Industrial Hose and Tubing Solutions Table of Application Data Safety Information
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bioplastic Blends Incorporating Polyamide-11
BIOPLASTIC BLENDS INCORPORATING POLYAMIDE-11 by David Ruehle A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Chemical Engineering). Golden, Colorado Date ____________ Signed:_________________________ David A. Ruehle Signed: _________________________ Dr. John R. Dorgan Thesis Advisor Golden, Colorado Date ____________ Signed: _________________________ Dr. David Marr Professor and Head Department of Chemical and Biological Engineering ii ABSTRACT Biorenewable polyamide-11 (PA11/ Nylon-11) is melt blended with partially biorenewable polyamide-6,10 (PA 6,10/ Nylon 6,10) to produce thermoplastic blends of varying renewable content. Mechanical and thermal properties of these blends are characterized by differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA), dynamic mechanical thermal analysis (DMTA), tensile testing, and impact testing. Thermal properties provide insight into the structure of the blends. DSC thermograms show melting point depression for the PA 6,10 crystals with increasing PA 11 composition. This observed melting point depression indicates the two polyamides are fully miscible in the melt. There is a minimum in overall crystallinity at the 75wt%/25wt% PA11/PA6,10 blend TGA shows onset degradation temperature changes monotonically for the blends from 419 ˚C for PA 11 to 437 ˚C for PA 6,10. Mechanical properties of the blends show intermediate values compared to the homopolymers. The room temperature storage modulus of the homopolymers are 0.828 GPa for PA 11 and 1.173 GPa for PA 6,10. Blends have storage moduli of 0.847 GPa, 0.974 GPa, and 1.042 GPa for the 75/25, 50/50, and 25/75 blend compositions respectively. -
Biobased Plastics 2020
Biobased Plastics 2020 KARIN MOLENVELD AND HARRIËTTE BOS Biobased plastics 2020 Karin Molenveld and Harriëtte Bos, Wageningen Food & Biobased Research Cover illustration: D-grade plant pots (Desch Plantpak) Published in the series “Green Resources” • Textiles for circular fashion: Part 1, Fibre resources and recycling options, Paulien Harmsen, Harriëtte Bos (2020) • Catalogus biobased bouwmaterialen 2019; Het groene en circulaire bouwen, Jan van Dam, Martien van den Oever (2019) • Biobased plastics 2019, Karin Molenveld and Harriëtte Bos (2019) • Lignine, groene grondstof voor chemicaliën en materialen, Jan van Dam, Paulien Harmsen, Harriëtte Bos, Richard Gosselink (2017) • Artificial Photosynthesis; For the conversion of sunlight to fuel, Robin Purchase, Huib de Vriend and Huub de Groot, editors: Paulien Harmsen and Harriëtte Bos (2015) • Biobased Packaging Catalogue, Karin Molenveld and Martien van den Oever (2014) • Duurzaamheid van biobased producten uit plantaardige olie, energiegebruik en broeikasgasemissie. Harriëtte Bos, Sjaak Conijn, Wim Corré, Koen Meesters, Martin Patel (2013) • Green building blocks for biobased plastics; Biobased processes and market development, Paulien Harmsen, Martijn Hackmann (2012) • Catalogus biobased bouwmaterialen; Het groene bouwen, Jan van Dam, Martien van den Oever (2012) • Biocomposieten 2012; Natuurlijke vezels en bioharsen in technische toepassingen, Martien van den Oever, Karin Molenveld, Harriëtte Bos (editor) (2012) • Biobased Plastics 2012, Christiaan Bolck, Jan Ravenstijn, Karin Molenveld, -
Synthesis of Bifunctional Molecules for the Production of Polymers Based on Unsaturated Fatty Acids As Bioderived Raw Materials
Article Synthesis of Bifunctional Molecules for the Production of Polymers Based on Unsaturated Fatty Acids as Bioderived Raw Materials Alessa Hinzmann , Selina Sophie Druhmann and Harald Gröger * Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615 Bielefeld, Germany; [email protected] (A.H.); [email protected] (S.S.D.) * Correspondence: [email protected] Received: 30 July 2020; Accepted: 28 September 2020; Published: 13 October 2020 Abstract: Currently, investigations of polymer-building blocks made from biorenewable feedstocks such as, for example, fatty acids, are of high interest for the chemical industry. An alternative synthesis of nitrile-substituted aliphatic carboxylic acids as precursors for !-amino acids, which are useful to produce polymers, was investigated starting from biorenewable fatty acids. By hydroformylation of unsaturated fatty acids or unsaturated acids being accessible from unsaturated fatty acids by cross-metathesis reactions, aldehydes are formed. In this work, the hydroformylation of such unsaturated acids led to the formation of the corresponding aldehydes, which were afterwards converted with hydroxylamine to aldoximes. Subsequent dehydration by an aldoxime dehydratase as a biocatalyst or by CuII acetate led to the desired nitriles. Within this work, C7-, C9- and C11-carboxylic acids with a terminal nitrile functionality as well as a branched nitrile-functionalized stearate derivative were synthesized by means of this approach. As these nitriles serve as precursors for amino acids being suitable for polymerization, this work represents an alternative synthetic access to polyamide precursors, which starts directly from unsaturated fatty acids as biorenewable resources and avoids harsh reaction conditions as well as and by-product formation. -
Biopolymers and Bioplastics Plastics Aligned with Nature
BIOPOLYMERS AND BIOPLASTICS PLASTICS ALIGNED WITH NATURE INFORMATIONAL - EDUCATIONAL MATERIAL FOR TEACHERS AND LABORATORY ASSISTANTS OF CHEMISTRY AT PRIMARY AND SECONDARY SCHOOLS Maša Šprajcar, Petra Horvat, Andrej Kržan National Institute of Chemistry, Ljubljana 1 BIOPOLYMERS AND BIOPLASTICS: PLASTICS ALIGNED WITH NATURE BIOPOLYMERS AND BIOPLASTICS: PLASTICS ALIGNED WITH NATURE CONTENT: INTRODUCTION In 2010, 265 million tons of plastics were produced worldwide, of that 57 million in Europe [1]. The production and BIOPLASTICS: consumption of polymeric materials is expected to grow at least as long as ‘developing countries’ do not reach such ORIGIN, FORMATION an average consumption as in developed countries. AND DECOMPOSITION 1 Currently, about 80 % of all polymeric materials are produced by the petrochemical industry, i.e. they are produced from fossil (non-renewable) resources. Along with the increased use of plastics the burden on the environment is SYNTHETIC POLYMERS AND THE also increasing. In addition to the environmental impacts caused by the mere production of polymers and plastics, PROBLEM THEY POSE 4 there is a growing burden of waste, generated when users discard products that are no longer needed. Waste has (BIODEGRADABLE) been a pressing problem for many years; with the increasing mass consumption of products with a short life span, POLYMERS AND PLASTICS 5 the amount of waste is also increasing rapidly. Dumping grounds have numerous potential negative environmental POLYMERS OF NATURAL ORIGIN 7 impacts (seepage of leachate into the groundwater, odours, destruction of the local flora and fauna, local changes in POLYMERS OF ARTIFICIAL ORIGIN 7 the environment, soil pollution, ...) and they also require a lot of space.