journal is © 2011 The Royal Society Downloaded from rstb.royalsocietypublishing.org on February 14, 2011 Phil. Trans. R. Soc. B (2011) 366, 785–792 doi:10.1098/rstb.2010.0306 Introduction Human niche construction in interdisciplinary focus Jeremy Kendal1,*, Jamshid J. Tehrani1 and John Odling-Smee2 1Centre for the Coevolution of Biology and Culture, Department of Anthropology, University of Durham, South Road, Durham DH1 3LE, UK 2School of Anthropology, University of Oxford, 51/53 Banbury Road, Oxford OX2 6PE, UK Niche construction is an endogenous causal process in evolution, reciprocal to the causal process of natural selection. It works by adding ecological inheritance, comprising the inheritance of natural selection pressures previously modified by niche construction, to genetic inheritance in evolution. -
Ecotope-Based Entomological Surveillance and Molecular Xenomonitoring of Multidrug Resistant Malaria Parasites in Anopheles Vectors
Hindawi Publishing Corporation Interdisciplinary Perspectives on Infectious Diseases Volume 2014, Article ID 969531, 17 pages http://dx.doi.org/10.1155/2014/969531 Review Article Ecotope-Based Entomological Surveillance and Molecular Xenomonitoring of Multidrug Resistant Malaria Parasites in Anopheles Vectors Prapa Sorosjinda-Nunthawarasilp1 and Adisak Bhumiratana2 1 Department of Fundamentals of Public Health, Faculty of Public Health, Burapha University, Chonburi 20131, Thailand 2 Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, 420/1 Rajvithi Road, Rajthewee, Bangkok 10400, Thailand Correspondence should be addressed to Adisak Bhumiratana; [email protected] Received 19 June 2014; Accepted 24 August 2014; Published 1 October 2014 AcademicEditor:JoseG.Estrada-Franco Copyright © 2014 P. Sorosjinda-Nunthawarasilp and A. Bhumiratana. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The emergence and spread of multidrug resistant (MDR) malaria caused by Plasmodium falciparum or Plasmodium vivax have become increasingly important in the Greater Mekong Subregion (GMS). MDR malaria is the heritable and hypermutable property of human malarial parasite populations that can decrease in vitro and in vivo susceptibility to proven antimalarial drugs as they exhibit dose-dependent drug resistance and delayed parasite clearance time in treated -
Demographic History and the Low Genetic Diversity in Dipteryx Alata (Fabaceae) from Brazilian Neotropical Savannas
Heredity (2013) 111, 97–105 & 2013 Macmillan Publishers Limited All rights reserved 0018-067X/13 www.nature.com/hdy ORIGINAL ARTICLE Demographic history and the low genetic diversity in Dipteryx alata (Fabaceae) from Brazilian Neotropical savannas RG Collevatti1, MPC Telles1, JC Nabout2, LJ Chaves3 and TN Soares1 Genetic effects of habitat fragmentation may be undetectable because they are generally a recent event in evolutionary time or because of confounding effects such as historical bottlenecks and historical changes in species’ distribution. To assess the effects of demographic history on the genetic diversity and population structure in the Neotropical tree Dipteryx alata (Fabaceae), we used coalescence analyses coupled with ecological niche modeling to hindcast its distribution over the last 21 000 years. Twenty-five populations (644 individuals) were sampled and all individuals were genotyped using eight microsatellite loci. All populations presented low allelic richness and genetic diversity. The estimated effective population size was small in all populations and gene flow was negligible among most. We also found a significant signal of demographic reduction in most cases. Genetic differentiation among populations was significantly correlated with geographical distance. Allelic richness showed a spatial cline pattern in relation to the species’ paleodistribution 21 kyr BP (thousand years before present), as expected under a range expansion model. Our results show strong evidences that genetic diversity in D. alata is the outcome of the historical changes in species distribution during the late Pleistocene. Because of this historically low effective population size and the low genetic diversity, recent fragmentation of the Cerrado biome may increase population differentiation, causing population decline and compromising long-term persistence. -
To What Degree Are Philosophy and the Ecological Niche Concept Necessary in the Ecological Theory and Conservation?
EUROPEAN JOURNAL OF ECOLOGY EJE 2017, 3(1): 42-54, doi: 10.1515/eje-2017-0005 To what degree are philosophy and the ecological niche concept necessary in the ecological theory and conservation? Universidade Federal Rogério Parentoni Martins* do Ceará, Programa de Pós-Graduação em Ecologia e Recursos Naturais, Departamento ABSTRACT de Biologia, Centro de Ecology as a field produces philosophical anxiety, largely because it differs in scientific structure from classical Ciências, Brazil physics. The hypothetical deductive models of classical physics are simple and predictive; general ecological *Corresponding author, models are predictably limited, as they refer to complex, multi-causal processes. Inattention to the conceptual E-mail: rpmartins917@ structure of ecology usually imposes difficulties for the application of ecological models. Imprecise descrip- gmail.com tions of ecological niche have obstructed the development of collective definitions, causing confusion in the literature and complicating communication between theoretical ecologists, conservationists and decision and policy-makers. Intense, unprecedented erosion of biodiversity is typical of the Anthropocene, and knowledge of ecology may provide solutions to lessen the intensification of species losses. Concerned philosophers and ecolo- gists have characterised ecological niche theory as less useful in practice; however, some theorists maintain that is has relevant applications for conservation. Species niche modelling, for instance, has gained traction in the literature; however, there are few examples of its successful application. Philosophical analysis of the structure, precision and constraints upon the definition of a ‘niche’ may minimise the anxiety surrounding ecology, poten- tially facilitating communication between policy-makers and scientists within the various ecological subcultures. The results may enhance the success of conservation applications at both small and large scales. -
Hutchinson's Ecological Niche for Individuals
Hutchinson’s ecological niche for individuals E. Takola a,*, H. Schielzeth a a Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany Orcid: ET: 0000-0003-1268-5513, HS: 0000-0002-9124-2261 *Corresponding author: Elina Takola, Institute of Ecology and Evolution, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany, [email protected], tel.: +4917661838151, https://orcid.org/0000-0003-1268-5513 1 Abstract 2 We here develop a concept of an individualized niche in analogy to Hutchison’s concept of the ecological niche 3 of a population. We consider the individualized (ecological) niche as the range of environmental conditions 4 under which a particular individual has a fitness expectation of ≥1. We address four specific challenges that occur 5 when scaling the niche down from populations to individuals: (1) We discuss the consequences of uniqueness 6 of individuals in a population and the corresponding lack of statistical replication. (2) We discuss the dynamic 7 nature of individualized niches and how they can be studied either as time-slice niches, as prospective niches or 8 as trajectory-based niches. (3) We discuss the dimensionality of the individualized niche, that is greater than the 9 population niche due to the additional dimensions of intra-specific niche space. (4) We discuss how the 10 boundaries of individualized niche space can to be defined by expected fitness and how expected fitness can be 11 inferred by marginalizing fitness functions across phenotypes or environments. We frame our discussion in the 12 context of recent interest in the causes and consequences of individual differences in animal behavior. -
Ecological Niche Theory: a Brief Review
The International Journal of Indian Psychology ISSN 2348-5396 (e) | ISSN: 2349-3429 (p) Volume 3, Issue 2, No.2, DIP: 18.01.022/20160302 ISBN: 978-1-329-81573-5 http://www.ijip.in | January - March, 2016 Ecological Niche Theory: A Brief Review Mina Khatibi1*, Razieh Sheikholeslami2 ABSTRACT In ecology, a niche is a term with a variety of meanings related to the behavior of a species living under specific environmental conditions. The ecological niche describes how an organism or population responds to the distribution of resources and competitors. The ecological niche concept expresses the relationship of an individual or a population to all aspects of its environment. Studies on the relationship between human population and environmental resources have employed niche concept. Ecological niche comprehends all conditions necessary for an organism to exist. Keywords: Niche, Ecology, Environment, Organism What is ecological niche? 1. The position or function of an organism or a population within a biological and physical environment. 2. The area within a habitat occupied by an organism. The ecological niche is an organism position in the habitat (Online Psychology Dictionary, 2014). The ecological niche concept, as proposed by Hutchinson (1957), expresses the relationship of an individual or a population to all aspects of its environment. Studies on the relationship between human population and environmental resources have employed niche concept (Adams, 2002; Hanazaki and Begossi, 2004; Cavallini and Nordi, 2005; Silva and Begossi, 2009). According to Hardesty (1972), ecological niche comprehends all conditions necessary for an organism to exist. Considering the ecological niche, it can analyze each one of all interactions. -
Glossary of Landscape and Vegetation Ecology for Alaska
U. S. Department of the Interior BLM-Alaska Technical Report to Bureau of Land Management BLM/AK/TR-84/1 O December' 1984 reprinted October.·2001 Alaska State Office 222 West 7th Avenue, #13 Anchorage, Alaska 99513 Glossary of Landscape and Vegetation Ecology for Alaska Herman W. Gabriel and Stephen S. Talbot The Authors HERMAN w. GABRIEL is an ecologist with the USDI Bureau of Land Management, Alaska State Office in Anchorage, Alaskao He holds a B.S. degree from Virginia Polytechnic Institute and a Ph.D from the University of Montanao From 1956 to 1961 he was a forest inventory specialist with the USDA Forest Service, Intermountain Regiono In 1966-67 he served as an inventory expert with UN-FAO in Ecuador. Dra Gabriel moved to Alaska in 1971 where his interest in the description and classification of vegetation has continued. STEPHEN Sa TALBOT was, when work began on this glossary, an ecologist with the USDI Bureau of Land Management, Alaska State Office. He holds a B.A. degree from Bates College, an M.Ao from the University of Massachusetts, and a Ph.D from the University of Alberta. His experience with northern vegetation includes three years as a research scientist with the Canadian Forestry Service in the Northwest Territories before moving to Alaska in 1978 as a botanist with the U.S. Army Corps of Engineers. or. Talbot is now a general biologist with the USDI Fish and Wildlife Service, Refuge Division, Anchorage, where he is conducting baseline studies of the vegetation of national wildlife refuges. ' . Glossary of Landscape and Vegetation Ecology for Alaska Herman W. -
Biogeography, Changing Climates, and Niche Evolution
FROM THE ACADEMY: COLLOQUIUM PERSPECTIVE Biogeography, changing climates, and niche evolution David B. Wakea,b,1, Elizabeth A. Hadlyc, and David D. Ackerlya,d aDepartment of Integrative Biology, bMuseum of Vertebrate Zoology, and dJepson Herbarium, University of California, Berkeley, CA 94720; and cDepartment of Biology, Stanford University, Stanford, CA 94305 Edited by James Hemphill Brown, University of New Mexico, Albuquerque, NM, and approved September 29, 2009 (received for review September 25, 2009) odern concepts central to future will have access to the original figure in the history of science who current studies of biogeog- record of faunal conditions in Cali- wrote extensively about the relationships raphy, changing climates fornia and the west wherever we now of climate and vegetation. As a result of and evolution of ecological work. his studies of Volca´n Chimborazo in Mniches were born approximately a hun- Ecuador, von Humboldt appears to have These ideas were prophetic, and have dred years ago. In 1908, the Regents of been the first well known scientist to a special poignancy at this time, when the University of California established discuss the zonation of vegetation along the impact of global climate change is the Museum of Vertebrate Zoology at an altitudinal transect and to develop a evident and when we realize how much Berkeley, in accordance with the wishes concept of life zones (4). von Hum- we rely on records from the past, such of Annie M. Alexander (1867–1950). boldt’s work deeply influenced C. Hart as those meticulously kept by Grinnell, Alexander conceived the institution and Merriam who recalled, shortly before his his students, coworkers and successors. -
Indirect Estimates of Gene Flow and Its Conservation Implications in the Striped Newt (Notophthalmus Perstriatus)
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2011 Indirect Estimates Of Gene Flow And Its Conservation Implications In The Striped Newt (notophthalmus Perstriatus) Sarah Elizabeth May University of Central Florida Part of the Biology Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Masters Thesis (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation May, Sarah Elizabeth, "Indirect Estimates Of Gene Flow And Its Conservation Implications In The Striped Newt (notophthalmus Perstriatus)" (2011). Electronic Theses and Dissertations, 2004-2019. 1769. https://stars.library.ucf.edu/etd/1769 INDIRECT ESTIMATES OF GENE FLOW AND ITS CONSERVATION IMPLICATIONS IN THE STRIPED NEWT (NOTOPTHALMUS PERSTRIATUS) by SARAH ELIZABETH MAY B.S. University of Central Florida, 2005 A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Biology in the College of Sciences at the University of Central Florida Orlando, Florida Fall Term 2011 ABSTRACT This study used indirect methods to estimate patterns of gene flow in a rare salamander species, the striped newt (Notophthalmus perstriatus). First, we used combined genetic and ecological methods to determine whether populations that appear to exist in two regions separated by 125 km, exhibited genetic and ecological distinctness such that the regions demarcate separate conservation units. Using mtDNA (cyt-b), we found that haplotypes were shared between localities within each region but none were shared between regions. -
Example of Predation in Ecology
Example Of Predation In Ecology Tomas is grallatorial and overawes darkly as medullated Tito sentimentalize stubbornly and restrains groggily. Unwrung Maxim sexualized intemperately, he meets his ayah very rustically. Upstair and perturbing Garrot always pancakes above-board and capped his update. Which is understanding community structure ecosystems, then protects many species that face forward or stronger than surrounding tree. Remember that would be put another for predators, the ecological and abiotic factors encourage the wand length. The ecology more important papers should remain in place vertically between bees are quantified here is numerous animals that individual. Ancona completed worksheet, identification in evolutionary adaptation by providing free of. What is probably a refuge, we could be a browser and ecological interactions in any interactives on a quadratic term antibiosis is the examples of. The algal components and wildlife and predation events for many prey dna metabarcoding on communities there is likely die from? Because more light levels in predation in. We thank stephen ellner, kettlewell actually affects all organisms, even when females departed their adaptations for conducting predation, which increases or no longer able to. What are examples of ecology of humans may earn an individual loses any necessary to secure territory do not provide nutrients that is affected by. The greatest when a limiting factors or that contains data. Thus can and predation, and brainstorm what would drive prey. By particular love of ecological history promotes contemporary sympatric strains. Food for example of ecological phenomenon. Species are disproportionally important implications for example, erratic turns during at almost all lynx population dynamics in the ground. -
Ecological-Niche Factor Analysis: How to Compute Habitat-Suitability Maps Without Absence Data?
Ecology, 83(7), 2002, pp. 2027±2036 q 2002 by the Ecological Society of America ECOLOGICAL-NICHE FACTOR ANALYSIS: HOW TO COMPUTE HABITAT-SUITABILITY MAPS WITHOUT ABSENCE DATA? A. H. HIRZEL,1 J. HAUSSER,1 D. CHESSEL,2 AND N. PERRIN1,3 1Laboratory for Conservation Biology, Institute of Ecology, University of Lausanne, CH-1015 Lausanne, Switzerland 2UMR CNRS 5023, Laboratoire de BiomeÂtrie et Biologie Evolutive, Universite Lyon I, 69622 Villeurbanne Cedex, France Abstract. We propose a multivariate approach to the study of geographic species dis- tribution which does not require absence data. Building on Hutchinson's concept of the ecological niche, this factor analysis compares, in the multidimensional space of ecological variables, the distribution of the localities where the focal species was observed to a reference set describing the whole study area. The ®rst factor extracted maximizes the marginality of the focal species, de®ned as the ecological distance between the species optimum and the mean habitat within the reference area. The other factors maximize the specialization of this focal species, de®ned as the ratio of the ecological variance in mean habitat to that observed for the focal species. Eigenvectors and eigenvalues are readily interpreted and can be used to build habitat-suitability maps. This approach is recommended in situations where absence data are not available (many data banks), unreliable (most cryptic or rare species), or meaningless (invaders). We provide an illustration and validation of the method for the alpine ibex, a species reintroduced in Switzerland which presumably has not yet recolonized its entire range. Key words: Capra ibex; ecological niche; GIS; habitat suitability; marginality; multivariate analysis; presence±absence data; specialization; species distribution; Switzerland. -
Habitat Quality in Conservation’S Neglected Geography
MAPPING HABITAT QUALITY IN CONSERVATION’S NEGLECTED GEOGRAPHY Ian Breckheimer A thesis submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Masters of Science in the Curriculum for the Environment and Ecology. Chapel Hill 2012 Approved by: Aaron Moody Conghe Song Peter White ©2012 Ian Breckheimer ALL RIGHTS RESERVED ii ABSTRACT IAN BRECKHEIMER: Mapping Habitat Quality in Conservation’s Neglected Geography (Under the direction of Aaron Moody) This thesis describes conceptual and methodological work that aims to advance the science of modeling and mapping wildlife habitat in human-modified landscapes. First, I review how researchers have defined and measured the quality of wildlife habitat over the past four decades. I then demonstrate a new approach to quantifying habitat quality by modeling habitat for the federally endangered Red-cockaded Woodpecker (Picoides borealis, RCW) across the Onslow Bight, a one million hectare region of North Carolina’s coastal plain. Next, I describe the development and operation of a GIS toolbox for ArcGIS 9.3, called “Connect”, designed to help conservation practitioners incorporate habitat connectivity considerations into land management and land-use planning. In two stakeholder-driven case studies, I use Connect to prioritize private land parcels for connectivity conservation in fragmented habitats around Fort Bragg, NC, and evaluate the effectiveness of a proposed corridor in promoting dispersal for RCW in the face of urban development. iii ACKNOWLEDGEMENTS The author would like to thank John Lay, Alexa J. McKerrow, Cecil Frost, Matt Simon, Jennifer Costanza, Jeff Walters, Anne Trainor, Will Fields, Nick Haddad, R.