The Human Brain Project
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Microsoft's Internet Exploration: Predatory Or Competitive?
Cornell Journal of Law and Public Policy Volume 9 Article 3 Issue 1 Fall 1999 Microsoft’s Internet Exploration: Predatory or Competitive Thomas W. Hazlett Follow this and additional works at: http://scholarship.law.cornell.edu/cjlpp Part of the Law Commons Recommended Citation Hazlett, Thomas W. (1999) "Microsoft’s Internet Exploration: Predatory or Competitive," Cornell Journal of Law and Public Policy: Vol. 9: Iss. 1, Article 3. Available at: http://scholarship.law.cornell.edu/cjlpp/vol9/iss1/3 This Article is brought to you for free and open access by the Journals at Scholarship@Cornell Law: A Digital Repository. It has been accepted for inclusion in Cornell Journal of Law and Public Policy by an authorized administrator of Scholarship@Cornell Law: A Digital Repository. For more information, please contact [email protected]. MICROSOFT'S INTERNET EXPLORATION: PREDATORY OR COMPETITIVE? Thomas W. Hazlettt In May 1998 the U.S. Department of Justice ("DOJ") accused Microsoft of violatirig the Sherman Antitrust Act by vigorously compet- ing against Netscape's Navigator software with Microsoft's rival browser, Internet Explorer. The substance of the allegation revolves around defensive actions taken by Microsoft to protect the dominant po- sition enjoyed by Microsoft's Windows operating system. The DOJ's theory is that, were it not for Microsoft's overly aggressive reaction to Netscape, Navigator software would have been more broadly distributed, thus enabling competition to Windows. This competition would have come directly from Java, a computer language developed by Sun Microsystems and embedded in Netscape software, allowing applications to run on any underlying operating system. -
Mindbill® Billing and Customer Care Solution
® MINDBill Billing and Customer Care Solution End-to-End Billing and Customer Care Gain Competitive Advantage with a Truly Convergent Billing & Customer Care Solution ©2018 MIND CTI LTD CONTENTS EXECUTIVE OVERVIEW ...................................................................... 1 ARCHITECTURE HIGHLIGHTS .............................................................. 2 LOGICAL ARCHITECTURE ........................................................................... 2 The Access Layer ............................................................................ 2 The Business Layer ......................................................................... 3 The Data Layer ............................................................................... 4 The Management Layer ................................................................. 4 CUSTOMER RELATIONSHIP MANAGEMENT ........................................ 5 ACCOUNTS ............................................................................................. 5 Unlimited Hierarchy of Accounts ................................................... 5 Customer care ................................................................................ 6 Account Home Page ....................................................................... 6 Order Management ....................................................................... 7 Account Journal .............................................................................. 9 Trouble Ticketing ........................................................................... -
The Creation of Neuroscience
The Creation of Neuroscience The Society for Neuroscience and the Quest for Disciplinary Unity 1969-1995 Introduction rom the molecular biology of a single neuron to the breathtakingly complex circuitry of the entire human nervous system, our understanding of the brain and how it works has undergone radical F changes over the past century. These advances have brought us tantalizingly closer to genu- inely mechanistic and scientifically rigorous explanations of how the brain’s roughly 100 billion neurons, interacting through trillions of synaptic connections, function both as single units and as larger ensem- bles. The professional field of neuroscience, in keeping pace with these important scientific develop- ments, has dramatically reshaped the organization of biological sciences across the globe over the last 50 years. Much like physics during its dominant era in the 1950s and 1960s, neuroscience has become the leading scientific discipline with regard to funding, numbers of scientists, and numbers of trainees. Furthermore, neuroscience as fact, explanation, and myth has just as dramatically redrawn our cultural landscape and redefined how Western popular culture understands who we are as individuals. In the 1950s, especially in the United States, Freud and his successors stood at the center of all cultural expla- nations for psychological suffering. In the new millennium, we perceive such suffering as erupting no longer from a repressed unconscious but, instead, from a pathophysiology rooted in and caused by brain abnormalities and dysfunctions. Indeed, the normal as well as the pathological have become thoroughly neurobiological in the last several decades. In the process, entirely new vistas have opened up in fields ranging from neuroeconomics and neurophilosophy to consumer products, as exemplified by an entire line of soft drinks advertised as offering “neuro” benefits. -
Neural Dust: Ultrasonic Biological Interface
Neural Dust: Ultrasonic Biological Interface Dongjin (DJ) Seo Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2018-146 http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-146.html December 1, 2018 Copyright © 2018, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Neural Dust: Ultrasonic Biological Interface by Dongjin Seo A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Michel M. Maharbiz, Chair Professor Elad Alon Professor John Ngai Fall 2016 Neural Dust: Ultrasonic Biological Interface Copyright 2016 by Dongjin Seo 1 Abstract Neural Dust: Ultrasonic Biological Interface by Dongjin Seo Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences University of California, Berkeley Professor Michel M. Maharbiz, Chair A seamless, high density, chronic interface to the nervous system is essential to enable clinically relevant applications such as electroceuticals or brain-machine interfaces (BMI). Currently, a major hurdle in neurotechnology is the lack of an implantable neural interface system that remains viable for a patient's lifetime due to the development of biological response near the implant. -
Perceiving Invisible Light Through a Somatosensory Cortical Prosthesis
ARTICLE Received 24 Aug 2012 | Accepted 15 Jan 2013 | Published 12 Feb 2013 DOI: 10.1038/ncomms2497 Perceiving invisible light through a somatosensory cortical prosthesis Eric E. Thomson1,2, Rafael Carra1,w & Miguel A.L. Nicolelis1,2,3,4,5 Sensory neuroprostheses show great potential for alleviating major sensory deficits. It is not known, however, whether such devices can augment the subject’s normal perceptual range. Here we show that adult rats can learn to perceive otherwise invisible infrared light through a neuroprosthesis that couples the output of a head-mounted infrared sensor to their soma- tosensory cortex (S1) via intracortical microstimulation. Rats readily learn to use this new information source, and generate active exploratory strategies to discriminate among infrared signals in their environment. S1 neurons in these infrared-perceiving rats respond to both whisker deflection and intracortical microstimulation, suggesting that the infrared repre- sentation does not displace the original tactile representation. Hence, sensory cortical prostheses, in addition to restoring normal neurological functions, may serve to expand natural perceptual capabilities in mammals. 1 Department of Neurobiology, Duke University, Box 3209, 311 Research Drive, Bryan Research, Durham, North Carolina 27710, USA. 2 Edmond and Lily Safra International Institute for Neuroscience of Natal (ELS-IINN), Natal 01257050, Brazil. 3 Department of Biomedical Engineering, Duke University, Durham, North Carolina 27710, USA. 4 Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27710, USA. 5 Center for Neuroengineering, Duke University, Durham, North Carolina 27710, USA. w Present address: University of Sao Paulo School of Medicine, Sao Paulo 01246-000, Brazil. Correspondence and requests for materials should be addressed to M.A.L.N. -
W Web Portal Application Development Technologies
1131 Web Portal Application Development W Technologies Américo Sampaio Lancaster University, UK Awais Rashid Lancaster University, UK INTRODUCTION The evolution of capabilities provided by Web portals, such as content management, personalization for different The growth of the Internet and the World Wide Web has users and groups of users, collaboration, and security, imposed contributed to significant changes in many areas of our so- difficulties for Web portal developers. The main challenges ciety. The Web has provided new ways of doing business, faced by the developers were: and many companies have been offering new services as well as migrating their systems to the Web. • How to integrate different applications inside the The main goal of the first Web sites was to facilitate the intranet and also over the Internet sharing of information between computers around the world. • How to provide specific content to different kinds These Web sites were mainly composed of simple hypertext of users and how to categorize users in groups and documents containing information in text format and links to provide the necessary information other documents that could be spread all over the world. The • How to obtain the information from other partners, or first users of thisnew technology were university researchers service providers, over the Web interested in some easier form of publishing their work, and • How to gather and tailor the information to the specific also searching for other interesting research sources from target users other universities. • How to secure the access of different kinds of users After a few years the popularity of the Web increased significantly, especially after the creation of user-friendly In order to address some of these issues, specific tools Web browsers and Internet services providers. -
The Human Brain Project
HBP The Human Brain Project Madrid, June 20th 2013 HBP The Human Brain Project HBP FULL-SCALE HBP Ramp-up HBP Report mid 2013-end 2015 April, 2012 HBP-PS (CSA) (FP7-ICT-2013-FET-F, CP-CSA, Jul-Oct, 2012 May, 2011 HBP-PS Proposal (FP7-ICT-2011-FET-F) December, 2010 Proposal Preparation August, 2010 HBP PROJECT FICHE: PROJECT TITLE: HUMAN BRAIN PROJECT COORDINATOR: EPFL (Switzerland) COUNTRIES: 23 (EU MS, Switzerland, US, Japan, China); 22 in Ramp Up Phase. RESEARCH LABORATORIES: 256 in Whole Flagship; 110 in Ramp Up Phase RESEARCH INSTITUTIONS (Partners): • 150 in Whole Flagship • 82 in Ramp Up Phase & New partners through Competitive Call Scheme (15,5% of budget) • 200 partners expected by Y5 (Project participants & New partners through Competitive Call Scheme) DIVISIONS:11 SUBPROJECTS: 13 TOTAL COSTS: 1.000* M€; 72,7 M€ in Ramp Up Phase * 1160 M€ Project Total Costs (October, 2012) HBP Main Scheme of The Human Brain Project: HBP Phases 2013 2015 2016 2020 2023 RAMP UP (A) FULLY OPERATIONAL (B) SUSTAINED OPERATIONS (C) Y1 Y2 Y3a Y3b Y4 Y5 Y6 Y7 Y8 Y9 Y10 2014 2020 HBP Structure HBP: 11 DIVISIONS; 13 SUBPROJECTS (10 SCIENTIFIC & APPLICATIONS & ETHICS & MGT) DIVISION SPN1 SUBPROJECTS AREA OF ACTIVITY MOLECULAR & CELLULAR NEUROSCIENCE SP1 STRATEGIC MOUSE BRAIN DATA SP2 STRATEGIC HUMAN BRAIN DATA DATA COGNITIVE NEUROSCIENCE SP3 BRAIN FUNCTION THEORETICAL NEUROSCIENCE SP4 THEORETICAL NEUROSCIENCE THEORY NEUROINFORMATICS SP5 THE NEUROINFORMATICS PLATFORM BRAIN SIMULATION SP6 BRAIN SIMULATION PLATFORM HIGH PERFORMANCE COMPUTING (HPC) SP7 HPC -
Epigenetic Pathways Through Which Experiences Become Linked with Biology
Development and Psychopathology 27 (2015), 637–648 # Cambridge University Press 2015 doi:10.1017/S0954579415000206 Epigenetic pathways through which experiences become linked with biology a b PATRICK O. MCGowan AND TANIA L. ROTH aUniversity of Toronto; and bUniversity of Delaware Abstract This article highlights the defining principles, progress, and future directions in epigenetics research in relation to this Special Issue. Exciting studies in the fields of neuroscience, psychology, and psychiatry have provided new insights into the epigenetic factors (e.g., DNA methylation) that are responsive to environmental input and serve as biological pathways in behavioral development. Here we highlight the experimental evidence, mainly from animal models, that factors such as psychosocial stress and environmental adversity can become encoded within epigenetic factors with functional consequences for brain plasticity and behavior. We also highlight evidence that epigenetic marking of genes in one generation can have consequences for future generations (i.e., inherited), and work with humans linking epigenetics, cognitive dysfunction, and psychiatric disorder. Though epigenetics has offered more of a beginning than an answer to the centuries-old nature–nurture debate, continued research is certain to yield substantial information regarding biological determinants of central nervous system changes and behavior with relevance for the study of developmental psychopathology. Experiences, particularly those occurring during sensitive peri- To better understand the consequences of early and later- ods of development, are well recognized for their ability to ca- life stress on epigenetic mechanisms in this capacity, this nalize neurobiological trajectories and yield significant conse- has required the utilization of experimental rodent models quences for lifelong health and mental well-being. -
Neurobiology and Behavior (NEURBIO) 1
Neurobiology and Behavior (NEURBIO) 1 Neurobiology and Behavior (NEURBIO) Courses NEURBIO 200A. Research in Neurobiology and Behavior. 2-12 Units. Individual research with Neurobiology and Behavior faculty. Repeatability: Unlimited as topics vary. Restriction: Graduate students only. Neurobiology and Behavior Majors only. NEURBIO 200B. Research in Neurobiology and Behavior. 2-12 Units. Individual research with Neurobiology and Behavior faculty. Prerequisite: NEURBIO 200A Repeatability: Unlimited as topics vary. Restriction: Graduate students only. Neurobiology and Behavior Majors only. NEURBIO 200C. Research in Neurobiology and Behavior. 2-12 Units. Individual research with Neurobiology and Behavior faculty. Prerequisite: NEURBIO 200B Repeatability: Unlimited as topics vary. Restriction: Graduate students only. Neurobiology and Behavior Majors only. NEURBIO 201A. Research in Neurobiology and Behavior. 2-12 Units. Individual research with Neurobiology and Behavior faculty. Grading Option: Satisfactory/unsatisfactory only. Repeatability: Unlimited as topics vary. Restriction: Graduate students only. Neurobiology and Behavior Majors only. NEURBIO 201B. Research in Neurobiology and Behavior. 2-12 Units. Individual research with Neurobiology and Behavior faculty. Prerequisite: NEURBIO 201A Grading Option: Satisfactory/unsatisfactory only. Repeatability: Unlimited as topics vary. Restriction: Graduate students only. Neurobiology and Behavior Majors only. NEURBIO 201C. Research in Neurobiology and Behavior. 2-12 Units. Individual research with Neurobiology and Behavior faculty. Prerequisite: NEURBIO 201B Grading Option: Satisfactory/unsatisfactory only. Repeatability: Unlimited as topics vary. Restriction: Graduate students only. Neurobiology and Behavior Majors only. NEURBIO 202A. Foundations of Neuroscience. 2 Units. Intended to expose students to critical reading and analysis of the primary neuroscience literature. Instructors from departments associated with the Interdepartmental Neuroscience Program participate and discuss topics of current interest. -
Case Study Report BRAIN INITIATIVE
Mission-oriented R&I policies: In-depth case studies Case Study Report BRAIN INITIATIVE (US) Eva Arrilucea, Hanna Kuittinen February 2018 Case Study Report: Brain Initiative (United States) European Commission Directorate-General for Research and Innovation Directorate A — Policy Development and Coordination Unit A.6 — Open Data Policy and Science Cloud Contact Arnold Weiszenbacher E-mail [email protected] [email protected] European Commission B-1049 Brussels Manuscript completed in February 2018. This document has been prepared for the European Commission however it reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. More information on the European Union is available on the internet (http://europa.eu). Luxembourg: Publications Office of the European Union, 2017 PDF ISBN 978-92-79-80162-4 doi:10.2777/1986 KI-01-18-153-EN-N © European Union, 2018. Reuse is authorised provided the source is acknowledged. The reuse policy of European Commission documents is regulated by Decision 2011/833/EU (OJ L 330, 14.12.2011, p. 39). For any use or reproduction of photos or other material that is not under the EU copyright, permission must be sought directly from the copyright holders. Brain Initiative 2 EUROPEAN COMMISSION Mission-oriented R&I policies: In-depth case studies Case Study Report Brain Initiative (United States) Eva Arrilucea Hanna Kuittinen A Study coordinated by the Joint Institute for Innovation Policy February 2018 Directorate-General for Research and Innovation Table of Contents 1 Summary of the case study .................................................................................. -
Genomics on the Brain on 9 September, the Father of the Hydrogen Bomb Passed Away
2003 in context Neuroscience GOODBYE Edward Teller Genomics on the brain On 9 September, the father of the hydrogen bomb passed away. He was a controversial he 1990s may have been designated the creating transgenic mice that carry these figure, who was vilified by many physicists after T‘Decade of the Brain’,but they will also be BACs,the researchers can identify — by sight testifying in 1954 that Robert Oppenheimer, remembered as the time when genomics — the cells in which a gene of interest is nor- leader of the wartime Manhattan Project, was a came to the fore.This year,neuroscience and mally active,and can work out how these cells security risk. Teller later championed President genomics teamed up in projects that promise connect with the rest of the brain. The same Ronald Reagan’s ‘Star Wars’ missile-defence to propel the study of the brain into the realm BACs can also be used to introduce other initiative. But colleagues at the Lawrence of‘big science’. genetic modifications into these cells,provid- Livermore National Laboratory, co-founded by Working on Parkinson’s disease? One of ing a unique tool to investigate their biology. Teller, say that he should also be remembered the projects that surfaced this year might pro- GENSAT’s first images can already be seen for his passion for teaching physics. vide you with a transgenic mouse that offers on its website,which was launched in October fluorescent neurons in key neural pathways. alongside a paper introducing the project Galileo Another could offer you structural brain (S. -
Neuroplasticity in Children and Adolescents in Response to Cognitive Or Sensory-Motor Interventions
Reviews/Mini-Reviews Clinical & Translational Neuroscience July-December 2020: 1–21 ª The Author(s) 2020 Neuroplasticity in children and Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/2514183X20974231 adolescents in response to treatment journals.sagepub.com/home/ctn intervention: A systematic review of the literature Lisa L Weyandt1, Christine M Clarkin2,3 , Emily Z Holding4, Shannon E May3, Marisa E Marraccini4, Bergljot Gyda Gudmundsdottir5, Emily Shepard6, and Lauren Thompson3 Abstract The purpose of the present study was to conduct a systematic review of the literature, adhering to PRISMA guidelines, regarding evidence of neuroplasticity in children and adolescents in response to cognitive or sensory-motor interventions. Twenty-eight studies employing seven different types of neuroimaging techniques were included in the review. Findings revealed that significant variability existed across the 28 studies with regard to the clinical populations examined, type of interventions employed, neuroimaging methods, and the type of neuroimaging data included in the studies. Overall, results supported that experience-dependent interventions were associated with neuroplastic changes among children and ado- lescents in both neurotypical and clinical populations. However, it remains unclear whether these molecular neuroplastic changes, including the degree and direction of those differences, were the direct result of the intervention. Although the findings are encouraging, methodological limitations of the studies limit clinical utility of the results. Future studies are warranted that rigorously define the construct of neuroplasticity, establish consistent protocols across measurement techniques, and have adequate statistical power. Lastly, studies are needed to identify the functional and structural neu- roplastic mechanisms that correspond with changes in cognition and behavior in child and adolescent samples.