Contribution of Social Network Analysis and Collective
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Group-In-A-Box Layout for Multi-Faceted Analysis of Communities
2011 IEEE International Conference on Privacy, Security, Risk, and Trust, and IEEE International Conference on Social Computing Group-In-a-Box Layout for Multi-faceted Analysis of Communities Eduarda Mendes Rodrigues*, Natasa Milic-Frayling †, Marc Smith‡, Ben Shneiderman§, Derek Hansen¶ * Dept. of Informatics Engineering, Faculty of Engineering, University of Porto, Portugal [email protected] † Microsoft Research, Cambridge, UK [email protected] ‡ Connected Action Consulting Group, Belmont, California, USA [email protected] § Dept. of Computer Science & Human-Computer Interaction Lab University of Maryland, College Park, Maryland, USA [email protected] ¶ College of Information Studies & Center for the Advanced Study of Communities and Information University of Maryland, College Park, Maryland, USA [email protected] Abstract—Communities in social networks emerge from One particularly important aspect of social network interactions among individuals and can be analyzed through a analysis is the detection of communities, i.e., sub-groups of combination of clustering and graph layout algorithms. These individuals or entities that exhibit tight interconnectivity approaches result in 2D or 3D visualizations of clustered among the wider population. For example, Twitter users who graphs, with groups of vertices representing individuals that regularly retweet each other’s messages may form cohesive form a community. However, in many instances the vertices groups within the Twitter social network. In a network have attributes that divide individuals into distinct categories visualization they would appear as clusters or sub-graphs, such as gender, profession, geographic location, and similar. It often colored distinctly or represented by a different vertex is often important to investigate what categories of individuals shape in order to convey their group identity. -
Joint Estimation of Preferential Attachment and Node Fitness In
www.nature.com/scientificreports OPEN Joint estimation of preferential attachment and node fitness in growing complex networks Received: 15 April 2016 Thong Pham1, Paul Sheridan2 & Hidetoshi Shimodaira1 Accepted: 09 August 2016 Complex network growth across diverse fields of science is hypothesized to be driven in the main by Published: 07 September 2016 a combination of preferential attachment and node fitness processes. For measuring the respective influences of these processes, previous approaches make strong and untested assumptions on the functional forms of either the preferential attachment function or fitness function or both. We introduce a Bayesian statistical method called PAFit to estimate preferential attachment and node fitness without imposing such functional constraints that works by maximizing a log-likelihood function with suitably added regularization terms. We use PAFit to investigate the interplay between preferential attachment and node fitness processes in a Facebook wall-post network. While we uncover evidence for both preferential attachment and node fitness, thus validating the hypothesis that these processes together drive complex network evolution, we also find that node fitness plays the bigger role in determining the degree of a node. This is the first validation of its kind on real-world network data. But surprisingly the rate of preferential attachment is found to deviate from the conventional log-linear form when node fitness is taken into account. The proposed method is implemented in the R package PAFit. The study of complex network evolution is a hallmark of network science. Research in this discipline is inspired by empirical observations underscoring the widespread nature of certain structural features, such as the small-world property1, a high clustering coefficient2, a heavy tail in the degree distribution3, assortative mixing patterns among nodes4, and community structure5 in a multitude of biological, societal, and technological networks6–11. -
Dynamic Social Network Analysis: Present Roots and Future Fruits
Dynamic Social Network Analysis: Present Roots and Future Fruits Ms. Nancy K Hayden Project Leader Defense Threat Reduction Agency Advanced Systems and Concepts Office Stephen P. Borgatti, Ronald L. Breiger, Peter Brooks, George B. Davis, David S. Dornisch, Jeffrey Johnson, Mark Mizruchi, Elizabeth Warner July 2009 DEFENSE THREAT REDUCTION AGENCY •ADVANCED SYSTEMS AND CONCEPTS OFFICE REPORT NUMBER ASCO 2009 009 The mission of the Defense Threat Reduction Agency (DTRA) is to safeguard America and its allies from weapons of mass destruction (chemical, biological, radiological, nuclear, and high explosives) by providing capabilities to reduce, eliminate, and counter the threat, and mitigate its effects. The Advanced Systems and Concepts Office (ASCO) supports this mission by providing long-term rolling horizon perspectives to help DTRA leadership identify, plan, and persuasively communicate what is needed in the near term to achieve the longer-term goals inherent in the agency’s mission. ASCO also emphasizes the identification, integration, and further development of leading strategic thinking and analysis on the most intractable problems related to combating weapons of mass destruction. For further information on this project, or on ASCO’s broader research program, please contact: Defense Threat Reduction Agency Advanced Systems and Concepts Office 8725 John J. Kingman Road Ft. Belvoir, VA 22060-6201 [email protected] Or, visit our website: http://www.dtra.mil/asco/ascoweb/index.htm Dynamic Social Network Analysis: Present Roots and Future Fruits Ms. Nancy K. Hayden Project Leader Defense Threat Reduction Agency Advanced Systems and Concepts Office and Stephen P. Borgatti, Ronald L. Breiger, Peter Brooks, George B. Davis, David S. -
Examples of Online Social Network Analysis Social Networks
Examples of online social network analysis Social networks • Huge field of research • Data: mostly small samples, surveys • Multiplexity Issue of data mining • Longitudinal data McPherson et al, Annu. Rev. Sociol. (2001) New technologies • Email networks • Cellphone call networks • Real-world interactions • Online networks/ social web NEW (large-scale) DATASETS, longitudinal data New laboratories • Social network properties – homophily – selection vs influence • Triadic closure, preferential attachment • Social balance • Dunbar number • Experiments at large scale... 4 Another social science lab: crowdsourcing, e.g. Amazon Mechanical Turk Text http://experimentalturk.wordpress.com/ New laboratories Caveats: • online links can differ from real social links • population sampling biases? • “big” data does not automatically mean “good” data 7 The social web • social networking sites • blogs + comments + aggregators • community-edited news sites, participatory journalism • content-sharing sites • discussion forums, newsgroups • wikis, Wikipedia • services that allow sharing of bookmarks/favorites • ...and mashups of the above services An example: Dunbar number on twitter Fraction of reciprocated connections as a function of in- degree Gonçalves et al, PLoS One 6, e22656 (2011) Sharing and annotating Examples: • Flickr: sharing of photos • Last.fm: music • aNobii: books • Del.icio.us: social bookmarking • Bibsonomy: publications and bookmarks • … •“Social” networks •“specialized” content-sharing sites •Users expose profiles (content) and links -
Evolving Networks and Social Network Analysis Methods And
DOI: 10.5772/intechopen.79041 ProvisionalChapter chapter 7 Evolving Networks andand SocialSocial NetworkNetwork AnalysisAnalysis Methods and Techniques Mário Cordeiro, Rui P. Sarmento,Sarmento, PavelPavel BrazdilBrazdil andand João Gama Additional information isis available atat thethe endend ofof thethe chapterchapter http://dx.doi.org/10.5772/intechopen.79041 Abstract Evolving networks by definition are networks that change as a function of time. They are a natural extension of network science since almost all real-world networks evolve over time, either by adding or by removing nodes or links over time: elementary actor-level network measures like network centrality change as a function of time, popularity and influence of individuals grow or fade depending on processes, and events occur in net- works during time intervals. Other problems such as network-level statistics computation, link prediction, community detection, and visualization gain additional research impor- tance when applied to dynamic online social networks (OSNs). Due to their temporal dimension, rapid growth of users, velocity of changes in networks, and amount of data that these OSNs generate, effective and efficient methods and techniques for small static networks are now required to scale and deal with the temporal dimension in case of streaming settings. This chapter reviews the state of the art in selected aspects of evolving social networks presenting open research challenges related to OSNs. The challenges suggest that significant further research is required in evolving social networks, i.e., existent methods, techniques, and algorithms must be rethought and designed toward incremental and dynamic versions that allow the efficient analysis of evolving networks. Keywords: evolving networks, social network analysis 1. -
Complexity of Social Systems and Paradoxes of Contemporary Security Theory and Policy Making
Czeslaw Mesjasz Cracow University of Economics Kraków, Poland [email protected] Complexity of social systems and paradoxes of contemporary security theory and policy making Paper presented at the CEEISA-ISA 2016 Joint International Conference Ljubljana, Slovenia 23-25 June 2016 (A very preliminary crude draft version, not for quotation) 1. Introduction The grand ideas such as, for example, the risk society of Beck [1992], complexity-stimulated crises discussed by Tainter [1988, 2000], Diamond [1997, 2005], ingenuity gap of Homer-Dixon [2002], and other similar, less publicized visions, lead to the following question. Was the world simpler and less risky in the past? The question brings about several paradoxes embodying actors and issues relating to broadly defined security. On the one hand we are intuitively aware that the present global society with development of IT and all its consequences, increasing number of societal interactions and environmental threats is becoming more difficult to comprehend. On the other, modern science allows for better understanding of the world. It may be then hypothesize that the contemporary discourse on the risk society and complexity of society is not correct when compared with the state of the world in any time in the past and much lower level of understanding of the world in that time. It may be even stated provocatively that although the number of social scientists is increasing only a relatively small of them have a deepened knowledge about the modern social proceses. The above paradox is used as a point of departure of the study of the links between complexity of society in the past and at present, and occurrence of large scale socioeconomic crises (countries, regions, continents, global scale). -
Advanced Topics in Social Dynamics Family Demography Session 1(9.03
Advanced topics in social dynamics Family Demography Gøsta Esping-Andersen Bocconi 2020-21 Session 1(9.03.2021): Theoretical perspectives in the study of the family In this session we will focus on key theories within family research, from both economics and sociology. Required readings: Becker, G (1973). ‘A theory of marriage. Part 1’. Journal of Political Economy, 81: 4: 813-46 Lesthaeghe, R. (2010).‘The unfolding story of the second demographic transition’. Population and Development Review, 36(2), 211-251. Recommended readings: Esping-Andersen, G and Billari, F. 2015 ‘Retheorizing family demographic change’. Population and Development Review, 41: 1-31 McDonald, P 2013 ‘Societal foundations for explaining fertility’. Demographic Research, 28: 981-994 Lundberg, Shelly and Pollack, Robert. 2007. "The American Family and Family Economics." Journal of Economic Perspectives 21(2): 3-26. Oppenheimer, Valerie Kincade. 1988. "A Theory of Marriage Timing." American Journal of Sociology 94(3): 563-91. Session 2 (10.03). Trends in gender roles, family behavior and structure Required readings: Esping-Andersen, G 2016 Families in the 21st Century. Chapter 1: ‘The return of the family’ (this book can be downloaded gratis from SNS’ website ([email protected]) Goldin, M 2006. "The Quiet Revolution That Transformed Women’s Employment, Education, and Family." American Economic Review 96(2): 1-21. Recommended readings: (for student presentation: minimally the Sevilla-Sanz article and the van Bavel et.al. paper) Van Bavel, J 2018 ‘The reversal of the gender gap in education and its consequences for family life’. Annual Review of Sociology, 44: 341-60 England, P. Et.al., 2020 ‘Progress toward gender equality in the United States has slowed or stalled’. -
Basics of Social Network Analysis Distribute Or
1 Basics of Social Network Analysis distribute or post, copy, not Do Copyright ©2017 by SAGE Publications, Inc. This work may not be reproduced or distributed in any form or by any means without express written permission of the publisher. Chapter 1 Basics of Social Network Analysis 3 Learning Objectives zz Describe basic concepts in social network analysis (SNA) such as nodes, actors, and ties or relations zz Identify different types of social networks, such as directed or undirected, binary or valued, and bipartite or one-mode zz Assess research designs in social network research, and distinguish sampling units, relational forms and contents, and levels of analysis zz Identify network actors at different levels of analysis (e.g., individuals or aggregate units) when reading social network literature zz Describe bipartite networks, know when to use them, and what their advan- tages are zz Explain the three theoretical assumptions that undergird social networkdistribute studies zz Discuss problems of causality in social network analysis, and suggest methods to establish causality in network studies or 1.1 Introduction The term “social network” entered everyday language with the advent of the Internet. As a result, most people will connect the term with the Internet and social media platforms, but it has in fact a much broaderpost, application, as we will see shortly. Still, pictures like Figure 1.1 are what most people will think of when they hear the word “social network”: thousands of points connected to each other. In this particular case, the points represent political blogs in the United States (grey ones are Republican, and dark grey ones are Democrat), the ties indicating hyperlinks between them. -
Systems Theory and Complexity: a Potential Tool for Radical Analysis Or the Emerging Social Paradigm for the Internationalised Market Economy?
DEMOCRACY & NATURE: The International Journal of INCLUSIVE DEMOCRACY Vol. 6, No. 3 (November 2000) Systems theory and complexity: a potential tool for radical analysis or the emerging social paradigm for the internationalised market economy? TAKIS FOTOPOULOS Abstract: The aim of this paper is to critically assess the claims of systems theory and complexity in the analysis of social change and particularly to examine the view that ―if certain conditions are met― both could potentially be useful tools for radical analysis. The conclusion drawn from this analysis is that, although systems theory and complexity are useful tools in the natural sciences in which they offer many useful insights, they are much less useful in social sciences and indeed are incompatible, both from the epistemological point of view and that of their content, with a radical analysis aiming to systemic change towards an inclusive democracy. Introduction It was almost inevitable that the present demise of Marxism would bring about a revised form of functionalism/evolutionism, which had almost eclipsed in the sixties and the seventies, particularly in areas like the sociology of development where it had been replaced by neo-Marxist and dependency theories. The new version of functionalism/evolutionism is much more sophisticated than the original Parsonian functionalist paradigm and incorporates recent developments in “hard” sciences to produce a new “general” theory of social systems. A primary example of such an attempt is Niklas Luhmann’s Social Systems[1] which we -
Manifesto of Computational Social Science R
Manifesto of computational social science R. Conte, N. Gilbert, G. Bonelli, C. Cioffi-Revilla, G. Deffuant, J. Kertesz, V. Loreto, S. Moat, J.P. Nadal, A. Sanchez, et al. To cite this version: R. Conte, N. Gilbert, G. Bonelli, C. Cioffi-Revilla, G. Deffuant, et al.. Manifesto of computational social science. The European Physical Journal. Special Topics, EDP Sciences, 2012, 214, p. 325 - p. 346. 10.1140/epjst/e2012-01697-8. hal-01072485 HAL Id: hal-01072485 https://hal.archives-ouvertes.fr/hal-01072485 Submitted on 8 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Eur. Phys. J. Special Topics 214, 325–346 (2012) © The Author(s) 2012. This article is published THE EUROPEAN with open access at Springerlink.com PHYSICAL JOURNAL DOI: 10.1140/epjst/e2012-01697-8 SPECIAL TOPICS Regular Article Manifesto of computational social science R. Conte1,a, N. Gilbert2, G. Bonelli1, C. Cioffi-Revilla3,G.Deffuant4,J.Kertesz5, V. Loreto6,S.Moat7, J.-P. Nadal8, A. Sanchez9,A.Nowak10, A. Flache11, M. San Miguel12, and D. Helbing13 1 ISTC-CNR, Italy 2 CRESS, University -
Synthetic Graph Generation for Data-Intensive HPC Benchmarking: Background and Framework
ORNL/TM-2013/339 Synthetic Graph Generation for Data-Intensive HPC Benchmarking: Background and Framework October 2013 Prepared by Joshua Lothian, Sarah Powers, Blair D. Sullivan, Matthew Baker, Jonathan Schrock, Stephen W. Poole DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge: Web Site: http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone: 703-605-6000 (1-800-553-6847) TDD: 703-487-4639 Fax: 703-605-6900 E-mail: [email protected] Web site: http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Ex- change (ETDE), and International Nuclear Information System (INIS) representatives from the following sources: Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Telephone: 865-576-8401 Fax: 865-576-5728 E-mail: [email protected] Web site:http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or other- wise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. -
Classroom Social Dynamics Management: Why the Invisible Hand of the Teacher Matters For
Running head: MANAGING CLASSROOM SOCIAL DYNAMICS Classroom Social Dynamics Management: Why the Invisible Hand of the Teacher Matters for Special Education Thomas W. Farmer, PhD1 Molly Dawes, PhD1 Jill V. Hamm, PhD2 David Lee, PhD3 Meera Mehtaji, MEd4 Abigail S. Hoffman, PhD2 Debbie S. Brooks, PhD3 1College of William & Mary 2The University of North Carolina at Chapel Hill 3The Pennsylvania State University 4Virginia Commonwealth University Author Notes: This work was supported by research grants (R305A120812; R305A140434) from the Institute of Education Sciences. The views expressed in this article are ours and do not represent the granting agency. This article was blind peer-reviewed. Keywords: invisible hand, classroom management, social dynamics, intensive interventions Conflict of Interest: The author declares no conflict of interest. Remedial and Special Education Vol 39 No. 3, 2018 MANAGING CLASSROOM SOCIAL DYNAMICS 2 Abstract The invisible hand is a metaphor that refers to teachers’ impact on the classroom peer ecology. Although teachers have the capacity to organize the classroom environment and activities in ways that contribute to students’ social experiences, their contributions are often overlooked in research on students’ peer relations and the development of social interventions. To address this, researchers have begun to focus on clarifying strategies to manage classroom social dynamics. The goal of this paper is to consider potential contributions of this perspective for understanding the social experiences of students with disabilities and to explore associated implications for the delivery of classroom focused interventions to support their adaptation. Conceptual foundations of classroom social dynamics management and empirical research on the peer relationships of students with disabilities are outlined and the potential of the concept of the invisible hand is discussed in relation to other social support interventions for students with disabilities.