Information to Users

Total Page:16

File Type:pdf, Size:1020Kb

Information to Users INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. DM! films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or Indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. Bell & Howell Information and Leaming 300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 800-521-0600 UMÏ UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE FAUNAL COMPOSITION, NON-MARINE VERTEBRATES, OF THE UPPER CEDAR MOUNTAIN FORMATION (CRETACEOUS: ALBIAN-CENOMANIAN), CENTRAL UTAH A Dissertation SUBMITTED TO THE GRADUATE FACULTY In partial fulfillment of the requirements for the degree of Doctor of Philosophy By PATRICIA GOLDBERG Norman, Oklahoma 2000 UMI Number 9988305 UMI* UMI Mtcroform9988305 Copyright 2001 by Belt & Howell Information and Leaming Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. Bell & Howell Information and Leaming Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor. Ml 48106-1346 © Copyright by PATRICIA GOLDBERG 2000 AU Rights Reserved FAUNAL COMPOSITION, NON-MARINE VERTEBRATES, OF THE UPPER CEDAR MOUNTAIN FORMATION (CRETACEOUS: ALBIAN-CENOMANIAN), CENTRAL UTAH A Dissertation APPROVED FOR THE DEPARTMENT OF ZOOLOGY BY PREFACE The following dissertation is organized into six chapters. The first is a general introduction and is not intended for publication. It serves to provide background information and context for the reader unfamiliar with the Cretaceous period. Chapters 2 and 3 are intended for independent publication. Chapter 2 provides an overview of the Mussentuchit fauna from an ecological perspective and examines the role of taphonomy in evaluating ecological patterns. Chapter 3 demonstrates sampling completeness. Chapters 4 through 6 are intended for publication as a set, in collaboration with R. Cifelli. Some redundancy between chapters necessarily follows. Chapter 4 demonstrates similarities and differences in faunal composition among sites. Chapter 5 examines taphonomic similarity among sites, and Chapter 6 examines faunal distributions from an ecological perspective. Format style in all chapters follows publication guidelines for submission to Paleobiology. IV ACKNOWLEDGMENTS This dissertation was very much a community effort and drew from the strengths and knowledge of many people. In particular I thank my committee members, Richard Cifelli, Nick Czaplewski, Gary Schnell, Mike Kaspari, and Bruce Hoagland, each of whom contributed significant guidance, support, and knowledge in their respective fields. Every last one of them made time for me when I showed up at their doorway. This study is based on data and specimens collected over a 10 year period by R. Cifelli and crews from the Sam Noble Oklahoma Museum of Natural History at an enormous cost in time, energy, and money. R. Cifelli provided me with access to specimens, databases, field notes, maps, unpublished manuscripts, and research materials and facilities. He was greatly instrumental in helping me get support in the manner of grants and scholarships for this work. In addition, he personally took me to all the microsites analyzed in this paper, taking care of permits, paperwork, and even arranging for the assistance of the Utah state geologist Needless to say, this dissertation simply never would have happened without him. Jim Kirkland spent two days in the Utah desert patiently sharing his geological knowledge with a novice (me). Rick Lupia came to the museum my last year in residence, and provided a great deal of assistance with (and enthusiasm about) paleoecologicai statistics. Coral McCalister drafted figures 3 (Chapter I) and I (Chapters 2 and 3), saving me a lot of headache and doing a better job than I could. My fellow graduate students, Cindy Gordon, Randy Nydam, Kent Smith, Julian Hilliard, and Matt Wedel, provided invaluable discussion and moral support Arthur Harris, my former professor, has always very quietly provided encouragement in my goals and confidence in my abilities. Funding for much of this work was provided through research and travel grants from the Hniversitj' of Oklahoma Graduate Student Senate and the University of Oklahoma Department of Zoology, as well as scholarships from the Alfred and Rose Miniaci Scholarship Fund (Dinamation International Society) and Blanche and Francis Adams Scholarship Fund. National Science Foundation grants (BSR 8906992, DEB 9401094, and DEB 9870173) and National Geographic grants (4761-91 and 5021-92) to R. Cifelli funded all the work to generate the data used in the first place. Finally, I would like to thank my family. My parents prodded me to go to college and encouraged my interest in nature. My husband has been my partner, advocate, and friend. He has tolerated all the demands and complications that have arisen along the way with good humor. Lastly, I thank my son, Raymond, who sacrificed time with his mom this past year with a maturity, thoughtfulness, and sense of humor way beyond his years. Vt TABLE OF CONTENTS Introduction ...........................................................................................................................1 Goals ..........................................................................................................................I Geologic Tim e .........................................................................................................2 Global Geography ................................................................................................... 2 Global Climate.........................................................................................................4 Vegetation ................................................................................................................6 Fauna........................................................................................................................9 Local Geography ....................................................................................................10 Geology...................................................................................................................11 Vegetation of the Cedar Mountain Formation ......................................................12 Mussentuchit Local Fauna .................................................................................... 13 Summary................................................................................................................26 Literature Cited..................................................................................................... 28 The Effects of Taphonomy on Ecological Patterns in the Mussentuchit Fauna ..............46 Abstract..................................................................................................................47 Introduction ............................................................................................................48 Methods .................................................................................................................51 Results and Discussion ..........................................................................................52 Literature Cited................................................................................................... 74 An Evaluation of Sampling Effectiveness in a Vertebrate Fossil Assemblage Using Ecological Techniques .........................................................................................96 vu Abstract.................................................................................................................... 97 Introduction ..............................................................................................................98 Methods ...................................................................................................................99 Results.................................................................................................................... 101 Discussion .............................................................................................................. 102 Literature C ited......................................................................................................107 Taxonomic Patterns Among Microvertebrate Sites in the Mussentuchit Member of the Cedar Mountain Formation ................................................................................... 115 Abstract...................................................................................................................116
Recommended publications
  • Evolution of the Patellar Sesamoid Bone in Mammals
    A peer-reviewed version of this preprint was published in PeerJ on 21 March 2017. View the peer-reviewed version (peerj.com/articles/3103), which is the preferred citable publication unless you specifically need to cite this preprint. Samuels ME, Regnault S, Hutchinson JR. 2017. Evolution of the patellar sesamoid bone in mammals. PeerJ 5:e3103 https://doi.org/10.7717/peerj.3103 Evolution of the patellar sesamoid bone in mammals Mark E Samuels 1, 2 , Sophie Regnault 3 , John R Hutchinson Corresp. 3 1 Department of Medicine, University of Montreal, Montreal, Quebec, Canada 2 Centre de Recherche du CHU Ste-Justine, Montreal, Quebec, Canada 3 Structure & Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, Hertfordshire, United Kingdom Corresponding Author: John R Hutchinson Email address: [email protected] The patella is a sesamoid bone located in the major extensor tendon of the knee joint, in the hindlimb of many tetrapods. Although numerous aspects of knee morphology are ancient and conserved among most tetrapods, the evolutionary occurrence of an ossified patella is highly variable. Among extant (crown clade) groups it is found in most birds, most lizards, the monotreme mammals and almost all placental mammals, but it is absent in most marsupial mammals as well as many reptiles. Here we integrate data from the literature and first-hand studies of fossil and recent skeletal remains to reconstruct the evolution of the mammalian patella. We infer that bony patellae most likely evolved between four to six times in crown group Mammalia: in monotremes, in the extinct multituberculates, in one or more stem-mammal genera outside of therian or eutherian mammals, and up to three times in therian mammals.
    [Show full text]
  • The Long-Term Ecology and Evolution of Marine Reptiles in A
    Edinburgh Research Explorer The long-term ecology and evolution of marine reptiles in a Jurassic seaway Citation for published version: Foffa, D, Young, M, Stubbs, TL, Dexter, K & Brusatte, S 2018, 'The long-term ecology and evolution of marine reptiles in a Jurassic seaway', Nature Ecology & Evolution. https://doi.org/10.1038/s41559-018- 0656-6 Digital Object Identifier (DOI): 10.1038/s41559-018-0656-6 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Nature Ecology & Evolution Publisher Rights Statement: Copyright © 2018, Springer Nature General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 1 The long-term ecology and evolution of marine reptiles in a Jurassic seaway 2 3 Davide Foffaa,*, Mark T. Younga, Thomas L. Stubbsb, Kyle G. Dextera, Stephen L. Brusattea 4 5 a School of GeoSciences, University of Edinburgh, Grant Institute, James Hutton Road, 6 Edinburgh, Scotland EH9 3FE, United Kingdom; b School of Earth Sciences, University of 7 Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, England, United 8 Kingdom.
    [Show full text]
  • A Redescription and Phylogenetic Analysis of the Cretaceous Fossil Lizard Polyglyphanodon Sternbergi Gilmore, 1940
    A Redescription and Phylogenetic Analysis of the Cretaceous Fossil Lizard Polyglyphanodon sternbergi Gilmore, 1940 by Meredith Austin Fontana B.S. in Biology, May 2011, The University of Texas at Austin A Thesis submitted to The Faculty of The Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Master of Science August 31, 2014 Thesis directed by James M. Clark Ronald Weintraub Professor of Biology © Copyright 2014 by Meredith Austin Fontana All rights reserved ii This thesis is dedicated to the memory of my grandmother, Lee Landsman Zelikow – my single greatest inspiration, whose brilliant mind and unconditional love has profoundly shaped and continues to shape the person I am today. iii ACKNOWLEDGEMENTS I am deeply grateful to my graduate advisor Dr. James Clark for his support and guidance throughout the completion of this thesis. This work would not have been possible without his invaluable assistance and commitment to my success, and it has been a privilege to be his student. I would also like to express my appreciation to the additional members of my Master’s examination committee, Dr. Alexander Pyron and Dr. Hans-Dieter Sues, for generously contributing their knowledge and time toward this project and for providing useful comments on the manuscript of this thesis. I am especially grateful to Dr. Sues for allowing me access to the exquisite collection of Polyglyphanodon sternbergi specimens at the National Museum of Natural History. I am also extremely thankful to the many faculty members, colleagues and friends at the George Washington University who have shared their wisdom and given me persistent encouragement.
    [Show full text]
  • Goniopholididae) from the Albian of Andorra (Teruel, Spain): Phylogenetic Implications
    Journal of Iberian Geology 41 (1) 2015: 41-56 http://dx.doi.org/10.5209/rev_JIGE.2015.v41.n1.48654 www.ucm.es /info/estratig/journal.htm ISSN (print): 1698-6180. ISSN (online): 1886-7995 New material from a huge specimen of Anteophthalmosuchus cf. escuchae (Goniopholididae) from the Albian of Andorra (Teruel, Spain): Phylogenetic implications E. Puértolas-Pascual1,2*, J.I. Canudo1,2, L.M. Sender2 1Grupo Aragosaurus-IUCA, Departamento de Ciencias de la Tierra, Facultad de Ciencias, Universidad de Zaragoza, c/Pedro Cerbuna 12, 50009 Zaragoza, Spain. 2Departamento de Ciencias de la Tierra, Facultad de Ciencias, Universidad de Zaragoza, c/Pedro Cerbuna No. 12, 50009 Zaragoza, Spain. e-mail addresses: [email protected] (E.P.P, *corresponding author); [email protected] (J.I.C.); [email protected] (L.M.S.) Received: 15 December 2013 / Accepted: 18 December 2014 / Available online: 25 March 2015 Abstract In 2011 the partial skeleton of a goniopholidid crocodylomorph was recovered in the ENDESA coal mine Mina Corta Barrabasa (Escu- cha Formation, lower Albian), located in the municipality of Andorra (Teruel, Spain). This new goniopholidid material is represented by abundant postcranial and fragmentary cranial bones. The study of these remains coincides with a recent description in 2013 of at least two new species of goniopholidids in the palaeontological site of Mina Santa María in Ariño (Teruel), also in the Escucha Formation. These species are Anteophthalmosuchus escuchae, Hulkepholis plotos and an undetermined goniopholidid, AR-1-3422. In the present paper, we describe the postcranial and cranial bones of the goniopholidid from Mina Corta Barrabasa and compare it with the species from Mina Santa María.
    [Show full text]
  • The Sclerotic Ring: Evolutionary Trends in Squamates
    The sclerotic ring: Evolutionary trends in squamates by Jade Atkins A Thesis Submitted to Saint Mary’s University, Halifax, Nova Scotia in Partial Fulfillment of the Requirements for the Degree of Master of Science in Applied Science July, 2014, Halifax Nova Scotia © Jade Atkins, 2014 Approved: Dr. Tamara Franz-Odendaal Supervisor Approved: Dr. Matthew Vickaryous External Examiner Approved: Dr. Tim Fedak Supervisory Committee Member Approved: Dr. Ron Russell Supervisory Committee Member Submitted: July 30, 2014 Dedication This thesis is dedicated to my family, friends, and mentors who helped me get to where I am today. Thank you. ! ii Table of Contents Title page ........................................................................................................................ i Dedication ...................................................................................................................... ii List of figures ................................................................................................................. v List of tables ................................................................................................................ vii Abstract .......................................................................................................................... x List of abbreviations and definitions ............................................................................ xi Acknowledgements ....................................................................................................
    [Show full text]
  • Alguns Crocodilianos São Mencionados Do Cretácico Português
    Paleo-herpetofauna de Portugal 69 Crocodlllanos Alguns Crocodilianos são mencionados do Cretácico português. No entanto, boa parte deste material carece de revisão e a sua classificação dos reajustamentos consequentes Do Cenomaniano Médio de Viso é referido um Mesosuchia/ Goniopholididae, Oweniasuchus lusitanicus Sauvage, 1897. Também do Maestrichtiano desta mesma localidade foram recolhidos numerosos frag­ mentos ósseos, identificados como pertencendo a Crocodylus blavieri Gray (Sauvage 1897/98 in Jonet 1981). No entanto Antunes & Pais (1978) colocaram algumas dúvidas a esta última identificação, referindo que so­ mente com base nos fragmentos encontrados, tanto poderia tratar-se de um mesossuquiano como de um eussuquiano. Restos de uma forma que consideraram semelhante à descrita, descoberta no Cretácico Superior de Taveiro, foi por eles identificada como sendo um Mesosuchia, n.gén., n.sp. (=Crocodylus blavieri Gray). Vestígios de exemplares desta forma, não designada, foram igualmente encontrados no Cacém. Do Cenomaniano Médio desta última localidade são também mencionados por Jonet (1981), os Mesosuchia/ Goniopholididae: Goniopholis cf. crassidens Owen, 1841 (pequeno crocodilo de cerca de 2 metros, também conhecido de Wealden - Cretácico Inferior - de Inglaterra e do Cretácico Inferior de Teruel), Oweniasuchus lusitanicus Sauvage, 1897, Oweniasuchus aff.lusitanicus, Oweniasuchus pulchelus Jonet, 1981 e, com dúvidas, o Eusuchia/ Crocodylidae, Thoracosaurus Leidy, 1852 sp .. Oweniasuchus pulchelus é também referido do Cenomaniano Superior de Carenque/Sintra (Jonet 1981) e Oweniasuchus sp., do Cenomaniano Médio de Forte Junqueiro/ Lisboa (Jonet 1981). 70 E. G. Crespo Restos indeterminados de Crocodilianos foram também encontrados no Cenomaniano Médio de Belas, Alto Pendão (Vale Figueira) e de Agualva/Cacém (todas localidades dos arredores de Lisboa) e do Cretácico Superior de Aveiro e das Azenhas do Mar (Sintra).
    [Show full text]
  • Aptian–Albian) of Texas and Oklahoma
    Reappraisal of the tribosphenidan mammals from the Trinity Group (Aptian–Albian) of Texas and Oklahoma BRIAN M. DAVIS and RICHARD L. CIFELLI Davis, B.M. and Cifelli, R.L. 2011. Reappraisal of the tribosphenidan mammals from the Trinity Group (Aptian–Albian) of Texas and Oklahoma. Acta Palaeontologica Polonica 56 (3): 441–462. The Trinity therians have long been the focus of attempts to reconstruct the evolutionary history of higher mammals, es− pecially in the context of the development of tribospheny. In this paper, we update the taxonomy of the tribosphenidan taxa known from the Trinity Group and establish with more confidence the premolar/molar count in each. Many isolated specimens can be referred to a specific tooth locus. Additional diversity is revealed within the Deltatheroida, with the de− scription of an additional species of Oklatheridium; Pappotherium is here considered a likely metatherian based on the in− ferred presence of four molars, while Holoclemensia is a basal eutherian (the opposite of some traditional interpretations). The remainder of the genera, Kermackia and Slaughteria, cannot be allied with either of the living groups of tribo− sphenidan mammals using the available data. We identify strong morphological diversity within this assemblage of stem taxa, including modifications to the traditional tribosphenic occlusal pattern in Kermackia. Mammalian evolution at the base of the tribosphenidan radiation was complex, and this underscores the need for caution when interpreting the mor− phology and relationships of taxa known by incomplete material. Key words: Tribosphenida, Metatheria, Eutheria, Deltatheroida, Trinity Group, Early Cretaceous. Brian M. Davis [[email protected]] and Richard L. Cifelli [[email protected]], Department of Zoology and Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, 2401 Chautauqua Ave, Norman, OK, 73072, USA.
    [Show full text]
  • Universitatea “ Babeş – Bolyai “ Cluj
    “ BABEŞ - BOLYAI “ UNIVERSITY, CLUJ - NAPOCA FACULTY OF ENVIRONMENTAL SCIENCE AND ENGINEERING UPPER CRETACEOUS CONTINENTAL VERTEBRATE ASSEMBLAGES FROM METALIFERI SEDIMENTARY AREA: SYSTEMATICS, PALEOECOLOGY AND PALEOBIOGEOGRAPHY PhD THESIS - ABSTRACT - Scientific advisor: PhD Student: Prof. Dr. CODREA VLAD JIPA CĂTĂLIN-CONSTANTIN 2012 CLUJ-NAPOCA SUMMARY Chapter 1 - Introduction ................................................................................................. 1 Chapter 2 - Geological setting ........................................................................................ 3 Chapter 3 - Evolution of the knowledge on the Uppermost Cretaceous vertebrates in Romania ............................................................................................................................ 8 Chapter 4 - Systematic paleontology ............................................................................ 12 Chapter 5 - Taphonomy ................................................................................................ 19 Chapter 6 - Paleoecology ............................................................................................... 22 Chapter 7 - Paleoebiogeography ................................................................................... 29 Chapter 8 - Conclusions ................................................................................................ 31 Selected references ......................................................................................................... 36 Upper Cretaceous
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • 4. Palaeontology
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2015 Palaeontology Klug, Christian ; Scheyer, Torsten M ; Cavin, Lionel Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-113739 Conference or Workshop Item Presentation Originally published at: Klug, Christian; Scheyer, Torsten M; Cavin, Lionel (2015). Palaeontology. In: Swiss Geoscience Meeting, Basel, 20 November 2015 - 21 November 2015. 136 4. Palaeontology Christian Klug, Torsten Scheyer, Lionel Cavin Schweizerische Paläontologische Gesellschaft, Kommission des Schweizerischen Paläontologischen Abhandlungen (KSPA) Symposium 4: Palaeontology TALKS: 4.1 Aguirre-Fernández G., Jost J.: Re-evaluation of the fossil cetaceans from Switzerland 4.2 Costeur L., Mennecart B., Schmutz S., Métais G.: Palaeomeryx (Mammalia, Artiodactyla) and the giraffes, data from the ear region 4.3 Foth C., Hedrick B.P., Ezcurra M.D.: Ontogenetic variation and heterochronic processes in the cranial evolution of early saurischians 4.4 Frey L., Rücklin M., Kindlimann R., Klug C.: Alpha diversity and palaeoecology of a Late Devonian Fossillagerstätte from Morocco and its exceptionally preserved fish fauna 4.5 Joyce W.G., Rabi M.: A Revised Global Biogeography of Turtles 4.6 Klug C., Frey L., Rücklin M.: A Famennian Fossillagerstätte in the eastern Anti-Atlas of Morocco: its fauna and taphonomy 4.7 Leder R.M.: Morphometric analysis of teeth of fossil and recent carcharhinid selachiens
    [Show full text]
  • Attachment J Assessment of Existing Paleontologic Data Along with Field Survey Results for the Jonah Field
    Attachment J Assessment of Existing Paleontologic Data Along with Field Survey Results for the Jonah Field June 12, 2007 ABSTRACT This is compilation of a technical analysis of existing paleontological data and a limited, selective paleontological field survey of the geologic bedrock formations that will be impacted on Federal lands by construction associated with energy development in the Jonah Field, Sublette County, Wyoming. The field survey was done on approximately 20% of the field, primarily where good bedrock was exposed or where there were existing, debris piles from recent construction. Some potentially rich areas were inaccessible due to biological restrictions. Heavily vegetated areas were not examined. All locality data are compiled in the separate confidential appendix D. Uinta Paleontological Associates Inc. was contracted to do this work through EnCana Oil & Gas Inc. In addition BP and Ultra Resources are partners in this project as they also have holdings in the Jonah Field. For this project, we reviewed a variety of geologic maps for the area (approximately 47 sections); none of maps have a scale better than 1:100,000. The Wyoming 1:500,000 geology map (Love and Christiansen, 1985) reveals two Eocene geologic formations with four members mapped within or near the Jonah Field (Wasatch – Alkali Creek and Main Body; Green River – Laney and Wilkins Peak members). In addition, Winterfeld’s 1997 paleontology report for the proposed Jonah Field II Project was reviewed carefully. After considerable review of the literature and museum data, it became obvious that the portion of the mapped Alkali Creek Member in the Jonah Field is probably misinterpreted.
    [Show full text]
  • Final Copy 2019 10 01 Herrera
    This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Herrera Flores, Jorge Alfredo A Title: The macroevolution and macroecology of Mesozoic lepidosaurs General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Herrera Flores, Jorge Alfredo A Title: The macroevolution and macroecology of Mesozoic lepidosaurs General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License.
    [Show full text]