1 Formulation of Euler 1.1 Symbols R of Rc RadiusofCircularattheendofthespiral θ ofcurvefrombeginingofspiral (infiniteR c)toaparticularpointonthespiral θs Angleoffullspiralcurve s,L Lengthmeasuredalongthespiralcurvefromitsinitial position so,L s Lengthofspiralcurve position 1.2 Derivation Euler spiral is defined as a curve whose curvature increases linearly with the distancemeasuredalongthecurve. AnEulerspiralusedisrailtrack/highwayengineeringtypicallyconnectbetweena tangentandacircularcurve.Thus,thecurvatureofthisEulerspiralstartswithzero atoneendandincreasesproportionalwiththecurvedistance. Imaginethetangentextendfrom–vexdirectiontotheoriginandthespiralstartsat the origin in the +ve x direction, turns slowly in anticlockwise direction to meet a circularcurvetangentially. Fromthedefinitionofthecurvature, 1/R=d θ/dL∝L i.e.R.L=constant=R cLs dθ/dL=L/R cLs Wewriteintheformat dθ/dL=2a 2.L 2 Where2a =1/R cLs

Page1

Ora=1/ √(2R cLs) Thus θ=(a.L) 2 Now x= ∫dLcos θ = ∫dLcos(a.L) 2 WhereL'=aL,anddL=dL’/a x=1/a. ∫dL'cos(L') 2 y= ∫dLsinθ = ∫dLsin(a.L) 2 y=1/a. ∫dL'sin(L') 2 1.3 Expansion Of Fresnel ThefollowingareknownasFresnelintegrals(orEulerintegrals): x= ∫cosL 2ds y= ∫sinL 2dL x= ∫cosL 2dL cos θ =1–θ2/2!+ θ4/4!–θ6/6!+… x= ∫(1–L4/2!+L8/4!–L12/6!+…)dL =L–L5/(5x2!)+L9/(9x4!)–L13 /(13x6!)+… y= ∫sinL 2dL Sin θ = θ–θ3/3!+ θ5/5!–θ7/7!+… y= ∫(L2–L6/3!+L10 /5!–L14 /7!+…)dL =L3/3–L7/(7x3!)+L11 /(11x5!)–L15 /(15x7!)+…

Page2

1.4 Conclusion ForagivenEulercurvewith: 2 2RL=2R cLs=1/a Or 2 1/R=L/R cLs=2a .L Then x=1/a. ∫dscos(s) 2 y=1/a. ∫dssin(s) 2 Where s=a.Landa=1/ √(2RcLs) Theprocessofsolutionforobtain (x,y) ofanEulercurvethusbeviewedas:  Map LoftheoriginalEulercurveto sofascaleddownEulercurve;  Find (x',y')fromtheFresnelintegralswithinthelimitofL ';and  Map (x',y')to (x,y) byscalingupwithfactor 1/a . Inthisscalingprocess,

Rc'=R c/ √(2R cLs)

= √(Rc/(2L s)

Ls'=Ls / √(2RcLs)

= √(Ls /(2Rc) Then

2R c'L s'=2. √(Rc/(2L s). √(Ls /(2Rc) =2/2 =1 Itisthusproposedthattheterm applies generally where as the term Cornu spiral shall only apply to the scaled down version of Euler spiral that has 2RcLs=1. Example1

Page3

Given Rc=300m,

Ls=100m, Then

θs=L s/(2R c) =100/(2x300) =0.1667radian,i.e.9.5493degrees

2R cLs=60,000 WescaledowntheEulerspiralby √60,000,i.e.100 √6totheCornuspiralthathas:

Rc'=3/√6m,

Ls'=1/ √6m,

2R c'Ls' =2x3/ √6x1/ √6 =1 And

θs=L s'/(2R c') =1/ √6/(2x3/ √6) =0.1667radian,i.e.9.5493degrees The two θs are the same.This thus confirms that the big and small Euler are having geometric similarity. The locus of the scaledown curve can be determinedfromFresnelIntegral,whilethelocusoftheoriginalEulerspiralcanbe obtainedbyscalingback(up). Example2

Given Rc=50m,

Ls=100m, Then

θs=L s/(2R c) =100/(2x50) =1radian,i.e.57.296degrees

Page4

2R cLs=10,000 Wescaledownby √10,000,i.e.100tothetransitionspiraltotheCornuspiralthathas:

Rc'=0.5m,

Ls'=1m,

2R c'L s'=2x0.5x1 =1 And

θs=L s'/(2R c') =1/100/(2x1/200) =1radian,i.e.57.296degrees Thetwoangles θs arethesame.Followthesameprocessinthepreviousexampleto obtainthelocusoftheoriginalEulerspiral. Generally the scaling down reduces L' to a small value (<1) and results in good convergingcharacteristicsoftheFresnelintegralwithrelativefewterms. 1.5 Other Properties Of Cornu Spiral CornuSpiralisaspecialcaseofthetransitionspiral/Eulerspiralwhichhas 2R c.L s= 1 2 θs=Ls/2R c =Ls And 2 2 θ= θs.(L /L s ) =L2 1/R=d θ/dL =2L Notethat2R c.L s=1alsomeansthat1/Rc=2Ls,inagreementwiththelaststatement.

Page5