The Perils of Taking Property Too Far

Total Page:16

File Type:pdf, Size:1020Kb

The Perils of Taking Property Too Far The Perils of Taking Property Too Far Christopher Heaney,* Julia Carbone,** Richard Gold,*** Tania Bubela,**** Christopher M. Holman,***** Alessandra Colaianni,****** Tracy Lewis,******* Robert Cook-Deegan* I. INTRODUCTION.................................................................................................................... 46 II. GENETIC DIAGNOSTIC TESTING & CANAVAN DISEASE .......................................... 49 III. GENETIC DIAGNOSTIC TESTING FOR INHERITED BREAST AND OVARIAN CANCER (“BRCA”) ............................................................................................................... 51 IV GOING PUBLIC: MEDIA ACCOUNTS OF MYRIAD GENETICS................................... 55 V. LESSONS FROM THE UNIVERSITY ................................................................................. 57 VI. BIOBANKS’ OBLIGATIONS.............................................................................................. 58 VII. INVOLVING AFFECTED CONSTITUENCIES IN DECISION-MAKING..................... 60 VIII. PARTICIPATION IN THE GENOMIC AGE.................................................................... 62 IX. CONCLUSION...................................................................................................................... 64 I. INTRODUCTION Many policies governing biobanks revolve around ownership and control of the materials and information in them. Those who manage biobanks may be tempted to seek the broadest legal rights possible over material and data. However, we suggest that even if ownership and control were clearly defined by the law and readily obtained by biobanks, how legal rights are used in practice matters as much or more than the rules for ownership. We draw lessons from cases in genetic testing where the use or assertion of legal rights led to preventable controversy and suboptimal outcomes. In the cases we describe, the attempt to acquire and exercise intellectual property rights antagonized and alienated stakeholders, who we define broadly to include the donors, patients, doctors, research institutions, health care providers, governments, * Duke Institute for Genome Sciences & Policy ** Duke University School of Law; McGill University Centre for Intellectual Property Policy *** Centre for Intellectual Property Policy; McGill Faculty of Law **** Department of Public Health Sciences, School of Public Health, University of Alberta ***** University of Missouri-Kansas City ****** The Advisory Board Co.; Duke Institute for Genome Sciences and Policy ******* Fuqua School of Business, Duke University * Duke Institute for Genome Sciences & Policy. The authors thank Timothy Caulfield (Faculty of Law & School of Public Health, Health Law Institute, University of Alberta), Subhashini Chandrasekharan (Duke Institute for Genome Sciences and Policy), and Lauren Dame (Duke Institute for Genome Sciences and Policy; Duke University School of Law) for reviewing all or portions of previous drafts and directing the authors toward references. CH, RCD, SC, and LD gratefully acknowledge the support of the National Human Genome Research Institute and the Department of Energy (CEER Grant P50 HG003391, Duke University, Center of Excellence for ELSI Research). RG gratefully acknowledges the support of the Social Sciences and Humanities Research Council. 2009 THE PERILS OF TAKING PROPERTY TOO FAR 47 and citizens with an interest in research and its outcomes.1 By analogy, even if biobanks could acquire expansive and clear property rights over materials and data, biobanks that want to maintain productive relationships with stakeholders must not lose the trust of those who contribute material or others with an interest in research. Our analogy to genetic testing is instructive for biobanks, which we define here as institutions that maintain collections of genetic material for use in research.2 Biobanks include tissue collections managed by academic institutions,3 government agencies,4 and private, nonprofit institutions5 as well as private, commercial entities.6 Some biobanks are organized as private-public partnerships.7 The lessons emerging from clinical testing of patented genes may be even more relevant for biobanks with commercial interests than for academic and nonprofit biobanks precisely because of the salience and complexity of public-private interactions.8 However, biobanks require a source for materials and data. People’s willingness to provide those materials and data depends in part on individuals’ and the public’s trust in biobanks. To build and maintain trust, researchers and research institutions must take stakeholders’ concerns into account when making important decisions.9 Biobanks would do well to consider how they will interact with those who have an interest in research and its outcomes, particularly those who provide or use tissue samples. The laws and policies governing biobanks’ physical and intellectual property holdings differ among jurisdictions, and commentators have already described what legal rights biobanks may be able to claim over materials and data.10 Potential legal claims covering genetic and genomic material include property rights over samples,11 associated patents, and other 1 For a listing of the different stakeholders in genomic research and discussion of how their interests overlap, see Morris W. Foster & Richard R. Sharp, Share and Share Alike: Deciding How to Distribute the Scientific and Social Benefits of Genomic Data, 8 NATURE REV. GENETICS 633, 634-35 (2007). 2 For a summary of how various kinds of tissue collections are defined, and the implications of different terminologies, see A. Cambon-Thomsen, E. Rial-Sebbag, & B.M. Knoppers, Trends in Ethical and Legal Frameworks for the Use of Human Biobanks, 30 EUR. RESPIRATORY J. 373, 375-76 (2007). For a summary of tissue collections in the US, see ELISA EISEMAN & SUSANNE B. HAGA, HANDBOOK OF HUMAN TISSUE SOURCES: A NATIONAL RESOURCE OF HUMAN TISSUE SAMPLES 144 (1999). For a review of biobanks in Iceland, the U.K., Sweden, and Estonia, see generally Susanne B. Haga & Laura M. Beskow, Ethical, Legal, and Social Implications of Biobanks for Genetic Research, 60 ADVANCES IN GENETICS 505 (2008) (reviewing ethical, legal, and social issues connected to tissue collections and provides background information on biobanks in Iceland, the U.K., Sweden, and Estonia as they relate to those issues). 3 See Eiseman & Haga, supra note 2, at 46-67. 4 See id. at 14-46. 5 See id. at 67-77. 6 See id. at 66-67. 7 For an example of how the UK Biobank is organized as a public-private partnership, see David E. Winickoff, Partnership in the U.K. Biobank: A Third Way for Genomic Property, 35 J. L., MED. & ETHICS 440, 441 (2007). 8 See Subhashini Chandrasekharan et al., Public-Private Interactions in Genomic Medicine: Research and Development, in GENOMIC AND PERSONALIZED MEDICINE 434, 435 (Huntington F. Willard & Geoffrey S. Ginsburg eds., 2009). See also Cambon-Thomsen, Rial-Sebbag, & Knoppers, supra note 2, at 379. 9 See Mairi Levitt & Sue Weldon, A Well Placed Trust?: Public Perceptions of the Governance of DNA Databases, 15 CRITICAL PUB. HEALTH 311, 319-20 (2005). 10 For a review of relevant case law in the United States and alternative legal arrangements relevant to many countries, see generally Jasper Bovenberg, Whose Tissue Is It Anyway?, 23 NATURE BIOTECHNOLOGY 929 (2005). 11 See JASPER A. BOVENBERG, PROPERTY RIGHTS IN BLOOD, GENES AND DATA: NATURALLY YOURS? 118-23 (2006). 48 STANFORD JOURNAL OF LAW, SCIENCE, & POLICY Vol. 1 intellectual property.12 Some rights may also attach to information in databases constructed and maintained by biobanks.13 Biobanks might also negotiate contracts with those who provide samples.14 Although we encourage biobanks to consult with stakeholders regardless of how samples and data are controlled, we focus on physical samples and associated intellectual property rights. In the United States, case law has been especially important in discussion of what rights biobanks might have. Commentators interpret Moore v. Regents of the University of California, Washington University v. Catalona, and Greenberg v. Miami Children's Hospital to mean that individuals who provide samples are less likely to retain ownership of samples than the institutions that collect them.15 In Moore, the court found that granting ownership rights to those who provided samples would hinder research but did not object when the researchers who obtained the samples used them in work that led to a granted patent.16 Additionally, in Washington University v. Catalona, the court relied in part on the informed consent documentation to hold that sample donors did not retain ownership in their tissue and that Washington University owned the samples.17 The Greenberg court similarly found that tissue donors had no title to the material they donated and that there was nothing legally objectionable per se about a researcher’s use of the samples to develop a diagnostic test and seek patents.18 If the facts were somewhat different, however, an American court might significantly depart from the reasoning in these cases to grant some property rights to those who provide tissue samples, and biobanks that ignore this possibility are vulnerable to future legal action should case law change. However, we do not focus on that (thus far) hypothetical scenario here. Regardless of how case law evolves, we suggest that biobanks should not use legal tools to avoid consulting stakeholders. Rather, legal tools should be part of ongoing consultation
Recommended publications
  • Rare Variant Contribution to Human Disease in 281,104 UK Biobank Exomes W ­ 1,19 1,19 2,19 2 2 Quanli Wang , Ryan S
    https://doi.org/10.1038/s41586-021-03855-y Accelerated Article Preview Rare variant contribution to human disease W in 281,104 UK Biobank exomes E VI Received: 3 November 2020 Quanli Wang, Ryan S. Dhindsa, Keren Carss, Andrew R. Harper, Abhishek N ag­­, I oa nn a Tachmazidou, Dimitrios Vitsios, Sri V. V. Deevi, Alex Mackay, EDaniel Muthas, Accepted: 28 July 2021 Michael Hühn, Sue Monkley, Henric O ls so n , S eb astian Wasilewski, Katherine R. Smith, Accelerated Article Preview Published Ruth March, Adam Platt, Carolina Haefliger & Slavé PetrovskiR online 10 August 2021 P Cite this article as: Wang, Q. et al. Rare variant This is a PDF fle of a peer-reviewed paper that has been accepted for publication. contribution to human disease in 281,104 UK Biobank exomes. Nature https:// Although unedited, the content has been subjectedE to preliminary formatting. Nature doi.org/10.1038/s41586-021-03855-y (2021). is providing this early version of the typeset paper as a service to our authors and Open access readers. The text and fgures will undergoL copyediting and a proof review before the paper is published in its fnal form. Please note that during the production process errors may be discovered which Ccould afect the content, and all legal disclaimers apply. TI R A D E T A R E L E C C A Nature | www.nature.com Article Rare variant contribution to human disease in 281,104 UK Biobank exomes W 1,19 1,19 2,19 2 2 https://doi.org/10.1038/s41586-021-03855-y Quanli Wang , Ryan S.
    [Show full text]
  • The ELIXIR Core Data Resources: ​Fundamental Infrastructure for The
    Supplementary Data: The ELIXIR Core Data Resources: fundamental infrastructure ​ for the life sciences The “Supporting Material” referred to within this Supplementary Data can be found in the Supporting.Material.CDR.infrastructure file, DOI: 10.5281/zenodo.2625247 (https://zenodo.org/record/2625247). ​ ​ Figure 1. Scale of the Core Data Resources Table S1. Data from which Figure 1 is derived: Year 2013 2014 2015 2016 2017 Data entries 765881651 997794559 1726529931 1853429002 2715599247 Monthly user/IP addresses 1700660 2109586 2413724 2502617 2867265 FTEs 270 292.65 295.65 289.7 311.2 Figure 1 includes data from the following Core Data Resources: ArrayExpress, BRENDA, CATH, ChEBI, ChEMBL, EGA, ENA, Ensembl, Ensembl Genomes, EuropePMC, HPA, IntAct /MINT , InterPro, PDBe, PRIDE, SILVA, STRING, UniProt ● Note that Ensembl’s compute infrastructure physically relocated in 2016, so “Users/IP address” data are not available for that year. In this case, the 2015 numbers were rolled forward to 2016. ● Note that STRING makes only minor releases in 2014 and 2016, in that the interactions are re-computed, but the number of “Data entries” remains unchanged. The major releases that change the number of “Data entries” happened in 2013 and 2015. So, for “Data entries” , the number for 2013 was rolled forward to 2014, and the number for 2015 was rolled forward to 2016. The ELIXIR Core Data Resources: fundamental infrastructure for the life sciences ​ 1 Figure 2: Usage of Core Data Resources in research The following steps were taken: 1. API calls were run on open access full text articles in Europe PMC to identify articles that ​ ​ mention Core Data Resource by name or include specific data record accession numbers.
    [Show full text]
  • Open Targets Genetics
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.16.299271; this version posted September 17, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 Open Targets Genetics: An open approach to systematically prioritize causal variants 2 and genes at all published GWAS trait-associated loci 3 4 Edward Mountjoy1,2, Ellen M. Schmidt1,2, Miguel Carmona2,3, Gareth Peat2,3, Alfredo Miranda2,3, 5 Luca Fumis2,3, James Hayhurst2,3, Annalisa Buniello2,3, Jeremy Schwartzentruber1,2,3, Mohd 6 Anisul Karim1,2, Daniel Wright1,2, Andrew Hercules2,3, Eliseo Papa4, Eric Fauman5, Jeffrey C. 7 Barrett1,2, John A. Todd6, David Ochoa2,3, Ian Dunham1,2,3, Maya Ghoussaini1,2,*. 8 9 1. Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 10 1SA, UK 11 2. Open Targets, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK 12 3. European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), 13 Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK 14 4. Systems Biology, Biogen, Cambridge, MA, 02142, United States 15 5. Integrative Biology, Internal Medicine Research Unit, Pfizer Worldwide Research, 16 Development and Medical, Cambridge, MA 02139, United States 17 6. Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford 18 Biomedical Research Centre, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, 19 UK 20 * Corresponding author 21 22 23 24 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.16.299271; this version posted September 17, 2020.
    [Show full text]
  • Select Committee on Science and Technology Corrected Oral Evidence: Ageing: Science, Technology and Healthy Living
    Select Committee on Science and Technology Corrected oral evidence: Ageing: science, technology and healthy living Tuesday 25 February 2020 10.20 am Watch the meeting Members present: Lord Patel (The Chair); Lord Borwick; Lord Browne of Ladyton; Baroness Hilton of Eggardon; Lord Kakkar; Lord Mair; Baroness Manningham-Buller; Baroness Penn; Viscount Ridley; Baroness Rock; Baroness Sheehan; Baroness Walmsley; Lord Winston; Baroness Young of Old Scone. Evidence Session No. 15 Heard in Public Questions 131 - 138 Witnesses Dame Fiona Caldicott, National Data Guardian; Matthew Gould, CEO, NHSX; Chris Roebuck, Chief Statistician, NHS Digital; Dr Jem Rashbass, Executive Director of Master Registries and Data, NHS Digital. USE OF THE TRANSCRIPT This is a corrected transcript of evidence taken in public and webcast on www.parliamentlive.tv. 1 Examination of witnesses Dame Fiona Caldicott, Matthew Gould, Chris Roebuck and Dr Jem Rashbass. Q131 The Chair: Good morning, Dame Fiona and gentlemen. Welcome and thank you for coming today to help us with this inquiry. There are some familiar faces to me; it is nice to see you. Before we start, would you mind introducing yourselves for the record from my left? If you want to make an opening statement, feel free to do so. If you have any interests to declare, please do so at the beginning. Chris Roebuck: I am the chief statistician at NHS Digital. I am accountable for the nearly 300 sets of official statistics we produce each year. These cover a range of health and care data, predominantly in England, including administrative data, clinical data and survey data. We release them to encourage transparency, to help with local and national decision-making and for public accountability.
    [Show full text]
  • Annual Scientific Report 2013 on the Cover Structure 3Fof in the Protein Data Bank, Determined by Laponogov, I
    EMBL-European Bioinformatics Institute Annual Scientific Report 2013 On the cover Structure 3fof in the Protein Data Bank, determined by Laponogov, I. et al. (2009) Structural insight into the quinolone-DNA cleavage complex of type IIA topoisomerases. Nature Structural & Molecular Biology 16, 667-669. © 2014 European Molecular Biology Laboratory This publication was produced by the External Relations team at the European Bioinformatics Institute (EMBL-EBI) A digital version of the brochure can be found at www.ebi.ac.uk/about/brochures For more information about EMBL-EBI please contact: [email protected] Contents Introduction & overview 3 Services 8 Genes, genomes and variation 8 Molecular atlas 12 Proteins and protein families 14 Molecular and cellular structures 18 Chemical biology 20 Molecular systems 22 Cross-domain tools and resources 24 Research 26 Support 32 ELIXIR 36 Facts and figures 38 Funding & resource allocation 38 Growth of core resources 40 Collaborations 42 Our staff in 2013 44 Scientific advisory committees 46 Major database collaborations 50 Publications 52 Organisation of EMBL-EBI leadership 61 2013 EMBL-EBI Annual Scientific Report 1 Foreword Welcome to EMBL-EBI’s 2013 Annual Scientific Report. Here we look back on our major achievements during the year, reflecting on the delivery of our world-class services, research, training, industry collaboration and European coordination of life-science data. The past year has been one full of exciting changes, both scientifically and organisationally. We unveiled a new website that helps users explore our resources more seamlessly, saw the publication of ground-breaking work in data storage and synthetic biology, joined the global alliance for global health, built important new relationships with our partners in industry and celebrated the launch of ELIXIR.
    [Show full text]
  • Genome-Wide Rare Variant Analysis for Thousands of Phenotypes in Over 70,000 Exomes from Two Cohorts
    ARTICLE https://doi.org/10.1038/s41467-020-14288-y OPEN Genome-wide rare variant analysis for thousands of phenotypes in over 70,000 exomes from two cohorts Elizabeth T. Cirulli 1*, Simon White 1, Robert W. Read 2,3, Gai Elhanan2,3, William J. Metcalf2,3, Francisco Tanudjaja 1, Donna M. Fath1, Efren Sandoval1, Magnus Isaksson1, Karen A. Schlauch2,3, Joseph J. Grzymski2,3, James T. Lu1 & Nicole L. Washington1 1234567890():,; Understanding the impact of rare variants is essential to understanding human health. We analyze rare (MAF < 0.1%) variants against 4264 phenotypes in 49,960 exome-sequenced individuals from the UK Biobank and 1934 phenotypes (1821 overlapping with UK Biobank) in 21,866 members of the Healthy Nevada Project (HNP) cohort who underwent Exome + sequencing at Helix. After using our rare-variant-tailored methodology to reduce test statistic inflation, we identify 64 statistically significant gene-based associations in our meta-analysis of the two cohorts and 37 for phenotypes available in only one cohort. Singletons make significant contributions to our results, and the vast majority of the associations could not have been identified with a genotyping chip. Our results are available for interactive browsing in a webapp (https://ukb.research.helix.com). This comprehensive analysis illustrates the biological value of large, deeply phenotyped cohorts of unselected populations coupled with NGS data. 1 Helix, 101S Ellsworth Ave Suite 350, San Mateo, CA 94401, USA. 2 Desert Research Institute, 2215 Raggio Pkwy, Reno, NV 89512, USA. 3 Renown Institute of Health Innovation, Reno, NV 89512, USA. *email: [email protected] NATURE COMMUNICATIONS | (2020) 11:542 | https://doi.org/10.1038/s41467-020-14288-y | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-14288-y ver the past decade, we have witnessed the growing depth HNP cohort.
    [Show full text]
  • Wellcome Trust Annual Report and Financial Statements 2019 Is © the Wellcome Trust and Is Licensed Under Creative Commons Attribution 2.0 UK
    Annual Report and Financial Statements 2019 Table of contents Report from Chair 3 Report from Director 5 Trustee’s Report 7 What we do 8 Review of Charitable Activities 9 Review of Investment Activities 21 Financial Review 31 Structure and Governance 36 Social Responsibility 40 Risk Management 42 Remuneration Report 44 Remuneration Committee Report 46 Nomination Committee Report 47 Investment Committee Report 48 Audit and Risk Committee Report 49 Independent Auditor’s Report 52 Financial Statements 61 Consolidated Statement of Financial Activities 62 Consolidated Balance Sheet 63 Statement of Financial Activities of the Trust 64 Balance Sheet of the Trust 65 Consolidated Cash Flow Statement 66 Notes to the Financial Statements 67 Alternative Performance Measures and Key Performance Indicators 114 Glossary of Terms 115 Reference and Administrative Details 116 Table of Contents Wellcome Trust Annual Report 2019 | 2 Report from Chair During my tenure at Wellcome, which ends in The macro environment is increasingly challenging, 2020, I count myself lucky to have had the which has created volatility in financial markets. opportunity to meet inspiring people from a rich Q4 2018 was a very difficult quarter, but the diversity of sectors, backgrounds, specialisms resumption of interest rate cuts by the US Federal and scientific fields. Reserve underpinned another year of gains for our portfolio. We recognise that the cycle is extended, Wellcome’s achievements belong to the people and that the portfolio is likely to face more who work here and to the people we fund – it is challenging times ahead. a partnership that continues to grow stronger, more influential and more ambitious, spurred by The team is working hard to ensure that our independence.
    [Show full text]
  • UK Biobank: a Model for Public Engagement?
    Genomics, Society and Policy 2005, Vol.1, No.3, Comment, pp.78–81. UK Biobank: a model for public engagement? MAIRI LEVITT Whilst in other applications of genetic technology the public debate has begun only when a piece of research has been completed, public consultations on biobanking began in 2000, before the funding for UK Biobank was even agreed, and have continued throughout its development. UK Biobank has obvious attractions for the British public. It is being set up specifically as a resource for research into common diseases that are relevant to everyone, rather than rare genetic disorders unknown to most. The only diseases mentioned on the ‘about UK Biobank’ web page are cancer, heart disease, diabetes and Alzheimer’s disease1. The public are encouraged to be involved by the promise of ‘a better life for our children and grandchildren’ and ‘enormous potential to result in improvements to health of the UK population’ through the National Health Service.2 Ensuring public support Despite these selling points it was recognised by the Medical Research Council (MRC) and Wellcome Trust from the start, that work would have to be done to ensure that UK Biobank would be a success3. The early consultations indicated reasons why public support could not be taken for granted. There was recognition of a problem of trust in science and science governance in the UK with the ‘BSE crisis’ and the media furore over GM food following the reporting of Pusztai’s research with rats and GM potatoes and his concerns over GM food4. The first public consultation on UK Biobank stated that genetic research had ‘a raft of unhelpful negative associations, based sometimes on misinformation and mistaken assumptions’5 In contrast ‘some people were better informed…and tended to have a more favourable view’ 6.
    [Show full text]
  • Wellcome Trust Finance Plc (Incorporated in England and Wales Under the Companies Act 1985 with Registered Number 5857955) £275,000,000 4.75 Per Cent
    Wellcome Trust Finance plc (incorporated in England and Wales under the Companies Act 1985 with registered number 5857955) £275,000,000 4.75 per cent. Guaranteed Bonds due 2021 guaranteed (as described herein) by Wellcome Trust (a charity registered under the Charities Act 1993 with registered number 210183) Issue Price 98.902 per cent The £275,000,000 4.75 per cent. Guaranteed Bonds due 2021 (the “Bonds”) will be issued by Wellcome Trust Finance plc (the “Issuer”). The payment of all amounts due in respect of the Bonds will be unconditionally and irrevocably guaranteed pursuant to the terms of a guarantee (the “Guarantee”) given by The Wellcome Trust Limited (in its capacity as trustee of the Wellcome Trust). Interest on the Bonds is payable annually in arrear on 28 May in each year. Payments on the Bonds will be made without withholding or deduction for or on account of taxes of the United Kingdom to the extent described under “Terms and Conditions of the Bonds – Taxation”. The Bonds will mature on 28 May 2021 but may be redeemed before that date at the option of the Issuer in whole but not in part at any time at a redemption price which is equal to the higher of (i) their principal amount and (ii) a price calculated by reference to the yield on the relevant United Kingdom government stock, plus 0.10 per cent., in each case, together with accrued interest. See “Terms and Conditions of the Bonds – Redemption and Purchase”. The Bonds are also subject to redemption in whole but not in part, at their principal amount, together with accrued interest, at the option of the Issuer at any time in the event of certain changes affecting taxes of the United Kingdom.
    [Show full text]
  • Alcohol Consumption in the General Population Is Associated With
    RESEARCH ARTICLE Alcohol consumption in the general population is associated with structural changes in multiple organ systems Evangelos Evangelou1,2, Hideaki Suzuki3,4,5†, Wenjia Bai5,6†, Raha Pazoki7,8, He Gao1,7, Paul M Matthews5,9,10, Paul Elliott1,7,9,10,11* 1Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom; 2Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece; 3Department of Cardiovascular Medicine, Tohoku University Hospital, Sendai, Japan; 4Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; 5Department of Brain Sciences, Imperial College London, London, United Kingdom; 6Data Science Institute, Imperial College London, London, United Kingdom; 7MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom; 8Division of Biomedical Sciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London, United Kingdom; 9UK Dementia Research Institute at Imperial College London, London, United Kingdom; 10National Institute for Health Research Imperial College Biomedical Research Centre, Imperial College London, London, United Kingdom; 11British Heart Foundation Centre for Research Excellence, Imperial College London, London, United Kingdom Abstract *For correspondence: Background: Excessive alcohol consumption is associated with damage to various organs, but its [email protected] multi-organ effects have not been characterised across the usual range of alcohol drinking in a †These authors contributed large general population sample. equally to this work Methods: We assessed global effect sizes of alcohol consumption on quantitative magnetic resonance imaging phenotypic measures of the brain, heart, aorta, and liver of UK Biobank Competing interest: See participants who reported drinking alcohol.
    [Show full text]
  • Germline Burden of Rare Damaging Variants Negatively Affects Human
    RESEARCH ARTICLE Germline burden of rare damaging variants negatively affects human healthspan and lifespan Anastasia V Shindyapina1†, Aleksandr A Zenin2,3†, Andrei E Tarkhov2,4, Didac Santesmasses1, Peter O Fedichev2,5‡*, Vadim N Gladyshev1‡* 1Brigham and Women’s Hospital, Harvard Medical School, Boston, United States; 2Gero LLC, Moscow, Russian Federation; 3The Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation; 4Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russian Federation; 5Moscow Institute of Physics and Technology, Moscow, Russian Federation Abstract Heritability of human lifespan is 23–33% as evident from twin studies. Genome-wide association studies explored this question by linking particular alleles to lifespan traits. However, genetic variants identified so far can explain only a small fraction of lifespan heritability in humans. Here, we report that the burden of rarest protein-truncating variants (PTVs) in two large cohorts is negatively associated with human healthspan and lifespan, accounting for 0.4 and 1.3 years of their variability, respectively. In addition, longer-living individuals possess both fewer rarest PTVs and less damaging PTVs. We further estimated that somatic accumulation of PTVs accounts for only a small fraction of mortality and morbidity acceleration and hence is unlikely to be causal in aging. *For correspondence: We conclude that rare damaging mutations, both inherited and accumulated throughout life, [email protected]
    [Show full text]
  • Genetic Architecture of 11 Organ Traits Derived from Abdominal MRI Using
    RESEARCH ARTICLE Genetic architecture of 11 organ traits derived from abdominal MRI using deep learning Yi Liu1, Nicolas Basty2, Brandon Whitcher2, Jimmy D Bell2, Elena P Sorokin1, Nick van Bruggen1, E Louise Thomas2†*, Madeleine Cule1†* 1Calico Life Sciences LLC, South San Francisco, United States; 2Research Centre for Optimal Health, School of Life Sciences, University of Westminster, London, United Kingdom Abstract Cardiometabolic diseases are an increasing global health burden. While socioeconomic, environmental, behavioural, and genetic risk factors have been identified, a better understanding of the underlying mechanisms is required to develop more effective interventions. Magnetic resonance imaging (MRI) has been used to assess organ health, but biobank-scale studies are still in their infancy. Using over 38,000 abdominal MRI scans in the UK Biobank, we used deep learning to quantify volume, fat, and iron in seven organs and tissues, and demonstrate that imaging-derived phenotypes reflect health status. We show that these traits have a substantial heritable component (8–44%) and identify 93 independent genome-wide significant associations, including four associations with liver traits that have not previously been reported. Our work demonstrates the tractability of deep learning to systematically quantify health parameters from high-throughput MRI across a range of organs and tissues, and use the largest-ever study of its kind to generate new insights into the genetic architecture of these traits. *For correspondence: [email protected] (ELT); [email protected] (MC) Introduction †These authors contributed MRI is often regarded as the gold standard for the measurement of body composition in clinical equally to this work research, with measurements of visceral adipose tissue (VAT), liver, and pancreatic fat content having an enormous impact on our understanding of conditions such as type-2 diabetes (T2D) and nonalco- Competing interest: See holic fatty liver disease (NAFLD) (Thomas et al., 2013).
    [Show full text]