TCSS 422: Operating Systems [Winter 2017] 03/08/2017 Institute of Technology, UW-Tacoma
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Copy on Write Based File Systems Performance Analysis and Implementation
Copy On Write Based File Systems Performance Analysis And Implementation Sakis Kasampalis Kongens Lyngby 2010 IMM-MSC-2010-63 Technical University of Denmark Department Of Informatics Building 321, DK-2800 Kongens Lyngby, Denmark Phone +45 45253351, Fax +45 45882673 [email protected] www.imm.dtu.dk Abstract In this work I am focusing on Copy On Write based file systems. Copy On Write is used on modern file systems for providing (1) metadata and data consistency using transactional semantics, (2) cheap and instant backups using snapshots and clones. This thesis is divided into two main parts. The first part focuses on the design and performance of Copy On Write based file systems. Recent efforts aiming at creating a Copy On Write based file system are ZFS, Btrfs, ext3cow, Hammer, and LLFS. My work focuses only on ZFS and Btrfs, since they support the most advanced features. The main goals of ZFS and Btrfs are to offer a scalable, fault tolerant, and easy to administrate file system. I evaluate the performance and scalability of ZFS and Btrfs. The evaluation includes studying their design and testing their performance and scalability against a set of recommended file system benchmarks. Most computers are already based on multi-core and multiple processor architec- tures. Because of that, the need for using concurrent programming models has increased. Transactions can be very helpful for supporting concurrent program- ming models, which ensure that system updates are consistent. Unfortunately, the majority of operating systems and file systems either do not support trans- actions at all, or they simply do not expose them to the users. -
Membrane: Operating System Support for Restartable File Systems Swaminathan Sundararaman, Sriram Subramanian, Abhishek Rajimwale, Andrea C
Membrane: Operating System Support for Restartable File Systems Swaminathan Sundararaman, Sriram Subramanian, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Michael M. Swift Computer Sciences Department, University of Wisconsin, Madison Abstract and most complex code bases in the kernel. Further, We introduce Membrane, a set of changes to the oper- file systems are still under active development, and new ating system to support restartable file systems. Mem- ones are introduced quite frequently. For example, Linux brane allows an operating system to tolerate a broad has many established file systems, including ext2 [34], class of file system failures and does so while remain- ext3 [35], reiserfs [27], and still there is great interest in ing transparent to running applications; upon failure, the next-generation file systems such as Linux ext4 and btrfs. file system restarts, its state is restored, and pending ap- Thus, file systems are large, complex, and under develop- plication requests are serviced as if no failure had oc- ment, the perfect storm for numerous bugs to arise. curred. Membrane provides transparent recovery through Because of the likely presence of flaws in their imple- a lightweight logging and checkpoint infrastructure, and mentation, it is critical to consider how to recover from includes novel techniques to improve performance and file system crashes as well. Unfortunately, we cannot di- correctness of its fault-anticipation and recovery machin- rectly apply previous work from the device-driver litera- ery. We tested Membrane with ext2, ext3, and VFAT. ture to improving file-system fault recovery. File systems, Through experimentation, we show that Membrane in- unlike device drivers, are extremely stateful, as they man- duces little performance overhead and can tolerate a wide age vast amounts of both in-memory and persistent data; range of file system crashes. -
LLNL Computation Directorate Annual Report (2014)
PRODUCTION TEAM LLNL Associate Director for Computation Dona L. Crawford Deputy Associate Directors James Brase, Trish Damkroger, John Grosh, and Michel McCoy Scientific Editors John Westlund and Ming Jiang Art Director Amy Henke Production Editor Deanna Willis Writers Andrea Baron, Rose Hansen, Caryn Meissner, Linda Null, Michelle Rubin, and Deanna Willis Proofreader Rose Hansen Photographer Lee Baker LLNL-TR-668095 3D Designer Prepared by LLNL under Contract DE-AC52-07NA27344. Ryan Chen This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, Print Production manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the Charlie Arteago, Jr., and Monarch Print Copy and Design Solutions United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes. CONTENTS Message from the Associate Director . 2 An Award-Winning Organization . 4 CORAL Contract Awarded and Nonrecurring Engineering Begins . 6 Preparing Codes for a Technology Transition . 8 Flux: A Framework for Resource Management . -
Advfs Command Line and Application Programming Interface
AdvFS Command Line and Application Programming Interface External Reference Specification Version 1.13 JA CASL Not Inspected/Date Inspected Building ZK3 110 Spit Brook Road Nashua, NH 03062 Copyright (C) 2008 Hewlett-Packard Development Company, L.P. Page 1 of 65 Preface Version 1.4 of the AdvFS Command Line and API External Reference Specification is being made available to all partners in order to allow them to design and implement code meeting the specifications contained herein. 1 INTRODUCTION ....................................................................................................................................................................4 1.1 ABSTRACT .........................................................................................................................................................................4 1.2 AUDIENCE ..........................................................................................................................................................................4 1.3 TERMS AND DEFINITIONS ...................................................................................................................................................4 1.4 RELATED DOCUMENTS ......................................................................................................................................................4 1.5 ACKNOWLEDGEMENTS ......................................................................................................................................................4 -
Petascale Data Management: Guided by Measurement
Petascale Data Management: Guided by Measurement petascale data storage institute www.pdsi-scidac.org/ MPP2 www.pdsi-scidac.org MEMBER ORGANIZATIONS & Lustre • Los Alamos National Laboratory – institute.lanl.gov/pdsi/ • Parallel Data Lab, Carnegie Mellon University – www.pdl.cmu.edu/ • Oak Ridge National Laboratory – www.csm.ornl.gov/ • Sandia National Laboratories – www.sandia.gov/ • National Energy Research Scientific Computing Center • Center for Information Technology Integration, U. of Michigan pdsi.nersc.gov/ www.citi.umich.edu/projects/pdsi/ • Pacific Northwest National Laboratory – www.pnl.gov/ • University of California at Santa Cruz – www.pdsi.ucsc.edu/ The Computer Failure Data Repository Filesystems Statistics Survey • Goal: to collect and make available failure data from a large variety of sites GOALS • Better understanding of the characteristics of failures in the real world • Gather & build large DB of static filetree summary • Now maintained by USENIX at cfdr.usenix.org/ • Build small, non-invasive, anonymizing stats gather tool • Distribute fsstats tool via easily used web site Red Storm NAME SYSTEM TYPE SYSTEM SIZE TIME PERIOD TYPE OF DATA • Encourage contributions (output of tool) from many FSs Any node • Offer uploaded statistics & summaries to public & Lustre 22 HPC clusters 5000 nodes 9 years outage . Label Date Type File Total Size Total Space # files # dirs max size max space max dir max name avg file avg dir . 765 nodes (2008) System TB TB M K GB GB ents bytes MB ents . 1 HPC cluster 5 years PITTSBURGH 3,400 disks -
Oracle Database Administrator's Reference for UNIX-Based Operating Systems
Oracle® Database Administrator’s Reference 10g Release 2 (10.2) for UNIX-Based Operating Systems B15658-06 March 2009 Oracle Database Administrator's Reference, 10g Release 2 (10.2) for UNIX-Based Operating Systems B15658-06 Copyright © 2006, 2009, Oracle and/or its affiliates. All rights reserved. Primary Author: Brintha Bennet Contributing Authors: Kevin Flood, Pat Huey, Clara Jaeckel, Emily Murphy, Terri Winters, Ashmita Bose Contributors: David Austin, Subhranshu Banerjee, Mark Bauer, Robert Chang, Jonathan Creighton, Sudip Datta, Padmanabhan Ganapathy, Thirumaleshwara Hasandka, Joel Kallman, George Kotsovolos, Richard Long, Rolly Lv, Padmanabhan Manavazhi, Matthew Mckerley, Sreejith Minnanghat, Krishna Mohan, Rajendra Pingte, Hanlin Qian, Janelle Simmons, Roy Swonger, Lyju Vadassery, Douglas Williams This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable: U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. -
A File System Level Snapshot in Ext4
Computer Engineering and Intelligent Systems www.iiste.org ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online) Vol 2, No.8, 2011 A File System Level Snapshot In Ext4 Uma Nagaraj Computer Engineering Department, Pune University, MAE, Alandi Pune, Maharashtra 412105, India E-mail: [email protected] Ganesh Patil Computer Engineering Department, Pune University, MAE, Alandi Pune, Maharashtra 412105, India E-mail: [email protected] Swapnil Gaikwad Computer Engineering Department, Pune University, MAE, Alandi Pune, Maharashtra 412105, India E-mail: [email protected] Akshay Nehe Computer Engineering Department, Pune University, MAE, Alandi Pune, Maharashtra 412105, India E-mail: [email protected] Ashish Mayekar Computer Engineering Department, Pune University, MAE, Alandi Pune, Maharashtra 412105, India E-mail: [email protected] Received: 2011-10-20 Accepted: 2011-10-29 Published:2011-11-04 Abstract Snapshot makes a copy of current working system. Creating a snapshot with some processing and overheads is important to provide the reliable data service during backup. There are two types of snapshot techniques: volume-based approach and system-based approach. The volume-based Logical Volume Manager provides compact space usability, but requires some space to save snapshot and makes system with extra overheads. The system-based Snapshot works better than volume based. The file system based Snapshot does not need reserve space for snapshot. Therefore, the system-based Snapshot is considered a good solution in the computer environment where large-scale space management capability is not that critical. However, such snapshot feature is available in Linux kernel 2.2, 2.6 in EXT3 file system. In this paper, we proposed a system-based snapshot for the ext4 system in Linux kernel 2.6 or higher. -
Performance and Scalability of a Sensor Data Storage Framework
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aaltodoc Publication Archive Aalto University School of Science Degree Programme in Computer Science and Engineering Paul Tötterman Performance and Scalability of a Sensor Data Storage Framework Master’s Thesis Helsinki, March 10, 2015 Supervisor: Associate Professor Keijo Heljanko Advisor: Lasse Rasinen M.Sc. (Tech.) Aalto University School of Science ABSTRACT OF Degree Programme in Computer Science and Engineering MASTER’S THESIS Author: Paul Tötterman Title: Performance and Scalability of a Sensor Data Storage Framework Date: March 10, 2015 Pages: 67 Major: Software Technology Code: T-110 Supervisor: Associate Professor Keijo Heljanko Advisor: Lasse Rasinen M.Sc. (Tech.) Modern artificial intelligence and machine learning applications build on analysis and training using large datasets. New research and development does not always start with existing big datasets, but accumulate data over time. The same storage solution does not necessarily cover the scale during the lifetime of the research, especially if scaling up from using common workgroup storage technologies. The storage infrastructure at ZenRobotics has grown using standard workgroup technologies. The current approach is starting to show its limits, while the storage growth is predicted to continue and accelerate. Successful capacity planning and expansion requires a better understanding of the patterns of the use of storage and its growth. We have examined the current storage architecture and stored data from different perspectives in order to gain a better understanding of the situation. By performing a number of experiments we determine key properties of the employed technologies. The combination of these factors allows us to make informed decisions about future storage solutions. -
VERSIONFS a Versatile and User-Oriented Versioning File System
VERSIONFS A Versatile and User-Oriented Versioning File System A THESIS PRESENTED BY KIRAN-KUMAR MUNISWAMY-REDDY TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE STONY BROOK UNIVERSITY Technical Report FSL-03-03 December 2003 Abstract of the Thesis Versionfs A Versatile and User-Oriented Versioning File System by Kiran-Kumar Muniswamy-Reddy Master of Science in Computer Science Stony Brook University 2003 File versioning is a useful technique for recording a history of changes. Applications of ver- sioning include backups and disaster recovery, as well as monitoring intruders’ activities. Alas, modern systems do not include an automatic and easy-to-use file versioning system. Existing backup systems are slow and inflexible for users. Even worse, they often lack backups for the most recent day’s activities. Online disk snapshotting systems offer more fine-grained versioning, but still do not record the most recent changes to files. Moreover, existing systems also do not give individual users the flexibility to control versioning policies. We designed a lightweight user-oriented versioning file system called Versionfs. Versionfs works with any file system, whether local or remote, and provides a host of user-configurable policies: versioning by users, groups, processes, or file names and extensions; version retention policies by maximum number of versions kept, age, or total space consumed by versions of a file; version storage policies using full copies, compressed copies, or deltas. Versionfs creates file versions automatically, transparently, and in a file-system portable manner—while maintaining Unix semantics. A set of user-level utilities allow administrators to configure and enforce default policies; users are able to set policies within configured boundaries, as well as view, control, and recover files and their versions. -
Guido Van Rossum on PYTHON 3 Get Your Sleep From
JavaScript | Inform 6 & 7 | Falcon | Sleep | Enlightenment | PHP LINUX JOURNAL ™ THE STATE OF LINUX AUDIO SOFTWARE LANGUAGES Since 1994: The Original Magazine of the Linux Community OCTOBER 2008 | ISSUE 174 Inform 7 REVIEWED JavaScript | Inform 6 & 7 | Falcon | Sleep Enlightenment PHP Audio | Inform 6 & 7 Falcon JavaScript Don’t Get Eaten HP Media by a Grue! Vault 5150 Scalent’s Managing Virtual Operating PHP Code Environment Guido van Rossum on PYTHON 3 Get Your Sleep from OCTOBER Java www.linuxjournal.com 2008 $5.99US $5.99CAN 10 ISSUE Martin Messner Enlightenment E17 Insights from SUSE’s Lightweight Alternative 174 + Security Team Lead to KDE and GNOME 0 09281 03102 4 MULTIPLY ENERGY EFFICIENCY AND MAXIMIZE COOLING. THE WORLD’S FIRST QUAD-CORE PROCESSOR FOR MAINSTREAM SERVERS. THE NEW QUAD-CORE INTEL® XEON® PROCESSOR 5300 SERIES DELIVERS UP TO 50% 1 MORE PERFORMANCE*PERFORMANCE THAN PREVIOUS INTEL XEON PROCESSORS IN THE SAME POWERPOWER ENVELOPE.ENVELOPE. BASEDBASED ONON THETHE ULTRA-EFFICIENTULTRA-EFFICIENT INTEL®INTEL® CORE™CORE™ MICROMICROARCHITECTURE, ARCHITECTURE IT’S THE ULTIMATE SOLUTION FOR MANAGING RUNAWAY COOLING EXPENSES. LEARN WHYWHY GREAT GREAT BUSINESS BUSINESS COMPUTING COMPUTING STARTS STARTS WITH WITH INTEL INTEL INSIDE. INSIDE. VISIT VISIT INTEL.CO.UK/XEON INTEL.COM/XEON. RELION 2612 s 1UAD #ORE)NTEL®8EON® RELION 1670 s 1UAD #ORE)NTEL®8EON® PROCESSOR PROCESSOR s 5SERVERWITHUPTO4" s )NTEL@3EABURG CHIPSET s )DEALFORCOST EFFECTIVE&ILE$" WITH-(ZFRONTSIDEBUS APPLICATIONS s 5PTO'"2!-IN5CLASS s 2!32ELIABILITY !VAILABILITY LEADINGMEMORYCAPACITY 3ERVICEABILITY s -ANAGEMENTFEATURESTOSUPPORT LARGECLUSTERDEPLOYMENTS 34!24).'!4$2429.00 34!24).'!4$1969.00 Penguin Computing provides turnkey x86/Linux clusters for high performance technical computing applications. -
The Third Extended File System with Copy-On-Write
Limiting Liability in a Federally Compliant File System Zachary N. J. Peterson The Johns Hopkins University Hopkins Storage Systems Lab, Department of Computer Science Regulatory Requirements z Data Maintenance Acts & Regulations – HIPAA, GISRA, SOX, GLB – 4,000+ State and Federal Laws and Regulations with regards to storage z Audit Trail – creating a “chain of trust” – Files are versioned over time – Authenticated block sharing (copy-on-write) between versions. z Disk Encryption – Privacy and Confidentiality – Non-repudiation Hopkins Storage Systems Lab, Department of Computer Science Secure Deletion in a Regulatory Environment z Desire to limit liability when audited – Records that go out of audit scope do so forever – When a disk is subpoenaed old or irrelevant data are inaccessible z Existing Techniques – Secure overwrite [Gutmann] – File key disposal in disk encrypted systems [Boneh & Lipton] z Existing solutions don’t work well in block- versioning file systems Hopkins Storage Systems Lab, Department of Computer Science Technical Problems z Secure overwriting of noncontiguous data blocks is slow and inefficient – When versions share blocks, data to be overwritten may be noncontiguous z Cannot dispose file keys in a versioning file system – Blocks encrypted with a particular key need to be available in future versions z User space tools are inadequate – Can’t delete metadata – Can’t be interposed between file operations – Truncate may leak data – Difficult to be synchronous Hopkins Storage Systems Lab, Department of Computer Science -
Provenance-Based Computing
UCAM-CL-TR-930 Technical Report ISSN 1476-2986 Number 930 Computer Laboratory Provenance-based computing Lucian Carata December 2018 15 JJ Thomson Avenue Cambridge CB3 0FD United Kingdom phone +44 1223 763500 https://www.cl.cam.ac.uk/ c 2018 Lucian Carata This technical report is based on a dissertation submitted July 2016 by the author for the degree of Doctor of Philosophy to the University of Cambridge, Wolfson College. Technical reports published by the University of Cambridge Computer Laboratory are freely available via the Internet: https://www.cl.cam.ac.uk/techreports/ ISSN 1476-2986 Provenance-based computing Lucian Carata Summary Relying on computing systems that become increasingly complex is difficult: with many factors potentially affecting the result of a computation or its properties, understanding where problems appear and fixing them is a challenging proposition. Typically, the process of finding solutions is driven by trial and error or by experience-based insights. In this dissertation, I examine the idea of using provenance metadata (the set of elements that have contributed to the existence of a piece of data, together with their relationships) instead. I show that considering provenance a primitive of computation enables the ex- ploration of system behaviour, targeting both retrospective analysis (root cause analysis, performance tuning) and hypothetical scenarios (what-if questions). In this context, prove- nance can be used as part of feedback loops, with a double purpose: building software that is able to adapt for meeting certain quality and performance targets (semi-automated tun- ing) and enabling human operators to exert high-level runtime control with limited previous knowledge of a system’s internal architecture.