Aspects of Oligonucleotide Synthesis, Enzymatic Assembly, Sequence Verification and Error Correction
Total Page:16
File Type:pdf, Size:1020Kb
Молекулярная и клеточная биология Вавиловский журнал генетики и селекции. 2018;22(5):498506 ОБЗОР / REVIEW DOI 10.18699/VJ18.387 Modern approaches to artificial gene synthesis: aspects of oligonucleotide synthesis, enzymatic assembly, sequence verification and error correction G.Y. Shevelev1, 2 , D.V. Pyshnyi1, 2 1 Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia 2 Novosibirsk State University, Novosibirsk, Russia Synthetic biology is a rapidly developing field aimed at Современные подходы engineering of biological systems with predictable properties. к синтезу генов: аспекты Synthetic biology accumulates the achievements of modern biological sciences, programming and computational model синтеза олигонуклеотидов, ing as well as engineering technologies for creation of biologi ферментативной сборки, cal objects with userdefined properties. Evolution of synthetic проверки последовательностей biology has been marked by a number of technological de velopments in each of the mentioned fields. Thus, significant и коррекции ошибок reduction in cost of DNA sequencing has provided an easy access to large amounts of data on the genetic sequences Г.Ю. Шевелев1, 2 , Д.В. Пышный1, 2 of various organisms, and decreased the price of the DNA sequence synthesis, which, analogous to Moore’s law, resulted 1 Институт химической биологии и фундаментальной медицины in an opportunity to create a lot of potential genes without the Сибирского отделения Российской академии наук, Новосибирск, time – consuming and labor – intensive traditional methods Россия 2 Новосибирский государственный университет, Новосибирск, Россия of molecular biology. Development of system biology has allowed forming a deeper understanding of the functions and relationship of natural biological models, as well as of the Синтетическая биология – быстро развивающаяся отрасль computational models describing processes at the cell and науки, нацеленная на создание биологических систем с system levels. Combination of these factors has created an op предсказанными свойствами. При этом она использует portunity for conscious changes of natural biological systems. достижения современной биологии, программирования In this review the modern approaches to oligonucleotide gene и компьютерного моделирования, а также инженерной assembly synthesis are discussed, including such aspects as отрасли для создания биологических объектов, обладаю protocols for gene assembly, sequence verification, error cor щих набором заранее заданных пользовательских свойств. rection and further applications of synthesized genes. Развитие синтетической биологии было обусловлено мно Key words: oligonucleotide synthesis; artificial gene synthesis; жеством технологических разработок в каждой из упомя enzymatic gene assembly; polymerase cycling assembly (PCA); нутых отраслей. Так, значительное снижение стоимости ligase cycling assembly (LCA); error correction; sequence технологии секвенирования ДНК привело к наработке verification. больших объемов данных о генетических последователь ностях различных организмов. Снижение стоимости син теза последовательностей ДНК в соответствии с законом Мура позволило создавать библиотеки синтетических генов, представляющие потенциальный интерес в работе генных инженеров без необходимости использования традиционных и трудоемких методов молекулярной био логии. Благодаря развитию системной биологии сфор мировано глубокое понимание взаимосвязей и функций природных биологических моделей, а также построены прогностические модели, описывающие молекулярные процессы на клеточном и системном уровнях. Комбина ция вышеперечисленных факторов создала возможность осознанного изменения природных биологических систем. В данном обзоре обсуждается современное состояние подходов к синтезу олигонуклеотидов для последующей HOW TO CITE THIS ARTICLE: сборки генных конструкций и к ферментативной сборке Shevelev G.Y., Pyshnyi D.V. Modern approaches to artificial gene synthesis: aspects of oligonucleotide synthesis, enzymatic assembly, генов. Освещены аспекты использования различного sequence verification and error correction. Vavilovskii Zhurnal Genetiki программного обеспечения для подбора олигонуклеоти i Selektsii = Vavilov Journal of Genetics and Breeding. 2018;22(5):498 дов для последующей сборки генов, проверки точности 506. DOI 10.18699/VJ18.387 синтезированной последовательности генов, а также ис правления ошибок. Ключевые слова: синтез олигонуклеотидов; синтез искус УДК 577.2.08 ственных генов; ферментативная сборка генов; полиме Поступила в редакцию 02.05.2018 Принята к публикации 09.06.2018 разная циклическая сборка; лигазная циклическая сборка; © АВТОРЫ, 2018 коррекция ошибок; проверка последовательности. email: [email protected] ince a first gene was synthesized from scratch in the factor for overcoming barrier over 100 nt during oligonucle- 70’s (Agarwal et al., 1970) and it’s in vivo activity was otide synthesis is stochastic depurination side reactions which Stested (Ryan et al., 1979) around 50 years has passed, accompany acid deprotection step (Hall et al., 2009). Vendors and the technology of artificial gene synthesis has made a such as Integrated DNA Technologies (IDT), however, declare significant leap beyond the approaches implemented in the possibility to synthesize high quality oligonucleotides up to classical works. Nowdays, it relies on the modern methods of 200 nt using a special support and synthetic protocol for low- oligonucleotide synthesis, the variants of Polymerase Chain yield and long-oligonucleotide synthesis. Reaction (PCR) (Saiki et al., 1985; Mullis et al., 1986) with As an alternative to chemical oligonucleotide synthesis, high fidelity DNA polymerases (Böhlke et al., 2000), and T4 RNA ligase-mediated solid-phase enzymatic oligonucle- the sequence verification step using the Sanger sequencing otide synthesis approach was proposed (Schmitz, Reetz, (Sanger, Coulson, 1975; Smith et al., 1986) or high-throughput 1999). The approach is based on coupling reaction between DNA sequencing (Church, 2006; Hall, 2007; Bosch, Grody, a solid-phase attached oligonucleotide primer and the mono- 2008; Schuster, 2008; Shendure, Ji, 2008; Tucker et al., 2009). nucleoside 3′,5′-biphosphate mediated by T4 RNA ligase in During the last decade modern approaches to assemble large a water solution. The terminal phosphate blocking group is (up to dozens and hundreds kb) DNA molecules (Gibson et al., removed enzymatically by alkaline phosphatase, and all ex- 2009; Gibson, 2011) and error correction within synthesized cess reagents are simply washed off from the resin. The next gene have been introduced (Ma et al., 2012b). nucleoside 3′,5′-biphosphate can then bind to the end of the chain. Following NH2OH-induced cleavage from the resin Oligonucleotide synthesis gives the desired elongation of the product. The drawback of All the synthesis approaches rely on usage of chemically syn- this approach is relatively low rate of elongation (48 h) due thesized oligonucleotides as building blocks for an enzyme- to the kinetic properties of the enzyme. However, possible mediated assembly (Ma et al., 2012b; Kosuri, Church, 2014). automation and molecular biological optimization of enzyme using directed evolution can make the enzymatic approach Solid-phase oligonucleotide synthesis a viable alternative to today’s chemical synthesis approach. The most widely used approach to oligonucleotide synthesis has been the solid-phase phosphoramidite method developed Parallel oligonucleotide synthesis using microchips in the 80’s (Beaucage, Caruthers, 1981; Matteucci, Caruthers, The oligonucleotide amounts necessary for gene synthesis ap- 1981). The DNA oligonucleotides are synthesized from the plication are relatively small (picomols) while modern DNA 3′ to 5′ end by consecutive coupling of activated building de- synthesizers can produce oligonucleotides in a higher excess oxynucleoside phosphoramidites to an initial deoxynucleoside (nanomolar and micromolar) making this approach redundant. attached to a solid support (usually the support is a controlled Significant improvements in performance and cost-reduction pore glass (CPG) or highly cross-linked polystyrene beads) may be achieved by parallelization and miniaturization of by its 3′-OH group (Ellington, Pollard, 2000). A solid support oli gonucleotide synthesis platforms. Thus, microchip-based matrix is placed into several or several hundred parallel flow- approaches previously used for DNA diagnostics and sequenc- through individual reaction columns, and while synthesis all ing have been adopted for multi-parallel synthesis of oligo- the reagents necessary for the synthesis cycle flow through the nucleotide arrays. Several constructive implementations such solid support column. A full cycle to add a single nucleotide as ink-jet DNA printing (Lausted et al., 2004), microfluidic consists of several stages: (1) deprotection: acid is used to devices (Zhou et al., 2004; Huang et al., 2009; Lee et al., 2010), remove a Dimetoxytrityl (DMT) group from the 5′-end of a light-directed (Richmond et al., 2004) and electrochemical growing oligonucleotide chain; (2) coupling: the solid-phase (Egeland, Southern, 2005; Chow et al., 2009) microarray syn - 5′-OH group of an attached oligonucleotide reacts with tet- thesis and LED-controlled capillaries (Blair et al., 2006) razole – activated nucleoside phosphoramidite producing the synthesis have been independently developed. A conditions elongated product of reaction;