Parasteatoda Tepidariorum

Total Page:16

File Type:pdf, Size:1020Kb

Parasteatoda Tepidariorum Parasteatoda tepidario rum Regno: Animalia Phylum: Arthropoda Classe: Arachnida Ordine : Araneae Famiglia: Theridiidae Genere: Parasteatoda Specie: Parasteatoda tepidariorum Distinzione fra sessi e caratteristiche del corpo MASCHIO - Corpo lungo 3,5 - 4 mm. - Opistoma di colore marrone grigio giallo con macchie scure irregolari. - Zampe di color rossastro con anelli di colore nero chiaro . - Cef alotorace di colore rosso scuro. FEMMINA - Corpo lungo 4,5 - 7mm. - Opistoma di colore marrone grigio giallo con macchie scure irregolari. - Zampe di color grigio e marrone chiaro con anelli di colore nero scuro. - Cefalotorace di colore giallastro marrone negli. OVISACCHI - Grossi dai 6 ai 9 mm. - Forma di pera. - Colore grigio marroncino. - Contiene al suo interno massimo 500 uova ( Non tutte fecondate). PICCOLI - Grossi pochi mm. - Colore giallastro marroncino. Diffusione Questo ragno fu scoperto e descritto in Europa anche se si ipotizza che questa specie sia originaria del Sud e Centro America poiché , lì , ci sono molti loro parenti e perché i primi continenti a essere stati “colonizzati” da questi ragni sono le Americhe ; anche se ormai oggi questa specie vive in quasi tutto il globo. Oggi uno dei continenti con più esemplari di questa specie è l’Europa. Questa specie ama i climi caldi e quindi la si può trovare spesso in serre o nelle case. Ed è per questo motivo che il l oro nome internazionale è divenuto “Common house spider” tradotto ragno comune di casa. Anche se parente della vedova nera, non presenta un veleno mortale per l’uomo, ed è forse per questo motivo che la specie è riuscita a diffondersi in tanti territori t ra loro diversi . Sinonimia Questa specie fu conosciuta per molti anni con il nome di Theridion tepidariorum( questo nome gli fu dato da Koch nel 1841). Archer , tra il 1947 e 1950 scoprì un nuovo genere chiamato Parasteatoda, nel 1955 Levi però decise di cambiare il nome del genere in Achaearanea. Ma nel 2006 il nome Parasteatoda fu “riportato alla luce” da Saaristo Robert Koch : medic o, batteriologo e microbiologo tedesco Michael Archer : paleontologo australiano specializzato nei vertebrati . Primo Levi : scrittore e chimico italiano Comportamento Questa specie di ragno è solita fare ragnatele a foglio( la grandezza dipende dallo spazio in cui il ragno solitamente vive); su queste ragnatele il ragno fa calare dei fili, che all’estremità inferiore sono “collosi”, questi sono le armi da cattura usati dal ragno. Gli ovisacchi sono spesso fissati alla tela. Non sono ragni aggressivi e tendono a mordere solo se li si tiene malamente in mano( come stringerli fra le dita o cercare schiacciarli).Se tenuti in mano l’ unica cosa che fanno è cercare di scappare. Il loro veleno è quasi insignificante per gli esseri umani, l’unico problema che potrebbe dare il veleno, molto raramente, è u n prurito nella parte colpita. A volt e nella stessa tela vivono più ragni , qualche volta, anche una coppia. I maschi non sfidano quasi mai le femmine adulte, date le dimensioni delle seconde, appena citate. .
Recommended publications
  • Redescription and Generic Placement of the Spider Cryptachaea
    Zootaxa 3507: 38–56 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:8EDE33EB-3C43-4DFA-A1F4-5CC86DED76C8 Redescription and generic placement of the spider Cryptachaea gigantipes (Keyserling, 1890) (Araneae: Theridiidae) and notes on related synanthropic species in Australasia HELEN M. SMITH1,5, COR J. VINK2,3, BRIAN M. FITZGERALD4 & PHIL J. SIRVID4 1 Australian Museum, 6 College St, Sydney, New South Wales 2010, Australia. E-mail: [email protected] 2 Biosecurity & Biocontrol, AgResearch, Private Bag 4749, Christchurch 8140, New Zealand. E-mail: [email protected] 3 Entomology Research Museum, PO Box 84, Lincoln University, Lincoln 7647, New Zealand. 4 Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington 6140, New Zealand. E-mail: [email protected], [email protected] 5 Corresponding author Abstract Cryptachaea gigantipes (Keyserling, 1890) n. comb. is redescribed from fresh material, the female is described for the first time and notes on biology are given. Cryptachaea gigantipes has been recorded from natural habitats in south-eastern Australia, but is also commonly encountered around houses and other built structures, there and in the North Island of New Zealand. The earliest New Zealand records are from the year 2000 and it would appear that the species has been accidentally introduced due to its synanthropic tendencies. The idea of a recent and limited initial introduction is supported by cytochrome c oxidase subunit 1 (COI) sequences, which are extremely homogeneous from New Zealand specimens compared to those from Australia.
    [Show full text]
  • Molecular Insights Into the Phylogenetic Structure of the Spider
    MolecularBlackwell Publishing Ltd insights into the phylogenetic structure of the spider genus Theridion (Araneae, Theridiidae) and the origin of the Hawaiian Theridion-like fauna MIQUEL A. ARNEDO, INGI AGNARSSON & ROSEMARY G. GILLESPIE Accepted: 9 March 2007 Arnedo, M. A., Agnarsson, I. & Gillespie, R. G. (2007). Molecular insights into the phylo- doi:10.1111/j.1463-6409.2007.00280.x genetic structure of the spider genus Theridion (Araneae, Theridiidae) and the origin of the Hawaiian Theridion-like fauna. — Zoologica Scripta, 36, 337–352. The Hawaiian happy face spider (Theridion grallator Simon, 1900), named for a remarkable abdominal colour pattern resembling a smiling face, has served as a model organism for under- standing the generation of genetic diversity. Theridion grallator is one of 11 endemic Hawaiian species of the genus reported to date. Asserting the origin of island endemics informs on the evolutionary context of diversification, and how diversity has arisen on the islands. Studies on the genus Theridion in Hawaii, as elsewhere, have long been hampered by its large size (> 600 species) and poor definition. Here we report results of phylogenetic analyses based on DNA sequences of five genes conducted on five diverse species of Hawaiian Theridion, along with the most intensive sampling of Theridiinae analysed to date. Results indicate that the Hawai- ian Islands were colonised by two independent Theridiinae lineages, one of which originated in the Americas. Both lineages have undergone local diversification in the archipelago and have convergently evolved similar bizarre morphs. Our findings confirm para- or polyphyletic status of the largest Theridiinae genera: Theridion, Achaearanea and Chrysso.
    [Show full text]
  • Howard Associate Professor of Natural History and Curator Of
    INGI AGNARSSON PH.D. Howard Associate Professor of Natural History and Curator of Invertebrates, Department of Biology, University of Vermont, 109 Carrigan Drive, Burlington, VT 05405-0086 E-mail: [email protected]; Web: http://theridiidae.com/ and http://www.islandbiogeography.org/; Phone: (+1) 802-656-0460 CURRICULUM VITAE SUMMARY PhD: 2004. #Pubs: 138. G-Scholar-H: 42; i10: 103; citations: 6173. New species: 74. Grants: >$2,500,000. PERSONAL Born: Reykjavík, Iceland, 11 January 1971 Citizenship: Icelandic Languages: (speak/read) – Icelandic, English, Spanish; (read) – Danish; (basic) – German PREPARATION University of Akron, Akron, 2007-2008, Postdoctoral researcher. University of British Columbia, Vancouver, 2005-2007, Postdoctoral researcher. George Washington University, Washington DC, 1998-2004, Ph.D. The University of Iceland, Reykjavík, 1992-1995, B.Sc. PROFESSIONAL AFFILIATIONS University of Vermont, Burlington. 2016-present, Associate Professor. University of Vermont, Burlington, 2012-2016, Assistant Professor. University of Puerto Rico, Rio Piedras, 2008-2012, Assistant Professor. National Museum of Natural History, Smithsonian Institution, Washington DC, 2004-2007, 2010- present. Research Associate. Hubei University, Wuhan, China. Adjunct Professor. 2016-present. Icelandic Institute of Natural History, Reykjavík, 1995-1998. Researcher (Icelandic invertebrates). Institute of Biology, University of Iceland, Reykjavík, 1993-1994. Research Assistant (rocky shore ecology). GRANTS Institute of Museum and Library Services (MA-30-19-0642-19), 2019-2021, co-PI ($222,010). Museums for America Award for infrastructure and staff salaries. National Geographic Society (WW-203R-17), 2017-2020, PI ($30,000). Caribbean Caves as biodiversity drivers and natural units for conservation. National Science Foundation (IOS-1656460), 2017-2021: one of four PIs (total award $903,385 thereof $128,259 to UVM).
    [Show full text]
  • A Protocol for Online Documentation of Spider Biodiversity Inventories Applied to a Mexican Tropical Wet Forest (Araneae, Araneomorphae)
    Zootaxa 4722 (3): 241–269 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2020 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4722.3.2 http://zoobank.org/urn:lsid:zoobank.org:pub:6AC6E70B-6E6A-4D46-9C8A-2260B929E471 A protocol for online documentation of spider biodiversity inventories applied to a Mexican tropical wet forest (Araneae, Araneomorphae) FERNANDO ÁLVAREZ-PADILLA1, 2, M. ANTONIO GALÁN-SÁNCHEZ1 & F. JAVIER SALGUEIRO- SEPÚLVEDA1 1Laboratorio de Aracnología, Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Colonia Copilco el Bajo. C. P. 04510. Del. Coyoacán, Ciudad de México, México. E-mail: [email protected] 2Corresponding author Abstract Spider community inventories have relatively well-established standardized collecting protocols. Such protocols set rules for the orderly acquisition of samples to estimate community parameters and to establish comparisons between areas. These methods have been tested worldwide, providing useful data for inventory planning and optimal sampling allocation efforts. The taxonomic counterpart of biodiversity inventories has received considerably less attention. Species lists and their relative abundances are the only link between the community parameters resulting from a biotic inventory and the biology of the species that live there. However, this connection is lost or speculative at best for species only partially identified (e. g., to genus but not to species). This link is particularly important for diverse tropical regions were many taxa are undescribed or little known such as spiders. One approach to this problem has been the development of biodiversity inventory websites that document the morphology of the species with digital images organized as standard views.
    [Show full text]
  • A Summary List of Fossil Spiders
    A summary list of fossil spiders compiled by Jason A. Dunlop (Berlin), David Penney (Manchester) & Denise Jekel (Berlin) Suggested citation: Dunlop, J. A., Penney, D. & Jekel, D. 2010. A summary list of fossil spiders. In Platnick, N. I. (ed.) The world spider catalog, version 10.5. American Museum of Natural History, online at http://research.amnh.org/entomology/spiders/catalog/index.html Last udated: 10.12.2009 INTRODUCTION Fossil spiders have not been fully cataloged since Bonnet’s Bibliographia Araneorum and are not included in the current Catalog. Since Bonnet’s time there has been considerable progress in our understanding of the spider fossil record and numerous new taxa have been described. As part of a larger project to catalog the diversity of fossil arachnids and their relatives, our aim here is to offer a summary list of the known fossil spiders in their current systematic position; as a first step towards the eventual goal of combining fossil and Recent data within a single arachnological resource. To integrate our data as smoothly as possible with standards used for living spiders, our list follows the names and sequence of families adopted in the Catalog. For this reason some of the family groupings proposed in Wunderlich’s (2004, 2008) monographs of amber and copal spiders are not reflected here, and we encourage the reader to consult these studies for details and alternative opinions. Extinct families have been inserted in the position which we hope best reflects their probable affinities. Genus and species names were compiled from established lists and cross-referenced against the primary literature.
    [Show full text]
  • Araneae, Theridiidae)
    Phelsuma 14; 49-89 Theridiid or cobweb spiders of the granitic Seychelles islands (Araneae, Theridiidae) MICHAEL I. SAARISTO Zoological Museum, Centre for Biodiversity University of Turku,FIN-20014 Turku FINLAND [micsaa@utu.fi ] Abstract. - This paper describes 8 new genera, namely Argyrodella (type species Argyrodes pusillus Saaristo, 1978), Bardala (type species Achearanea labarda Roberts, 1982), Nanume (type species Theridion naneum Roberts, 1983), Robertia (type species Theridion braueri (Simon, 1898), Selimus (type species Theridion placens Blackwall, 1877), Sesato (type species Sesato setosa n. sp.), Spinembolia (type species Theridion clabnum Roberts, 1978), and Stoda (type species Theridion libudum Roberts, 1978) and one new species (Sesato setosa n. sp.). The following new combinations are also presented: Phycosoma spundana (Roberts, 1978) n. comb., Argyrodella pusillus (Saaristo, 1978) n. comb., Rhomphaea recurvatus (Saaristo, 1978) n. comb., Rhomphaea barycephalus (Roberts, 1983) n. comb., Bardala labarda (Roberts, 1982) n. comb., Moneta coercervus (Roberts, 1978) n. comb., Nanume naneum (Roberts, 1983) n. comb., Parasteatoda mundula (L. Koch, 1872) n. comb., Robertia braueri (Simon, 1898). n. comb., Selimus placens (Blackwall, 1877) n. comb., Sesato setosa n. gen, n. sp., Spinembolia clabnum (Roberts, 1978) n. comb., and Stoda libudum (Roberts, 1978) n. comb.. Also the opposite sex of four species are described for the fi rst time, namely females of Phycosoma spundana (Roberts, 1978) and P. menustya (Roberts, 1983) and males of Spinembolia clabnum (Roberts, 1978) and Stoda libudum (Roberts, 1978). Finally the morphology and terminology of the male and female secondary genital organs are discussed. Key words. - copulatory organs, morphology, Seychelles, spiders, Theridiidae. INTRODUCTION Theridiids or comb-footed spiders are very variable in general apperance often with considerable sexual dimorphism.
    [Show full text]
  • Article ISSN 1175-5334 (Online Edition) Urn:Lsid:Zoobank.Org:Pub:8EDE33EB-3C43-4DFA-A1F4-5CC86DED76C8
    Zootaxa 3507: 38–56 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:8EDE33EB-3C43-4DFA-A1F4-5CC86DED76C8 Redescription and generic placement of the spider Cryptachaea gigantipes (Keyserling, 1890) (Araneae: Theridiidae) and notes on related synanthropic species in Australasia HELEN M. SMITH1,5, COR J. VINK2,3, BRIAN M. FITZGERALD4 & PHIL J. SIRVID4 1 Australian Museum, 6 College St, Sydney, New South Wales 2010, Australia. E-mail: [email protected] 2 Biosecurity & Biocontrol, AgResearch, Private Bag 4749, Christchurch 8140, New Zealand. E-mail: [email protected] 3 Entomology Research Museum, PO Box 84, Lincoln University, Lincoln 7647, New Zealand. 4 Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington 6140, New Zealand. E-mail: [email protected], [email protected] 5 Corresponding author Abstract Cryptachaea gigantipes (Keyserling, 1890) n. comb. is redescribed from fresh material, the female is described for the first time and notes on biology are given. Cryptachaea gigantipes has been recorded from natural habitats in south-eastern Australia, but is also commonly encountered around houses and other built structures, there and in the North Island of New Zealand. The earliest New Zealand records are from the year 2000 and it would appear that the species has been accidentally introduced due to its synanthropic tendencies. The idea of a recent and limited initial introduction is supported by cytochrome c oxidase subunit 1 (COI) sequences, which are extremely homogeneous from New Zealand specimens compared to those from Australia.
    [Show full text]
  • Spiders (Araneae) from the Panský Diel (Starohorské Vrchy Mts, Slovakia)
    Arachnol. Mitt. 36: 9-20 Nürnberg, Dezember 2008 Spiders (Araneae) from the Panský diel (Starohorské vrchy Mts, Slovakia) Valerián Franc & Stanislav Korenko Abstract: Spiders were collected at the massif 'Panský diel' near the city of Banská Bystrica (Central Slovakia). We recorded 252 spider species for the territory and one new species for Slovakia. Although the summit reaches an altitude of 1.100 m a.s.l., more or less thermophilous species apparently prevail here, especially at lower moderate sites. On the other hand, only several typical oreophilous species were documented. Many recorded species are scarce or even very rare. This indicates the very high value of this territory from both a genetic and an environmental perspective. Key words: biomonitoring, faunistics, new record, NATURA 2000, Starohorské vrchy Mts Banská Bystrica is a regional capital situated direct- 2003–2005. We applied several collecting methods, ly in the centre of Slovakia among mountainous especially sifting detritus, sweeping the spiders terrain. Detailed research on spiders of this region from vegetation and hand-collecting under stones, was carried out by Svatoň in the 1970s, especially etc. Material was identified according to MILLER on the Urpín hill situated adjacent to the suburban (1971), HEIMER & NENTWIG (1991), ROBERTS area (SVATOŇ 1985). The author mentioned many (1995) and LOKSA (1969, 1972). The difficult genus rare, largely thermophilous spider species, including Dysdera was identified according to ŘEZÁČ et al. several new records for the Slovakian fauna. The (2007) and the genus Eresus according to ŘEZÁČ et spider fauna of the rest of this territory including al. (2008). The genus Sibianor was identified accor- the Panský diel Mt is, however, almost unknown.
    [Show full text]
  • Spider Community Composition and Structure in a Shrub-Steppe Ecosystem: the Effects of Prey Availability and Shrub Architecture
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2012 Spider Community Composition and Structure In A Shrub-Steppe Ecosystem: The Effects of Prey Availability and Shrub Architecture Lori R. Spears Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Philosophy Commons Recommended Citation Spears, Lori R., "Spider Community Composition and Structure In A Shrub-Steppe Ecosystem: The Effects of Prey Availability and Shrub Architecture" (2012). All Graduate Theses and Dissertations. 1207. https://digitalcommons.usu.edu/etd/1207 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. SPIDER COMMUNITY COMPOSITION AND STRUCTURE IN A SHRUB-STEPPE ECOSYSTEM: THE EFFECTS OF PREY AVAILABILITY AND SHRUB ARCHITECTURE by Lori R. Spears A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Ecology Approved: ___________________________ ___________________________ James A. MacMahon Edward W. Evans Major Professor Committee Member ___________________________ ___________________________ S.K. Morgan Ernest Ethan P. White Committee Member Committee Member ___________________________ ___________________________ Eugene W. Schupp Mark R. McLellan Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2012 ii Copyright © Lori R. Spears 2012 All Rights Reserved iii ABSTRACT Spider Community Composition and Structure in a Shrub-Steppe Ecosystem: The Effects of Prey Availability and Shrub Architecture by Lori R.
    [Show full text]
  • Palaeo-And Archaeostomatopods (Hoplocarida, Crustacea) from The
    Contributions to Zoology, 67 (3) 155-185 (1998) SPB Academic Publishing bv, The Hague Palaeo- and archaeostomatopods (Hoplocarida, Crustacea) from the Bear Gulch Limestone, Mississippian (Namurian), of central Montana Ronald+A. Jenner, Cees+H.J. Hof& Frederick+R. Schram Institute for Systematics and Population Biology, University of Amsterdam, P.O. Box 94766. 1090 GT Amsterdam, The Netherlands Keywords: Malacostraca, Hoplocarida, Stomatopoda, phylogeny, Bear Gulch Abstract 1983). This fauna in fact has yielded the largest and most diverse collection of Carboniferous ver- The palaeostomatopod crustacean Bairdops beargulchensis tebrates in the world. Prominent among the Bear Schram & Horner, 1978 (Malacostraca, Hoplocarida) from the Gulch invertebrates are some ten species of mala- Mississippian Bear Gulch Limestoneis now seenas a taxonom- costracan crustaceans, five ofwhich are Hoplocar- ic composite that arose from the confusionof specimens of two ida. The of the fauna consists of extensive distinct rest an hoplocarid species. These species are herein described of as the palaeostomatopod Bairdops beargulchensis Schram & array fish, conodonts, molluscs (cephalopods, and Horner, 1978 and a new species ofarchaeostomatopod, Tyran- gastropods bivalves), brachiopods, annelids, xi- nophontes acanthocercus. Tyrannophontes acanthocercus is phosurans, sponges and various unidentified, enig- quite distinct from the Pennsylvanian archaeostomatopod T. & matic groups (e.g., see Melton, 1969; Schram theridion from the Essex fauna (Mazon Creek), with which it Factor & is sim- Horner, 1978; Feldmann, 1985; Conway was originally compared. Bairdops beargulchensis very ilar to the Mississippian palaeostomatopod, B. elegans, from Morris, 1990). the fauna. A The Bear Gulch Limestone beds the Scottish Glencartholm previously proposed syn- are part of of with is therefore re- onymy B.
    [Show full text]
  • Population Structure in the Spider Achaearanea Tepidariorum (Araneae, Theridri- Dae)
    Valerio, C . E. 1977 . Population structure in the spider Achaearanea tepidariorum (Araneae, Theridri- dae) . J. Arachnol . 3 :185-190 . POPULATION STRUCTURE IN THE SPIDER ACHAEARANEA TEPIDARIORUM (ARANEAE, THERIDIIDAE) 1 Carlos E. Valerio Escuela de Biologia Universidad de Costa Rica ABSTRAC T Two distinct types of population structure are present in the spider Achaearanea tepidariorum , each with totally different dynamics and behavior. The floating population or dispersion stage is composed entirely of second instar spiderlings , representing about 99 per cent of the total produced by the species . This population is characterized by a very diverse genetic composition and a high mortality . Several different strategies are observed in spiders in general to reduce mortality in the second instar . The established population is composed of individuals with snaring webs and sedentary habits, an d begins as an immature population after the invasion of an available habitat by the second instar . During this phase, its numbers increase first at the maximum intrinsic rate until the maximum habitat capacity has been reached . In a mature population more than 65 per cent of the biomass is contrib- uted by the adult individuals. INTRODUCTION Although spiders are among the most diversified groups of animals and many specie s are locally very abundant, a review of the literature shows little work done on thei r population biology (Turnbull, 1973) . Two distinct types of population structures are present in many spider species, eac h with different characteristics regarding dynamics and behavior : the floating population and the established population . The characteristic aeronautic behavior (ballooning) is the means of dispersion in mos t spider species.
    [Show full text]
  • Spider Fauna of Meghalaya, India
    Available online at www.worldscientificnews.com WSN 71 (2017) 78-104 EISSN 2392-2192 Spider Fauna of Meghalaya, India Tapan Kumar Roy1,a, Sumana Saha2,b and Dinendra Raychaudhuri1,c 1Department of Agricultural Biotechnology, IRDM Faculty Centre, Ramakrishna Mission Vivekananda University, Narendrapur, Kolkata - 700103, India 2Post Graduate Department of Zoology, Barasat Govt. College, Barasat, Kolkata – 700124, India a,b,cE-mails: [email protected] , [email protected] , [email protected] ABSTRACT The present study is on the spider fauna of Nongkhylem Wildlife Sanctuary (NWS), Sohra (Cherrapunji) [included within East Khasi Hill District], Umsning (Ri Bhoi District) and their surrounding tea estates (Anderson Tea Estate, Byrnihat Tea Estate and Meg Tea Estate) of Meghalaya, India. A total of 55 species belonging to 36 genera and 13 families are sampled. Newly recorded taxa include four genera and 11 species of Araneidae, six genera of Araneidae, each represented by single species. The species recorded under Tylorida Simon and Tetragnatha Latreille of Tetragnathidae and Camaricus Thorell and Thomisus Walckenaer of Thomisidae are found to be new from the state. Also, three oxyopids and one miagrammopid are new. So far, Linyphiidae, Pisauridae, Sparassidae and Theridiidae were unknown from the state. Out of 55 species, 13 are endemic to India and thus exhibiting a high endemicity (23.6%). A family key of the State Fauna is provided along with relevant images of the newly recorded species. Keywords: Spiders, New Records, Endemicity, Nongkhylem Wildlife Sanctuary, Sohra; Umsning, Tea Ecosystem, Meghalaya, Tylorida, Tetragnatha, Tetragnathidae, Camaricus, Thomisus, Thomisidae, Linyphiidae, Pisauridae, Sparassidae, Theridiidae, Araneidae ( Received 05 April 2017; Accepted 01 May 2017; Date of Publication 03 May 2017 ) World Scientific News 71 (2017) 78-104 1.
    [Show full text]