Turan Numbers

Total Page:16

File Type:pdf, Size:1020Kb

Turan Numbers Faculty of Sciences Department of Mathematics Academic year 2015–2016 Finite Geometry and Graph Theory intertwine: Turán Numbers Sam Mattheus Promotor: Prof. dr. L. Storme Master thesis submied to obtain the academic degree of Master in Mathematics, specialization Pure Mathematics. Faculty of Sciences Department of Mathematics Academic year 2015–2016 Finite Geometry and Graph Theory intertwine: Turán Numbers Sam Mattheus Promotor: Prof. dr. L. Storme Master thesis submied to obtain the academic degree of Master in Mathematics, specialization Pure Mathematics. Introduction Extremal graph theory, in its strictest sense, is a branch of graph theory developed and loved by Hungarians. Béla Bollobás Extremal graph theory, and most of combinatorics for that maer, are relatively recent subjects in mathematics, compared to for example analysis or number theory. It has seen a lot of growth during the 20th century, mainly under the impulse of Erdős and other Hungarian mathematicians, as Bollobás also remarked. In this thesis we will discuss a subject in extremal graph theory which originates from a theorem by another Hungarian mathematician, Pál Turán. In 1941 he investigated the following problem: what is the maximal number of edges a graph on n vertices can have, without containing a complete graph Kr? This result was the genesis of a subfield of extremal graph theory which is nowadays called Turán problems. In this thesis, we will focus on the following problem: what is the maximal number of edges a graph on n vertices can have, without containing a fixed graph H? This problem is also known as the forbidden subgraph problem. The maximum is denoted as ex(n; H) and studied as a function of n. When exact values are known of this function for certain n, one then tries to investigate the extremal graphs, which are denoted as EX(n; H). When H is not bipartite, Erdős, Stone and Simonovits determined the asymptotic growth of ex(n; H), this is called the non-degenerate case. In the degenerate case, when H is bipartite, there is not much known. This is the case on which we will focus most. The general procedure to investigate ex(n; H) in the degenerate case is twofold: on the one hand, one tries to find upper bounds, based on graph- theoretical arguments. On the other hand, using for example finite geometries, one tries to find matching lower bounds. This is where the interplay between graph theory and finite geometry will appear most clearly. In Chapter 1 we investigate the function ex(n; H) for arbitrary H and look at a few instances where the values of these functions are known for all n. This chapter serves as an introduction to the field and develops the necessary graph theory. In Chapter 2 we look at the case when H is the quadrilateral C4 = K2;2. For certain values of n, ex(n; C4) and EX(n; C4) have been determined. We will see that finite projective planes play a big role here and appear naturally when considering C4-free graphs. In Chapter 3 we generalise this to general complete bipartite graphs Ks;t. We will see that designs come into play here. It is no coincidence that projective planes are a subclass of designs. Lastly, in Chapter 4, we generalise C4 to even cycles C2k. Again, there exists finite geometries that lead to good constructions of C2k-free graphs. These are the generalized polygons, which also have projective planes as a subclass. What we will see in these three chapters is that finite geometries lend themselves very well to constructing infinite families of graphs satisfying certain properties. The chapters themselves have following structure: first we introduce some theory which will play a big role in the chapter. In our four chapters, we introduce graph theory, projective planes and spaces, designs and generalized polygons respectively. These are mainly wrien for the reader that is not familiar with these subjects. Veterans in the field will probably be able to quickly skim through these parts, briefly recalling some definitions and concepts in the process. Chapter 1 is a bit of an outsider, as this one does not introduce any finite geometry, and serves mainly as an introduction to graph theory. The other chapters first develop some theory from finite geometry. Then we investigate the known i upper bounds, but the most important part is finding good lower bounds. This is where the theory we develop at the beginning comes into play. We will investigate the opportunities and limits of the finite geometry constructions and end each chapter with some open questions. We will not always mention this explicitly, but every object we work with is finite. Moreover, we make following conventions. The notation N is used for the non-negative integers. Unless explicity stated otherwise, arabic leers will denote non-negative integers, i.e., when we write k or k ≥ 1, we assume k 2 N. On the other hand c > 0 denotes a non-negative real number and > 0 is the usual notation for a small non-negative real number. A set of only one element will oen be wrien without A accolades. If A is a set, then jAj denotes its size and k all subsets of A having size k. If we say ‘take k vertices’, we mean we take k distinct vertices. In the same vein, x; y 2 A will imply that x 6= y. Lastly, we use following asymptotic notation. Let f(n) and g(n) be functions from N to N, then we have following asymptotic notation. • f(n) = O(g(n)) if and only if f(n) ≤ cg(n), where c > 0, for n suiciently large, • f(n) = o(g(n)) if and only if g(n) 6= 0 and limn!1 f(n)=g(n) = 0, • f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and g(n) = O(f(n)), • f(n) ≈ g(n) if and only if limn!1 f(n)=g(n) = 1, • f(n) = Ω(g(n)) if and only if there are infinitely many n such that cg(n) ≤ f(n) for some c > 0. Using this notation, we can write results very compact. On the other hand, it is not very useful for proofs. If we have to proof a statement containing these notations, we will resort to standard arguments containing , δ; n0, making computations easier. As every other author, we have to make decisions what to include and what to omit. Computational- heavy, long or technical proofs are generally not included. We hope that we have found a good balance between the two. I thank Leo Storme, my promotor, for suggesting this subject. It has been a real treat to work on. His help, suggestions and comments have been invaluable to this thesis, and without him, it would simply not exist. I also thank Francesco Pavese, who took the time and the patience to explain several concepts from finite geometry. The new results regarding the independence number of ERq are the result of the collaboration with him. I thank him deeply for giving me the opportunity to do so. Many thanks go to Ward Poelmans for sharing the LATEX template of his PhD thesis, it can be found online on latex.ugent.be. Lastly, I thank everyone who has helped in any way in creating this thesis. It has been a long and wonderful road. The author gives permission to make this master dissertation available for consultation and to copy parts of this master dissertation for personal use. In the case of any other use, the limitations of the copyright have to be respected, in particular with regard to the obligation to state expressly the source when quoting results from this master dissertation. Sam Maheus Gent, May 31, 2016 ii Contents Introduction i 1 Forbidding subgraphs 1 1.0 Foundations: graph theory . .1 1.0.1 Definitions and notation . .1 1.0.2 Examples of graphs . .3 1.0.3 More graph theoretic properties . .4 1.1 Genesis . .5 1.2 Some exact Turán numbers . 10 1.2.1 Odd cycles . 10 1.2.2 Even wheels . 12 1.2.3 Intersecting triangles . 15 1.2.4 Trees . 16 2 The quadrilateral 19 2.0 Foundations: projective geometry . 19 2.0.1 Projective planes and projective spaces . 19 2.0.2 Polarities of projective spaces . 22 2.1 History . 26 2.2 The polarity graph . 33 2.2.1 q even ......................................... 34 2.2.2 q odd.......................................... 35 2.2.3 Independence number . 40 3 Bipartite complete graphs 47 3.0 Foundations: design theory . 47 3.0.1 Basics . 47 3.0.2 Symmetric designs . 49 3.1 General results . 50 3.2 Finding good lower bounds . 53 3.2.1 The norm graph . 53 iii CONTENTS 3.2.2 Excluding K3;3 .................................... 54 3.3 Excluding K2;t+1 ....................................... 57 3.4 A link to designs? . 57 3.4.1 Designs and K2,λ+1-free graphs . 57 3.4.2 Designs and strongly regular graphs . 57 3.4.3 Extending the correspondence . 59 3.4.4 Application: K2;3-free graphs from biplanes . 61 3.4.5 Conclusion . 64 4 Even cycles 67 4.0 Generalized polygons . 67 4.1 Upper bounds and a probabilistic construction . 71 4.2 The polarity graph for generalized polygons . 72 4.3 Beer C2k-free graphs . 74 A Samenvaing 77 B New construction for Z(m; n; 2; 3) 79 Bibliography 81 iv Chapter 1 Forbidding subgraphs In this chapter we will give an introduction to the earliest and most fundamental results of this branch of extremal graph theory.
Recommended publications
  • Forbidding Subgraphs
    Graph Theory and Additive Combinatorics Lecturer: Prof. Yufei Zhao 2 Forbidding subgraphs 2.1 Mantel’s theorem: forbidding a triangle We begin our discussion of extremal graph theory with the following basic question. Question 2.1. What is the maximum number of edges in an n-vertex graph that does not contain a triangle? Bipartite graphs are always triangle-free. A complete bipartite graph, where the vertex set is split equally into two parts (or differing by one vertex, in case n is odd), has n2/4 edges. Mantel’s theorem states that we cannot obtain a better bound: Theorem 2.2 (Mantel). Every triangle-free graph on n vertices has at W. Mantel, "Problem 28 (Solution by H. most bn2/4c edges. Gouwentak, W. Mantel, J. Teixeira de Mattes, F. Schuh and W. A. Wythoff). Wiskundige Opgaven 10, 60 —61, 1907. We will give two proofs of Theorem 2.2. Proof 1. G = (V E) n m Let , a triangle-free graph with vertices and x edges. Observe that for distinct x, y 2 V such that xy 2 E, x and y N(x) must not share neighbors by triangle-freeness. Therefore, d(x) + d(y) ≤ n, which implies that d(x)2 = (d(x) + d(y)) ≤ mn. ∑ ∑ N(y) x2V xy2E y On the other hand, by the handshake lemma, ∑x2V d(x) = 2m. Now by the Cauchy–Schwarz inequality and the equation above, Adjacent vertices have disjoint neigh- borhoods in a triangle-free graph. !2 ! 4m2 = ∑ d(x) ≤ n ∑ d(x)2 ≤ mn2; x2V x2V hence m ≤ n2/4.
    [Show full text]
  • The History of Degenerate (Bipartite) Extremal Graph Problems
    The history of degenerate (bipartite) extremal graph problems Zolt´an F¨uredi and Mikl´os Simonovits May 15, 2013 Alfr´ed R´enyi Institute of Mathematics, Budapest, Hungary [email protected] and [email protected] Abstract This paper is a survey on Extremal Graph Theory, primarily fo- cusing on the case when one of the excluded graphs is bipartite. On one hand we give an introduction to this field and also describe many important results, methods, problems, and constructions. 1 Contents 1 Introduction 4 1.1 Some central theorems of the field . 5 1.2 Thestructureofthispaper . 6 1.3 Extremalproblems ........................ 8 1.4 Other types of extremal graph problems . 10 1.5 Historicalremarks . .. .. .. .. .. .. 11 arXiv:1306.5167v2 [math.CO] 29 Jun 2013 2 The general theory, classification 12 2.1 The importance of the Degenerate Case . 14 2.2 The asymmetric case of Excluded Bipartite graphs . 15 2.3 Reductions:Hostgraphs. 16 2.4 Excluding complete bipartite graphs . 17 2.5 Probabilistic lower bound . 18 1 Research supported in part by the Hungarian National Science Foundation OTKA 104343, and by the European Research Council Advanced Investigators Grant 267195 (ZF) and by the Hungarian National Science Foundation OTKA 101536, and by the European Research Council Advanced Investigators Grant 321104. (MS). 1 F¨uredi-Simonovits: Degenerate (bipartite) extremal graph problems 2 2.6 Classification of extremal problems . 21 2.7 General conjectures on bipartite graphs . 23 3 Excluding complete bipartite graphs 24 3.1 Bipartite C4-free graphs and the Zarankiewicz problem . 24 3.2 Finite Geometries and the C4-freegraphs .
    [Show full text]
  • Finite Geometries
    Finite Geometries Gy¨orgyKiss June 26th, 2012, Rogla gyk Finite Geometries Chain of length h : x0 I x1 I ::: I xh where xi 2 P [ L: The distance of two elements d(x; y) : length of the shortest chain joining them. Generalized polygons Let S = (P; L; I) be a connected, finite point-line incidence geometry. P and L are two distinct sets, the elements of P are called points, the elements of L are called lines. I ⊂ (P × L) [ (L × P) is a symmetric relation, called incidence. gyk Finite Geometries The distance of two elements d(x; y) : length of the shortest chain joining them. Generalized polygons Let S = (P; L; I) be a connected, finite point-line incidence geometry. P and L are two distinct sets, the elements of P are called points, the elements of L are called lines. I ⊂ (P × L) [ (L × P) is a symmetric relation, called incidence. Chain of length h : x0 I x1 I ::: I xh where xi 2 P [ L: gyk Finite Geometries Generalized polygons Let S = (P; L; I) be a connected, finite point-line incidence geometry. P and L are two distinct sets, the elements of P are called points, the elements of L are called lines. I ⊂ (P × L) [ (L × P) is a symmetric relation, called incidence. Chain of length h : x0 I x1 I ::: I xh where xi 2 P [ L: The distance of two elements d(x; y) : length of the shortest chain joining them. gyk Finite Geometries Generalized polygons Definition Let n > 1 be a positive integer.
    [Show full text]
  • Ssp Structure of Some Graph Classes
    International Journal of Pure and Applied Mathematics Volume 101 No. 6 2015, 939-948 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: A http://www.ijpam.eu P ijpam.eu SSP STRUCTURE OF SOME GRAPH CLASSES R. Mary Jeya Jothi1, A. Amutha2 1,2Department of Mathematics Sathyabama University Chennai, 119, INDIA Abstract: A Graph G is Super Strongly Perfect if every induced sub graph H of G possesses a minimal dominating set that meets all maximal cliques of H. Strongly perfect, complete bipartite graph, etc., are some of the most important classes of super strongly perfect graphs. Here, we analyse the other classes of super strongly perfect graphs like trivially perfect graphs and very strongly perfect graphs. We investigate the structure of super strongly perfect graph in friendship graphs. Also, we discuss the maximal cliques, colourability and dominating sets in friendship graphs. AMS Subject Classification: 05C75 Key Words: super strongly perfect graph, trivially perfect graph, very strongly perfect graph and friendship graph 1. Introduction Super strongly perfect graph is defined by B.D. Acharya and its characterization has been given as an open problem in 2006 [5]. Many analysation on super strongly perfect graph have been done by us in our previous research work, (i.e.,) we have investigated the classes of super strongly perfect graphs like strongly c 2015 Academic Publications, Ltd. Received: March 12, 2015 url: www.acadpubl.eu 940 R.M.J. Jothi, A. Amutha perfect, complete bipartite graph, etc., [3, 4]. In this paper we have discussed some other classes of super strongly perfect graphs like trivially perfect graph, very strongly perfect graph and friendship graph.
    [Show full text]
  • Graphic Sequences with a Realization Containing a Generalized Friendship Graph ∗
    Graphic Sequences with a Realization Containing a Generalized Friendship Graph ∗ Jian-Hua Yina,† Gang Chenb, John R. Schmittc aDepartment of Applied Mathematics, College of Information Science and Technology, Hainan University, Haikou 570228, P.R. China bDepartment of Mathematics, Ningxia University, Yinchuan 750021, P.R. China cDepartment of Mathematics, Middlebury College, Middlebury, VT, USA Abstract: Gould, Jacobson and Lehel (Combinatorics, Graph Theory and Algorithms, Vol.I (1999) 451–460) considered a variation of the classical Tur´an-type extremal problems as follows: for any simple graph H, determine the smallest even integer σ(H, n) such that every n-term graphic sequence π = (d1, d2, . , dn) with term sum σ(π) = d1 + d2 + ··· + dn ≥ σ(H, n) has a realization G containing H as a subgraph. Let Ft,r,k denote the generalized friendship graph on kt − kr + r vertices, that is, the graph of k copies of Kt meeting in a common r set, where Kt is the complete graph on t vertices and 0 ≤ r ≤ t. In this paper, we determine σ(Ft,r,k, n) for k ≥ 2, t ≥ 3, 1 ≤ r ≤ t − 2 and n sufficiently large. Keywords: degree sequence, potentially Ft,r,k-graphic sequence, generalized friendship graph. 2000 MR Subject Classification: 05C35, 05C07. 1. Introduction The set of all sequences π = (d1, d2, . , dn) of non-negative, non-increasing integers with d1 ≤ n − 1 is denoted by NSn. A sequence π ∈ NSn is said to be graphic if it is the degree sequence of a simple graph G on n vertices, and such a graph G is called a realization of π.
    [Show full text]
  • Math.RA] 25 Sep 2013 Previous Paper [3], Also Relying in Conceptually Separated Tools from Them, Such As Graphs and Digraphs
    Certain particular families of graphicable algebras Juan Núñez, María Luisa Rodríguez-Arévalo and María Trinidad Villar Dpto. Geometría y Topología. Facultad de Matemáticas. Universidad de Sevilla. Apdo. 1160. 41080-Sevilla, Spain. [email protected] [email protected] [email protected] Abstract In this paper, we introduce some particular families of graphicable algebras obtained by following a relatively new line of research, ini- tiated previously by some of the authors. It consists of the use of certain objects of Discrete Mathematics, mainly graphs and digraphs, to facilitate the study of graphicable algebras, which are a subset of evolution algebras. 2010 Mathematics Subject Classification: 17D99; 05C20; 05C50. Keywords: Graphicable algebras; evolution algebras; graphs. Introduction The main goal of this paper is to advance in the research of a novel mathematical topic emerged not long ago, the evolution algebras in general, and the graphicable algebras (a subset of them) in particular, in order to obtain new results starting from those by Tian (see [4, 5]) and others already obtained by some of us in a arXiv:1309.6469v1 [math.RA] 25 Sep 2013 previous paper [3], also relying in conceptually separated tools from them, such as graphs and digraphs. Concretely, our goal is to find some particular types of graphicable algebras associated with well-known types of graphs. The motivation to deal with evolution algebras in general and graphicable al- gebras in particular is due to the fact that at present, the study of these algebras is very booming, due to the numerous connections between them and many other branches of Mathematics, such as Graph Theory, Group Theory, Markov pro- cesses, dynamic systems and the Theory of Knots, among others.
    [Show full text]
  • Interlace Polynomials of Friendship Graphs
    Electronic Journal of Graph Theory and Applications 6 (2) (2018), 269–281 Interlace polynomials of friendship graphs Christina Eubanks-Turnera, Aihua Lib aDepartment of Mathematics, Loyola Marymount University, 90045 bDepartment of Mathematical Sciences, Montclair State University, 07043 [email protected], [email protected] Abstract In this paper, we study the interlace polynomials of friendship graphs, that is, graphs that satisfy the Friendship Theorem given by Erdos,¨ Renyi´ and Sos. Explicit formulas, special values, and behaviour of coefficients of these polynomials are provided. We also give the interlace polynomials of other similar graphs, such as, the butterfly graph. Keywords: graph polynomial, interlace polynomial, friendship graph, butterfly graph Mathematics Subject Classification : 05C31, 05C50 DOI: 10.5614/ejgta.2018.6.2.7 1. Introduction Sequencing by hybridization is a method of reconstructing a long DNA string from its nu- cleotide sequence. Since gaining a unique reconstruction from the substrings is not always possi- ble, a major question that arises in this study is “For a random string, how many reconstructions are possible?” In [2], Arratia, Bollobas,´ Coppersmith, and Sorkin answer an important question related to DNA sequencing by converting this to a question about Euler circuits in a 2-in, 2-out graph that have been “toggled” (interlaced). The previously mentioned authors introduced the in- terlace polynomial of a graph, a polynomial that represents the information gained from doing the toggling process on the graph, see [2]. Interlace polynomials are similar to other graph polynomi- als, such as, Tutte and Martin polynomials, see [5]. Some researchers have studied different types of graph polynomials, such as genus polynomials, [7].
    [Show full text]
  • Graph Theory
    Graph Theory Adam Kelly ([email protected]) August 22, 2021 Graph theory is an area of combinatorics which has lots of fun problems and plenty of interesting theorems. This article constitutes my notes for the `Graph Theory' course, held in Lent 2021 at Cambridge. These notes are not a transcription of the lectures, and differ significantly in quite a few areas. Still, all lectured material should be covered. Contents 1 Introduction2 1.1 Definitions....................................2 1.1.1 Common Graphs............................3 1.1.2 Subgraphs................................4 1.1.3 Graph Isomorphism..........................5 1.1.4 Connectivity..............................5 1.1.5 Edges and Distance..........................7 1.2 Trees.......................................8 1.3 Bipartite Graphs................................ 11 2 Hall's Theorem 13 2.1 Matchings.................................... 13 2.2 Matching in Bipartite Graphs......................... 14 2.3 Hall's Theorem................................. 15 2.4 Corollaries of Hall's Theorem......................... 16 3 Connectivity 19 3.1 Measuring Connectivity............................ 19 3.2 Preparing for Menger's Theorem....................... 21 3.3 Actually Menger's Theorem.......................... 22 3.4 Edge Connectivity............................... 23 4 Planar Graphs 25 4.1 Defining Planar Graphs............................ 26 4.2 What Graphs are Planar?........................... 27 5 Graph Colouring 29 5.1 Basic Concepts................................. 29 5.2
    [Show full text]
  • FPT Algorithms for Domination in Biclique-Free Graphs
    FPT algorithms for domination in biclique-free graphs J.A.Telle and Y.Villanger Department of Informatics, University of Bergen, Norway. [email protected], [email protected] Abstract. A class of graphs is said to be biclique-free if there is an in- teger t such that no graph in the class contains Kt;t as a subgraph. Large families of graph classes, such as any nowhere dense class of graphs or d-degenerate graphs, are biclique-free. We show that various domina- tion problems are fixed-parameter tractable on biclique-free classes of graphs, when parameterizing by both solution size and t. In particular, the problems k-Dominating Set, Connected k-Dominating Set, In- dependent k-Dominating Set and Minimum Weight k-Dominating Set are shown to be FPT, when parameterized by t + k, on graphs not containing Kt;t as a subgraph. With the exception of Connected k- Dominating Set all described algorithms are trivially linear in the size of the input graph. 1 Introduction The k-dominating set problem is one of the most well-studied NP-complete prob- lems in algorithmic graph theory. Given a graph G and an integer k, we ask if G contains a set S of at most k vertices such that every vertex of G is either in S or adjacent to a vertex of S. To cope with the intractability of this problem it has been studied both in terms of approximability [15] (relaxing the optimal- ity) and fixed-parameter tractability (relaxing the runtime). In this paper we consider also weighted k-domination and the variants asking for a connected or independent k-dominating set.
    [Show full text]
  • The Friendship Theorem
    THE FRIENDSHIP THEOREM ELIZABETH WALKER Abstract. In this paper we explore the friendship theorem, which in graph theory is stated as if we have a finite graph in which any two nodes have exactly one common neighbor, then Then there is a node which is adjacent to all other nodes. We provide a com- mon proof of the friendship theorem, followed by two extensions. The first extension relates to the number of common neighbors a node must have. The second relaxes the friendship condition such that any two nodes can have no common neighbor or one common neighbor. 1. Introduction The Friendship Theorem has long been explored through graph the- ory, and its origins are not known. The Friendship Theorem can be stated as follows: Theorem 1.1. Suppose in a group of people we have the situation that any pair of persons has precisely one common friend. Then there is always a person (the \politician") who is everybody's friend. In such a situation, there is always one person who is everyone's friend. We will see throughout this paper that the Friendship Theorem can be explored with graph theory in order to provide valuable insights to a variety of graphs of different diameter. We will summarize a simple proof of the friendship theorem as well as a purely combinatorial proof proposed by Mertzios and Unger in 2008, and a relaxation of the problem and further conclusions discussed by Skala in 1972. The friendship theorem is commonly translated into a theorem in graph theory: Theorem 1.2. Suppose that G is a finite graph in which any two ver- tices have precisely one common neighbor.
    [Show full text]
  • Short Proofs of Some Extremal Results II
    Short proofs of some extremal results II David Conlon∗ Jacob Foxy Benny Sudakovz Abstract We prove several results from different areas of extremal combinatorics, including complete or partial solutions to a number of open problems. These results, coming mainly from extremal graph theory and Ramsey theory, have been collected together because in each case the relevant proofs are quite short. 1 Introduction We study several questions from extremal combinatorics, a broad area of discrete mathematics which deals with the problem of maximizing or minimizing the cardinality of a collection of finite objects satisfying a certain property. The problems we consider come mainly from the areas of extremal graph theory and Ramsey theory. In many cases, we give complete or partial solutions to open problems posed by researchers in the area. While each of the results in this paper is interesting in its own right, the proofs are all quite short. Accordingly, in the spirit of Alon's `Problems and results in extremal combinatorics' papers [3, 4, 5] and our own earlier paper [15], we have chosen to combine them. We describe the results in brief below. For full details on each topic we refer the reader to the relevant section, each of which is self-contained and may be read separately from all others. In Section 2, we address old questions of Erd}osand Hajnal [20] and Caro [11] concerning extremal problems for set mappings. In Section 3, we answer a question of Foucaud, Krivelevich and Per- arnau [23], which extends an old problem of Bollob´asand Erd}os[18], about finding large Kr;r-free subgraphs in graphs with a given number of edges.
    [Show full text]
  • Zarankiewicz Numbers and Bipartite Ramsey Numbers
    Zarankiewicz Numbers and Bipartite Ramsey Numbers Alex F. Collins Alexander W. N. Riasanovsky Rochester Institute of Technology University of Pennsylvania School of Mathematical Sciences Department of Mathematics Rochester, NY 14623 Philadelphia, PA 19104 [email protected] [email protected] John C. Wallace Stanis law P. Radziszowski Trinity College Rochester Institute of Technology Department of Mathematics Department of Computer Science Hartford, CT 06106 Rochester, NY 14623 [email protected] [email protected] April 4, 2016 Abstract The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb;b which does not contain Ks;s as a subgraph. The two-color bipartite Ramsey number b(s; t) is the smallest integer b such that any coloring of the edges of Kb;b with two colors contains a Ks;s in the first color or a Kt;t in the second color. In this work, we design and exploit a computational method for bound- ing and computing Zarankiewicz numbers. Using it, we obtain several new values and bounds on z(b; s) for 3 ≤ s ≤ 6. Our approach and new knowledge about z(b; s) permit us to improve some of the results on bipar- tite Ramsey numbers obtained by Goddard, Henning and Oellermann in 2000. In particular, we compute the smallest previously unknown bipar- tite Ramsey number, b(2; 5) = 17. Moreover, we prove that up to isomor- phism there exists a unique 2-coloring which witnesses the lower bound 16 < b(2; 5). We also find tight bounds on b(2; 2; 3), 17 ≤ b(2; 2; 3) ≤ 18, which currently is the smallest open case for multicolor bipartite Ramsey numbers.
    [Show full text]