Shared and Species-Specific Features Among Ichnovirus Genomes

Total Page:16

File Type:pdf, Size:1020Kb

Load more

View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Virology 363 (2007) 26–35 www.elsevier.com/locate/yviro Shared and species-specific features among ichnovirus genomes Kohjiro Tanaka a,1,2, Renée Lapointe b,2, Walter E. Barney a, Andrea M. Makkay c, Don Stoltz c, ⁎ ⁎ Michel Cusson b, , Bruce A. Webb a, a Department of Entomology, University of Kentucky, Lexington, KY 40503, USA b Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du PEPS, PO Box 10380 Ste-Foy stn, Quebec City, QC, Canada G1V 4C7 c Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7 Received 3 August 2006; returned to author for revision 13 September 2006; accepted 13 November 2006 Available online 15 February 2007 Abstract During egg-laying, some endoparasitic wasps transmit a polydnavirus to their caterpillar host, causing physiological disturbances that benefit the wasp larva. Members of the two recognized polydnavirus taxa, ichnovirus (IV) and bracovirus (BV), have large, segmented, dsDNA genomes containing virulence genes expanded into families. A recent comparison of IV and BV genomes revealed taxon-specific features, but the IV database consisted primarily of the genome sequence of a single species, the Campoletis sonorensis IV (CsIV). Here we describe analyses of two additional IV genomes, the Hyposoter fugitivus IV (HfIV) and the Tranosema rostrale IV (TrIV), which we compare to the sequence previously reported for CsIV. The three IV genomes share several features including a low coding density, a strong A+T bias, similar estimated aggregate genome sizes (∼250 kb) and the presence of nested genome segments. In addition, all three IV genomes contain members of six conserved gene families: repeat element, cysteine motif, viral innexin, viral ankyrin, N-family, and a newly defined putative family, the polar-residue-rich proteins. The three genomes, however, differ in their degree of segmentation, in within-family gene frequency and in the presence, in TrIV, of a unique gene family (TrV). These interspecific variations may reflect differences in parasite/host biology, including virus-induced pathologies in the latter. © 2007 Published by Elsevier Inc. Keywords: Ichnovirus; Polydnavirus; Genome evolution Introduction generation through the wasp germ line (Stoltz, 1990). Importantly, replication and virion assembly are restricted to The two recognized polydnavirus (PDV) taxa, ichnovirus the calyx cells, which are located at the junction of the ovarioles (IV) and bracovirus (BV), share an obligate mutualistic and the lateral oviduct. The PDV genome consists of multiple association with endoparasitic wasps of the families Ichneu- circular double stranded DNA segments, ranging in size from 2 monidae and Braconidae, respectively. A unique trait of PDVs to 42 kb (Kroemer and Webb, 2004). The number of genome is that their genome is integrated into the chromosomal DNA of segments and their size distribution vary from one PDV species the wasp carrier and is thus vertically transmitted to the next to another. The estimated size of characterized PDV genomes ranges from 187 to 567 kb (Dupuy et al., 2006; Espagne et al., 2004; Webb, 1998; Webb et al., 2006). ⁎ Corresponding authors. During oviposition, PDV virions are injected into the E-mail addresses: [email protected] (K. Tanaka), lepidopteran host hemocoel, along with wasp eggs, venom [email protected] (R. Lapointe), [email protected] (W.E. Barney), and ovarian proteins (Webb, 1998). PDV infection causes [email protected] (A.M. Makkay), [email protected] (D. Stoltz), physiological alterations in the parasitized larva, including an [email protected] (M. Cusson), [email protected] (B.A. Webb). arrest or delay in development and/or a suppression of the 1 Present address: Institute for Biological Resources and Functions, National Institute of Advanced Industrial Sciences and Technology (AIST), Tsukuba, immune response that would otherwise lead to encapsulation Ibaraki 305-8566, Japan. and death of wasp eggs by host hemocytes. PDV genes are 2 These authors contributed equally to the work. classified in three groups according to the host specificity of 0042-6822/$ - see front matter © 2007 Published by Elsevier Inc. doi:10.1016/j.virol.2006.11.034 K. Tanaka et al. / Virology 363 (2007) 26–35 27 their expression (Webb, 1998). Genes expressed exclusively in For both HfIV and TrIV, we constructed genomic libraries the wasp or in the lepidopteran host are designated as class I and that we used for whole genome shotgun sequencing. In parallel, class II genes, respectively, whereas class III genes are we used the EZ∷TN transposon system (Epicentre) to purify expressed in both hosts. Given that affected wasps are individual genome segments, which were then submitted for asymptomatic, class II genes have received the greatest sequencing so as to facilitate sequence assembly and sequence attention; indeed most of the proteins they encode are believed assignment to genome segments. Our results indicate that HfIV to be responsible for the pathological effects observed in the and TrIV share several genome properties and that each lepidopteran host and, therefore, hold some potential for the contains members of the gene families found in CsIV, including development of new pest-control strategies (Kroemer and a newly described group of related putative genes; however, we Webb, 2004). also observed some disparities in genome composition, which The genomes of the Campoletis sonorensis ichnovirus may reflect differences in the types of disturbances the viruses (CsIV), Microplitis demolitor bracovirus (MdBV) and Cotesia cause in their respective hosts. congregata bracovirus (CcBV) were recently sequenced and compared with respect to their organization and gene content Results (Espagne et al., 2004; Webb et al., 2006). They were observed to share various attributes, including segmentation, a lack of General features of the HfIV and TrIV genomes genes required for DNA replication and strong gene expansion into families. On the other hand, the comparison between CsIV The HfIV genome and MdBV indicated that these ichnovirus and bracovirus We identified and sequenced 56 unique HfIV genome genomes contain few shared gene families; however, a segments, 11 of which can yield smaller, “daughter” or “nested” preliminary comparison of available sequence data from several segments, which are generated by intramolecular recombination PDV species suggested that the gene families identified so far of larger genome segments (Kroemer and Webb, 2004). This are well conserved within the IV and BV taxa (Webb et al., degree of genome segmentation is higher than that assessed for 2006). either TrIV or CsIV (Fig. 1A), making HfIV the most highly In the present article, we report on the genome sequences of segmented IV genome characterized to date. Its genome two campoplegine IVs, the Hyposoter fugitivus ichnovirus segments range in size between 2.6 and 8.9 kb, with a median (HfIV) and the Tranosema rostrale ichnovirus (TrIV). In size of 4.0 kb (Fig. 1B), and its aggregate genome size is undertaking this work, we wished to determine whether the estimated at 246 kb (Fig. 1C). The HfIV genome has a G+C general features described for the CsIV genome are shared by content of 43.1%, a value comparable to that determined for other selected IV representatives, with the aim of achieving a TrIV and CsIV (Fig. 1D). Overall, coding sequences represent level of intrataxonomic comparison similar to that which is 30% of its genome (Fig. 1E), although coding density is higher currently possible for the BV group. Earlier work has shown among larger genome segments (>5 kb: 38.9%) than among that at least one gene family, the rep family, is shared by three smaller ones (<5 kb: 26.8%; see Fig. 2). IV species (Volkoff et al., 2002). In addition, we wanted to assess the feasibility of sequencing an entire IV genome (TrIV The TrIV genome in this case) using material obtained from a wild wasp We completed the sequencing of 20 TrIV genome segments, population because the documented occurrence of polymor- which included genome segment F whose sequence had been phism in PDV genomes (Stoltz and Xu, 1990) was expected to reported earlier and shown to contain members of the rep gene make genome assembly more difficult. To conduct work on family (Volkoff et al., 2002). These 20 genome segments make TrIV, we have had to rely on yearly field collections of up 130,961 bp, to which we must add seven partially (∼60%) parasitized host larvae inasmuch as maintenance of a T. rostrale sequenced and annotated genome segments (Fig. 1A) as well as colony in the laboratory has so far proven impossible (Cusson five ORF-containing sequences that could not be assigned to et al., 1998a). specific genome segments. Thus, although the sequenced In selecting the viruses of H. fugitivus and T. rostrale, which portions of the TrIV genome add up to 176,243 bp, we estimate are parasitoids of the forest tent caterpillar Malacosoma disstria at ∼200 kb the aggregate size of the 27 genome segments (Stoltz et al., 1986) and the spruce budworm Choristoneura characterized here, a value obtained by computing the full sizes fumiferana (Cusson et al., 1998a), respectively, we also wanted of the partially sequenced genome segments, which were to determine whether differences in pathological effects are assessed by gel electrophoresis of the associated EZ∷TN clones reflected in viral gene composition. Unlike other IVs charac- (data not shown). Many additional small contigs, totaling terized to date, TrIV has been shown to have little or no apparent ∼75 kb (most of which contained no detectable ORFs), have impact on the host cellular immune response, although it not yet been assigned to any genome segment, but several of induces a strong inhibition of caterpillar metamorphosis these are expected to partially fill the ∼25 kb gaps of the seven (Cusson et al., 1998b; Doucet and Cusson, 1996a, 1996b).
Recommended publications
  • The Complete Genome of an Endogenous Nimavirus (Nimav-1 Lva) from the Pacific Whiteleg Shrimp Penaeus (Litopenaeus) Vannamei

    The Complete Genome of an Endogenous Nimavirus (Nimav-1 Lva) from the Pacific Whiteleg Shrimp Penaeus (Litopenaeus) Vannamei

    G C A T T A C G G C A T genes Article The Complete Genome of an Endogenous Nimavirus (Nimav-1_LVa) From the Pacific Whiteleg Shrimp Penaeus (Litopenaeus) Vannamei Weidong Bao 1,* , Kathy F. J. Tang 2 and Acacia Alcivar-Warren 3,4,* 1 Genetic Information Research Institute, 20380 Town Center Lane, Suite 240, Cupertino, CA 95014, USA 2 Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China; [email protected] 3 Fundación para la Conservation de la Biodiversidad Acuática y Terrestre (FUCOBI), Quito EC1701, Ecuador 4 Environmental Genomics Inc., ONE HEALTH Epigenomics Educational Initiative, P.O. Box 196, Southborough, MA 01772, USA * Correspondence: [email protected] (W.B.); [email protected] (A.A.-W.) Received: 17 December 2019; Accepted: 9 January 2020; Published: 14 January 2020 Abstract: White spot syndrome virus (WSSV), the lone virus of the genus Whispovirus under the family Nimaviridae, is one of the most devastating viruses affecting the shrimp farming industry. Knowledge about this virus, in particular, its evolution history, has been limited, partly due to its large genome and the lack of other closely related free-living viruses for comparative studies. In this study, we reconstructed a full-length endogenous nimavirus consensus genome, Nimav-1_LVa (279,905 bp), in the genome sequence of Penaeus (Litopenaeus) vannamei breed Kehai No. 1 (ASM378908v1). This endogenous virus seemed to insert exclusively into the telomeric pentanucleotide microsatellite (TAACC/GGTTA)n. It encoded 117 putative genes, with some containing introns, such as g012 (inhibitor of apoptosis, IAP), g046 (crustacean hyperglycemic hormone, CHH), g155 (innexin), g158 (Bax inhibitor 1 like).
  • Diversity of Large DNA Viruses of Invertebrates ⇑ Trevor Williams A, Max Bergoin B, Monique M

    Diversity of Large DNA Viruses of Invertebrates ⇑ Trevor Williams A, Max Bergoin B, Monique M

    Journal of Invertebrate Pathology 147 (2017) 4–22 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Diversity of large DNA viruses of invertebrates ⇑ Trevor Williams a, Max Bergoin b, Monique M. van Oers c, a Instituto de Ecología AC, Xalapa, Veracruz 91070, Mexico b Laboratoire de Pathologie Comparée, Faculté des Sciences, Université Montpellier, Place Eugène Bataillon, 34095 Montpellier, France c Laboratory of Virology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands article info abstract Article history: In this review we provide an overview of the diversity of large DNA viruses known to be pathogenic for Received 22 June 2016 invertebrates. We present their taxonomical classification and describe the evolutionary relationships Revised 3 August 2016 among various groups of invertebrate-infecting viruses. We also indicate the relationships of the Accepted 4 August 2016 invertebrate viruses to viruses infecting mammals or other vertebrates. The shared characteristics of Available online 31 August 2016 the viruses within the various families are described, including the structure of the virus particle, genome properties, and gene expression strategies. Finally, we explain the transmission and mode of infection of Keywords: the most important viruses in these families and indicate, which orders of invertebrates are susceptible to Entomopoxvirus these pathogens. Iridovirus Ó Ascovirus 2016 Elsevier Inc. All rights reserved. Nudivirus Hytrosavirus Filamentous viruses of hymenopterans Mollusk-infecting herpesviruses 1. Introduction in the cytoplasm. This group comprises viruses in the families Poxviridae (subfamily Entomopoxvirinae) and Iridoviridae. The Invertebrate DNA viruses span several virus families, some of viruses in the family Ascoviridae are also discussed as part of which also include members that infect vertebrates, whereas other this group as their replication starts in the nucleus, which families are restricted to invertebrates.
  • The Discovery, Distribution and Diversity of DNA Viruses

    The Discovery, Distribution and Diversity of DNA Viruses

    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.16.342956; this version posted March 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: The discovery, distribution and diversity of DNA viruses associated with Drosophila melanogaster in Europe Running title: DNA viruses of European Drosophila Key Words: DNA virus, Endogenous viral element, Drosophila, Nudivirus, Galbut virus, Filamentous virus, Adintovirus, Densovirus, Bidnavirus Authors: Megan A. Wallace 1,2 [email protected] 0000-0001-5367-420X Kelsey A. Coffman 3 [email protected] 0000-0002-7609-6286 Clément Gilbert 1,4 [email protected] 0000-0002-2131-7467 Sanjana Ravindran 2 [email protected] 0000-0003-0996-0262 Gregory F. Albery 5 [email protected] 0000-0001-6260-2662 Jessica Abbott 1,6 [email protected] 0000-0002-8743-2089 Eliza Argyridou 1,7 [email protected] 0000-0002-6890-4642 Paola Bellosta 1,8,9 [email protected] 0000-0003-1913-5661 Andrea J. Betancourt 1,10 [email protected] 0000-0001-9351-1413 Hervé Colinet 1,11 [email protected] 0000-0002-8806-3107 Katarina Eric 1,12 [email protected] 0000-0002-3456-2576 Amanda Glaser-Schmitt 1,7 [email protected] 0000-0002-1322-1000 Sonja Grath 1,7 [email protected] 0000-0003-3621-736X Mihailo Jelic 1,13 [email protected] 0000-0002-1637-0933 Maaria Kankare 1,14 [email protected] 0000-0003-1541-9050 Iryna Kozeretska 1,15 [email protected] 0000-0002-6485-1408 Volker Loeschcke 1,16 [email protected] 0000-0003-1450-0754 Catherine Montchamp-Moreau 1,4 [email protected] 0000-0002-5044-9709 Lino Ometto 1,17 [email protected] 0000-0002-2679-625X Banu Sebnem Onder 1,18 [email protected] 0000-0002-3003-248X Dorcas J.
  • Molecular Evidence for the Evolution of Ichnoviruses from Ascoviruses By

    Molecular Evidence for the Evolution of Ichnoviruses from Ascoviruses By

    BMC Evolutionary Biology BioMed Central Research article Open Access Molecular evidence for the evolution of ichnoviruses from ascoviruses by symbiogenesis Yves Bigot*1,2,3, Sylvie Samain4, Corinne Augé-Gouillou1,2 and Brian A Federici5 Address: 1Université François Rabelais de Tours, GICC, UFR des Sciences & Techniques, Parc de Grandmont, 37200 Tours, FRANCE, 2CNRS, UMR 6239, UFR des Sciences & Techniques, Parc de Grandmont, 37200 Tours, France, 3CHRU de Tours, Bd Tonnelé, 37032 Tours, France, 4GENOSCOPE, 2 rue Gaston Crémieux, CP 5706, 91057 Evry, France and 5Department of Entomology & Graduate Programs in Genetics, Microbiology, and Molecular Biology, University of California, Riverside, CA92521, USA Email: Yves Bigot* - [email protected]; Sylvie Samain - [email protected]; Corinne Augé-Gouillou - [email protected]; Brian A Federici - [email protected] * Corresponding author Published: 18 September 2008 Received: 3 March 2008 Accepted: 18 September 2008 BMC Evolutionary Biology 2008, 8:253 doi:10.1186/1471-2148-8-253 This article is available from: http://www.biomedcentral.com/1471-2148/8/253 © 2008 Bigot et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Female endoparasitic ichneumonid wasps inject virus-like particles into their caterpillar hosts to suppress immunity. These particles are classified as ichnovirus virions and resemble ascovirus virions, which are also transmitted by parasitic wasps and attack caterpillars. Ascoviruses replicate DNA and produce virions.
  • Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo

    Evidence to Support Safe Return to Clinical Practice by Oral Health Professionals in Canada During the COVID-19 Pandemic: a Repo

    Evidence to support safe return to clinical practice by oral health professionals in Canada during the COVID-19 pandemic: A report prepared for the Office of the Chief Dental Officer of Canada. November 2020 update This evidence synthesis was prepared for the Office of the Chief Dental Officer, based on a comprehensive review under contract by the following: Paul Allison, Faculty of Dentistry, McGill University Raphael Freitas de Souza, Faculty of Dentistry, McGill University Lilian Aboud, Faculty of Dentistry, McGill University Martin Morris, Library, McGill University November 30th, 2020 1 Contents Page Introduction 3 Project goal and specific objectives 3 Methods used to identify and include relevant literature 4 Report structure 5 Summary of update report 5 Report results a) Which patients are at greater risk of the consequences of COVID-19 and so 7 consideration should be given to delaying elective in-person oral health care? b) What are the signs and symptoms of COVID-19 that oral health professionals 9 should screen for prior to providing in-person health care? c) What evidence exists to support patient scheduling, waiting and other non- treatment management measures for in-person oral health care? 10 d) What evidence exists to support the use of various forms of personal protective equipment (PPE) while providing in-person oral health care? 13 e) What evidence exists to support the decontamination and re-use of PPE? 15 f) What evidence exists concerning the provision of aerosol-generating 16 procedures (AGP) as part of in-person
  • DNA Viruses: the Really Big Ones (Giruses)

    DNA Viruses: the Really Big Ones (Giruses)

    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Plant Pathology Plant Pathology Department 5-2010 DNA Viruses: The Really Big Ones (Giruses) James L. Van Etten University of Nebraska-Lincoln, [email protected] Leslie C. Lane University of Nebraska-Lincoln, [email protected] David Dunigan University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/plantpathpapers Part of the Plant Pathology Commons Van Etten, James L.; Lane, Leslie C.; and Dunigan, David, "DNA Viruses: The Really Big Ones (Giruses)" (2010). Papers in Plant Pathology. 203. https://digitalcommons.unl.edu/plantpathpapers/203 This Article is brought to you for free and open access by the Plant Pathology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Plant Pathology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Annual Review of Microbiology 64 (2010), pp. 83–99; doi: 10.1146/annurev.micro.112408.134338 Copyright © 2010 by Annual Reviews. Used by permission. http://micro.annualreviews.org Published online May 12, 2010. DNA Viruses: The Really Big Ones (Giruses) James L. Van Etten,1,2 Leslie C. Lane,1 and David D. Dunigan 1,2 1. Department of Plant Pathology, University of Nebraska–Lincoln, Lincoln, Nebraska 68583 2. Nebraska Center for Virology, University of Nebraska–Lincoln, Lincoln, Nebraska 68583 Corresponding author — J. L. Van Etten, email [email protected] Abstract Viruses with genomes greater than 300 kb and up to 1200 kb are being discovered with increas- ing frequency. These large viruses (often called giruses) can encode up to 900 proteins and also many tRNAs.
  • SIANN: Strain Identification by Alignment to Near Neighbors

    SIANN: Strain Identification by Alignment to Near Neighbors

    bioRxiv preprint doi: https://doi.org/10.1101/001727; this version posted January 10, 2014. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. SIANN: Strain Identification by Alignment to Near Neighbors Samuel S. Minot, Stephen D. Turner, Krista L. Ternus, and Dana R. Kadavy January 9, 2014 Abstract Next-generation sequencing is increasingly being used to study samples composed of mixtures of organisms, such as in clinical applications where the presence of a pathogen at very low abundance may be highly important. We present an analytical method (SIANN: Strain Identification by Alignment to Near Neighbors) specifically designed to rapidly detect a set of target organisms in mixed samples that achieves a high degree of species- and strain-specificity by aligning short sequence reads to the genomes of near neighbor organisms, as well as that of the target. Empirical benchmarking alongside the current state-of-the-art methods shows an extremely high Positive Predictive Value, even at very low abundances of the target organism in a mixed sample. SIANN is available as an Illumina BaseSpace app, as well as through Signature Science, LLC. SIANN results are presented in a streamlined report designed to be comprehensible to the non-specialist user, providing a powerful tool for rapid species detection in a mixed sample. By focusing on a set of (customizable) target organisms and their near neighbors, SIANN can operate quickly and with low computational requirements while delivering highly accurate results.
  • Endogenization from Diverse Viral Ancestors Is Common and Widespread in Parasitoid Wasps

    Endogenization from Diverse Viral Ancestors Is Common and Widespread in Parasitoid Wasps

    bioRxiv preprint doi: https://doi.org/10.1101/2020.06.17.148684; this version posted June 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Endogenization from diverse viral ancestors is common and widespread in parasitoid wasps 2 Gaelen R. Burke 1*, Heather M. Hines 2, Barbara J. Sharanowski3 3 4 Affiliations: 5 1Department of Entomology, University of Georgia, Athens, GA 30606, USA 6 2Department of Biology and Department of Entomology, Pennsylvania State University, University Park, 7 PA 16802 USA 8 3Department of Biology, University of Central Florida, Orlando, FL 32816, USA 9 *Author for Correspondence: Gaelen R. Burke, Department of Entomology, University of Georgia, 10 Athens, GA, USA, [email protected] 11 12 Abstract 13 The Ichneumonoidea (Ichneumonidae and Braconidae) is an incredibly diverse superfamily of parasitoid 14 wasps that includes species that produce virus-like entities in their reproductive tracts to promote 15 successful parasitism of host insects. Research on these entities has traditionally focused upon two viral 16 genera Bracovirus (in Braconidae) and Ichnovirus (in Ichneumonidae). These viruses are produced using 17 genes known collectively as endogenous viral elements (EVEs) that represent historical, now heritable 18 viral integration events in wasp genomes. Here, new genome sequence assemblies for eleven species and 19 six publicly available genomes from the Ichneumonoidea were screened with the goal of identifying novel 20 EVEs and characterizing the breadth of species in lineages with known EVEs. Exhaustive similarity 21 searches combined with the identification of ancient core genes revealed sequences from both known and 22 novel EVEs.
  • Iridoviruses, Ascoviruses, and Ichnoviruses

    Iridoviruses, Ascoviruses, and Ichnoviruses

    Symbiotic Virus at the Evolutionary Intersection of Three Types of Large DNA Viruses; Iridoviruses, Ascoviruses, and Ichnoviruses Yves Bigot1*, Sylvaine Renault1, Jacques Nicolas2, Corinne Moundras1, Marie-Ve´ronique Demattei1, Sylvie Samain3, Dennis K. Bideshi4,5, Brian A. Federici5 1 Ge´ne´tique, Immmunothe´rapie, Chimie et Cancer, UMR CNRS 6239, Universite´ Franc¸ois Rabelais de Tours, UFR des Sciences et Techniques, Parc de Grandmont, Tours, France, 2 INRIA/IRISA, Centre de Rennes Bretagne-Atlantique, Campus de Beaulieu, Rennes, France, 3 GENOSCOPE, Evry, France, 4 Department of Natural and Mathematical Sciences, California Baptist University, Riverside, California, United States of America, 5 Department of Entomology & Graduate Programs in Genetics & Microbiology, University of California Riverside, Riverside, California, United States of America Abstract Background: The ascovirus, DpAV4a (family Ascoviridae), is a symbiotic virus that markedly increases the fitness of its vector, the parasitic ichneumonid wasp, Diadromus puchellus, by increasing survival of wasp eggs and larvae in their lepidopteran host, Acrolepiopsis assectella. Previous phylogenetic studies have indicated that DpAV4a is related to the pathogenic ascoviruses, such as the Spodoptera frugiperda ascovirus 1a (SfAV1a) and the lepidopteran iridovirus (family Iridoviridae), Chilo iridescent virus (CIV), and is also likely related to the ancestral source of certain ichnoviruses (family Polydnaviridae). Methodology/Principal Findings: To clarify the evolutionary relationships of these large double-stranded DNA viruses, we sequenced the genome of DpAV4a and undertook phylogenetic analyses of the above viruses and others, including iridoviruses pathogenic to vertebrates. The DpAV4a genome consisted of 119,343 bp and contained at least 119 open reading frames (ORFs), the analysis of which confirmed the relatedness of this virus to iridoviruses and other ascoviruses.
  • Mass Die-Off of Saiga Antelopes, Kazakhstan, 2015

    Mass Die-Off of Saiga Antelopes, Kazakhstan, 2015

    Article DOI: https://doi.org/10.3201/eid2506.180990 Mass Die-Off of Saiga Antelopes, Kazakhstan, 2015 Appendix Random Amplification–Based Sequencing Protocol A random amplification-based sequencing protocol designed to detect both RNA and DNA based pathogens was employed at Pirbright to further investigate the blood spots. For random amplification-based sequencing, total nucleic acids were extracted by excising 1cm diameter discs of the blood spot and incubating these in 200µl of RLT buffer (with 1% β- mercaptoethanol) (Qiagen) at 56°C for 15 minutes, before supernatant was decanted off and nucleic acids extracted using the RNeasy mini kit (Qiagen). All samples were processed individually to minimise cross-contamination with periods of at least 30 minutes separating the handling of subsequent samples. Extracted nucleic acid was validated for further investigations for the presence of the highly-conserved housekeeping gene (GAPDH) using an established qualitative real-time RT-PCR assay (1). Total extracted nucleic acid was also tested for the presence of notifiable transboundary ruminant viral pathogens using previously established diagnostic real-time RT-PCR assays for foot-and-mouth disease virus (2), blue-tongue virus (3), peste des petits ruminants virus (4), capripox viruses (5) and epizootic haemorrhagic disease virus (6). All 12 samples that were positive for the presence of GAPDH, suggestive of intact nucleic acid, were subjected to further investigations. Random amplification of nucleic acid of 6 GAPDH positive samples (samples 1–6) was performed using the SeqPlex kit (Sigma). Briefly, 3.3µL of extracted nucleic acid was subjected to random amplification using manufacturer’s protocols. Amplification products were run in a 1% agarose gel at 60V for 1 hour and a 300bp band was excised and purified using a Qiagen MinElute kit (Qiagen) and eluted in 10uL.
  • The Widespread Occurrence and Potential Biological Roles of Endogenous Viral Elements in Insect Genomes

    The Widespread Occurrence and Potential Biological Roles of Endogenous Viral Elements in Insect Genomes

    The Widespread Occurrence and Potential Biological Roles of Endogenous Viral Elements in Insect Genomes Carol D. Blair1, Ken E. Olson1 and Mariangela Bonizzoni2* 1Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA. 2Department of Biology and Biotechnology, University of Pavia, Pavia, Italy. *Correspondence: [email protected] htps://doi.org/10.21775/cimb.034.013 Abstract insect biology, particularly antiviral immunity, and Modern genomic sequencing and bioinformatics suggest directions for future research. approaches have detected numerous examples of DNA sequences derived from DNA and RNA virus genomes integrated into both vertebrate and insect Introduction: defnition of genomes. Retroviruses encode RNA-dependent endogenous viral elements DNA polymerases (reverse transcriptases) and and the surprising discovery of integrases that convert their RNA viral genomes those from non-retroviral RNA into DNA proviruses and facilitate proviral DNA viruses integration into the host genome. Surprisingly, Interactions between viruses and their hosts occur DNA sequences derived from RNA viruses that at many levels. Viruses evolve rapidly through do not encode these enzymes also occur in host genetic drif and/or natural selection and can genomes. Non-retroviral integrated RNA virus infuence the genetic structures of host popula- sequences (NIRVS) occur at relatively high fre- tions, especially if viral infection results in disease quency in the genomes of the arboviral vectors and mortality. A classic example of virus and host Aedes aegypti and Aedes albopictus, are not distrib- co-evolution is the natural experiment initiated uted randomly and possibly contribute to mosquito by the release of highly pathogenic myxoma virus antiviral immunity, suggesting these mosquitoes into the naive Australian wild rabbit population could serve as a model system for unravelling the in 1950, followed by rapid development of resist- function of NIRVS.
  • Cytokine Diedel and a Viral Homologue Suppress the IMD Pathway in Drosophila

    Cytokine Diedel and a Viral Homologue Suppress the IMD Pathway in Drosophila

    Cytokine Diedel and a viral homologue suppress the IMD pathway in Drosophila Olivier Lamiablea, Christine Kellenbergerb, Cordula Kempa, Laurent Troxlera, Nadège Peltec, Michael Boutrosc, Joao Trindade Marquesd, Laurent Daefflera, Jules A. Hoffmanna,e, Alain Rousselb, and Jean-Luc Imlera,e,f,1 aInstitut de Biologie Moleculaire et Cellulaire, CNRS-Unité Propre de Recherche 9022, 67084 Strasbourg, France; bArchitecture et Fonction des Macromolécules Biologiques, CNRS and Université Aix-Marseille, Unité Mixte de Recherche 7257, 13288 Marseille, France; cDepartment of Cell and Molecular Biology, Division of Signaling and Functional Genomics and University of Heidelberg, Medical Faculty Mannheim, German Cancer Research Center, 69120 Heidelberg, Germany; dDepartment of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, CEP30270-901 Belo Horizonte, Brazil; eUniversity of Strasbourg Institute for Advanced Studies, Université de Strasbourg, 67084 Strasbourg, France; and fFaculté des Sciences de la Vie, Université de Strasbourg, 67083 Strasbourg, France Edited by Alexander S. Raikhel, University of California, Riverside, CA, and approved December 11, 2015 (received for review August 13, 2015) Viruses are obligatory intracellular parasites that suffer strong acts through the p105-like transcription factor Relish (3, 5). It is evolutionary pressure from the host immune system. Rapidly evocative of the tumor necrosis factor (TNF) receptor pathway evolving viral genomes can adapt to this pressure by acquiring from vertebrates. genes that counteract host defense mechanisms. For example, Previous studies have revealed that insect susceptibility to viral many vertebrate DNA viruses have hijacked cellular genes encod- infection is determined by host factors, which either facilitate (6, ing cytokines or cytokine receptors to disrupt host cell communi- 7) or restrict viral replication (8–10).