Biostratigraphy and Biochronology of the Latest Wasatchian, Bridgerian, and Uintan North American Land Mammal “Ages”

Total Page:16

File Type:pdf, Size:1020Kb

Biostratigraphy and Biochronology of the Latest Wasatchian, Bridgerian, and Uintan North American Land Mammal “Ages” Albright, L. B. III, ed., 2009. Papers on Geology, Vertebrate Paleontology, and Biostratigraphy in Honor of Michael O. Woodburne. Museum of Northern Arizona Bulletin 65, Flagstaff, Arizona. BIOSTRATIGRAPHY AND BIOCHRONOLOGY OF THE LATEST WASATCHIAN, BRIDGERIAN, AND UINTAN NORTH AMERICAN LAND MAMMAL “AGES” GREGG F. GUNNELL1, PAUL C. MURPHEY2, RICHARD K. STUCKY3, K. E. BETH TOWNSEND4, PETER ROBINSON5, JOHN-PAUL ZONNEVELD6, AND WILLIAM S. BARTELS7 1Museum of Paleontology, University of Michigan, Ann Arbor, MI 48109; [email protected] 2Department of Paleontology, San Diego Natural History Museum, 1788 El Prado, Balboa Park San Diego, CA 92101; [email protected] 3Department of Earth Sciences, Denver Museum of Nature and Science, 2001 Colorado Boulevard, Denver, CO 80205; [email protected] 4Department of Anatomy, Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Avenue, Glendale, AZ 85308; [email protected] 5Section of Paleontology, University of Colorado Museum of Natural History, Boulder, CO 80309; [email protected] 6Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E3; [email protected] 7Department of Geology, Albion College, Albion, MI 49224; [email protected] ABSTRACT—Biochronological zones for the late Wasatchian, Bridgerian, and Uintan North American Land Mammal Ages are formally defined in this paper. These zones include Wasatchian biochron Wa7, Bridgerian biochrons Br1a, Br1b, Br2, and Br3, and Uintan biochrons Ui1a, Ui2, and Ui3. We argue for the existence of an additional early Uintan biochron between Ui1a and Ui2 and informally recognize Ui1b, although it is not possible to formally define it at this time. For each biochron we designate a stratotype section as well as referred sections where appropriate. In addition we present complete biostratigraphic range information for all known mammalian taxa from stratotype and referred sections and use these ranges to define biochrons based on index taxa and first and last appearance information. Biochron Wa7, all of the Bridgerian biochrons, and Ui1a have stratotype sections in Wyoming, either in the Wind River Basin (biochrons Wa7 and Br1a) or in the Green River Basin. The stratotype sections for Uintan biochrons Ui2 and Ui3 can be found in the Uinta Basin in Utah. Most referred sections can be found in these areas as well although there are isolated referred sections in Colorado (Sand Wash and Huerfano), Texas (basal Devil’s Graveyard Formation), and the Washakie Basin in Wyoming. INTRODUCTION As now understood, the early and middle Eocene North American Land Mammal “Ages” consist of (from oldest to youngest) the Wasatchian, Bridgerian, Uintan, and Duchesnean as originally codified by Wood et al. (1941). In each case, these NALMAs derived their names from rock units that had been defined earlier (Hayden, 1869, 1878; Comstock, 1875) and each had been subdivided based on either lithostratigraphy (Veatch, 1907; Matthew, 1909; Kay, 1934; Wood, 1934; Van Houten, 1944;) or biostratigraphy (Granger, 1910, 1914; Kay, 1934; Wood, 1934). A detailed history of the development of North American Eocene lithostratigraphy and biostratigraphy can be found in Krishtalka et al. (1987) and Robinson et al. (2004). Most recently, Woodburne (2004) has recognized biochronological zones for all NALMAs. Only the lower and middle biochrons of the early Eocene Wasatchian Land Mammal “Age” have been formally defined with designated stratotype sections and refined biostratigraphic control (see Gingerich, 2001). In the pages that follow we formally define the latest Wasatchian biochron (Wa7), four Bridgerian biochrons (Br1a through Br3) and three of four of the Uintan biochrons (Ui1a, Ui2 and Ui3; for various reasons it is not yet possible to formally define Uintan biochron Ui1b), and offer a discussion of the transition between 279 MUSEUM OF NORTHERN ARIZONA BULLETIN 65 the Bridgerian and Uintan (an interval often referred to as the Shoshonian) which, to date, is not fully understood. It is hoped that a more formal definition of the Duchesnean will soon follow. Procedurally, we follow the general steps laid out in the North American Stratigraphic Code for designation and formalization of chronostratigraphic and geochronologic units (NACSN, 2005). Practically this protocol consists of designating stratotype sections for biostratigraphic units or intervals that are defined by the first and last occurrences of fossil vertebrates contained within the rocks representing those intervals – these units or intervals are essentially equivalent to chronozones as defined in article 75 of the NASC. Units of time, here termed biochrons and designated with a letter and number (e.g., Wa7), are defined based on these biostratigraphically constrained intervals and are essentially equivalent to geochronological units as defined in article 80 of the NACSN. All of the formally recognized biochrons that we discuss are based on biostratigraphic stratotype sections that occur in Wyoming or Utah (Fig. 1), although two referred sections are in northwestern (Sand Wash, see Stucky et al., 1996) and southern Colorado (Huerfano Park, see Robinson, 1966). The informally recognized biochron (Ui1b) is based on faunal assemblages from the Friars and Santiago formations in California, the Washakie Formation in Colorado, and the Adobe Town Member of the Washakie Formation in Wyoming. The stratotype sections that are the basis for Wasatchian biochron Wa7 and Bridgerian biochron Br1a are found near Shoshoni, Wyoming in the Wind River Basin while the stratotype sections for the remaining Bridgerian biochrons (Br1b through Br3) are found in southwestern Wyoming in the southern Green River Basin. These sections are located just north of the Uinta Mountains along the border between Wyoming and Utah. The transitional Bridgerian-Uintan Bridger E section Figure 1. Map of southern and south-central Wyoming, northeastern Utah, and northwestern Colorado showing the general areas where late Wasatchian, Bridgerian, and Uintan stratotype and referred sections are located. 280 GUNNELL ET AL.—BIOCHRONOLOGICAL ZONATION OF THE BRIDGERIAN AND UINTAN NALMAS (biochron Ui1a) is also found in the southern Green River Basin (West and Hutchison, 1981; Murphey and Evanoff, 2007; Murphey and Walsh, 2007). The stratotype sections of Uintan biochrons Ui2 and Ui3 are found in the Uinta Basin in northeastern Utah, south of the city of Vernal. In addition to stratotype sections, in most cases several referred sections can be designated that represent other areas where biostratigraphically controlled faunal samples have been recovered. MATERIALS AND METHODS A table of the stratigraphic ranges of all taxa from all sections is included as Appendix I. The summary tables found in each subsection below are based on the ranges listed in Appendix I and in most cases include data not only from the stratotype section but also from referred sections as well. In some cases (in particular those from Uintan biochrons Ui2 and Ui3), lists of faunal assemblages were restricted to the stratotype and referred section in the immediate regional area in the Uinta Basin. In the case of the earliest Uintan (Ui1a and Ui1b), it was necessary to include assemblages from other regions because of the compounding factors of provincial endemism and apparent temporal range differences. Additional and detailed analysis beyond the scope of this paper is required to grasp the intricacies of these continental scale distributions. The sections below were jointly written by all authors, but individual sections were supervised as follows: Wa7 (RKS), Br1a (RKS, GFG), Br1b (GFG, JPZ, WSB), Br2 (GFG, PR), Br3 (GFG, PR, PCM), Ui1a-b (PCM), Ui2-3 (KEBT, PCM). WASATCHIAN BIOCHRONOLOGICAL ZONE WA7 The latest Wasatchian biochron, Wa7, has long been recognized as the Lostcabinian Land Mammal “Subage” (see Stucky, 1984c), which was defined as the fossiliferous beds in Western North America that include the paleothere, Lambdotherium popoagicum (Sinclair and Granger, 1911). The type area for Wa7 is the same as the type area for the Lost Cabin Member of the Wind River Formation at Buck Spring in the central part of the Wind River Basin (Stucky 1984a; 1984b). Although Osborn (1909) had earlier suggested that two land mammal faunas could be recognized in the upper part of the Wind River Formation, he later suggested that only one zone was present (Osborn, 1929). In 1984, Stucky recognized through stratigraphic studies that Lambdotherium popoagicum came from the lower beds within the Lost Cabin Member and that Eotitanops borealis (=Palaeosyops borealis) came from higher beds within the member and neither taxon overlapped in stratigraphic distribution in measured stratigraphic sequences. Osborn’s (1929) report that they did was in error. Furthermore, it became apparent that other taxa, including Hyrachyus and Trogosus, occurred with Eotitanops and were not found with the late Wasatchian Lambdotherium. As such, the fauna from the Lambdotherium interval zone does not contain any mammals of Bridgerian aspect at the generic level. There are no sites or stratigraphically documented intervals known in North America where Lambdotherium popoagicum and Eotitanops borealis overlap in distribution. Recently reported co- occurrences of these two taxa from the same horizon have now been recognized to be across a stratigraphic interval with occurrences separated by a fault (Gunnell and Yarborough, 2000; Gunnell, personal observation);
Recommended publications
  • Zootaxa, a Species Level Revision of Bridgerian And
    ZOOTAXA 1837 A species level revision of Bridgerian and Uintan brontotheres (Mammalia, Perissodactyla) exclusive of Palaeosyops BRYN J. MADER Magnolia Press Auckland, New Zealand Bryn J. Mader A species level revision of Bridgerian and Uintan brontotheres (Mammalia, Perissodactyla) exclusive of Palaeosyops (Zootaxa 1837) 85 pp.; 30 cm. 30 July 2008 ISBN 978-1-86977-249-9 (paperback) ISBN 978-1-86977-250-5 (Online edition) FIRST PUBLISHED IN 2008 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2008 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 1837 © 2008 Magnolia Press MADER Zootaxa 1837: 1–85 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) A species level revision of Bridgerian and Uintan brontotheres (Mammalia, Perissodactyla) exclusive of Palaeosyops BRYN J. MADER Department of Biological Sciences and Geology, Queensborough Community College, 222-05 56th Avenue, Bayside, NY, 11364-1497 Long Island Natural History Museum,
    [Show full text]
  • The Stratigraphic Importance of the Brontothere (Cf. Diplacodon Elatus) in the Brennan Basin Member of the Duchesne River Formation of Utah
    Foss. Rec., 17, 69–74, 2014 www.foss-rec.net/17/69/2014/ doi:10.5194/fr-17-69-2014 © Author(s) 2014. CC Attribution 3.0 License. The stratigraphic importance of the brontothere (cf. Diplacodon elatus) in the Brennan Basin Member of the Duchesne River Formation of Utah B. J. Burger and L. Tackett II Department of Geology, Utah State University, Uintah Basin Regional Campus 320 North Aggie Blvd. Vernal, UT 84078, USA Correspondence to: B. J. Burger ([email protected]) Received: 10 June 2014 – Revised: 6 August 2014 – Accepted: 12 August 2014 – Published: 27 August 2014 Abstract. We report on the first occurrence of an early southern Mississippia (Gazin and Sullivan, 1942), and the horned brontothere in the Brennan Basin Member of the Pacific Northwest (Mihlbacher, 2007). But nowhere is the Duchesne River Formation in northeastern Utah. This is the record of brontotheres as diverse as the fossil record ob- first record of a brontothere from the Brennan Basin Member. tained from the middle Eocene depositional basins located in Previously, brontotheres have been reported from the higher northeastern Utah, southwestern Wyoming and northwestern stratigraphic La Point Member (Duchesneodus uintensis) Colorado (Lull, 1905; Cook, 1926; Douglass, 1909; Gregory, and the lower stratigraphic Uinta Formation (Sphenocoelus 1912; Gunnell and Yarborough, 2000; Hatcher, 1895; Lucas uintensis, Fossendorhinus diploconus, Metarhinus fluviatilis, et al., 2004; Lucas and Holbrook, 2004; Lucas and Schoch, Metarhinus abbotti, Sthenodectes incisivum, Metatelmath- 1982; Mader, 2000, 2009a, b, Mihlbacher, 2008, 2011; Os- erium ultimum, Protitanotherium emarginatum, Pollyosbor- born, 1889, 1895, 1908, 1913, 1929; Peterson, 1914a, b, nia altidens, Diplacodon elatus).
    [Show full text]
  • The World at the Time of Messel: Conference Volume
    T. Lehmann & S.F.K. Schaal (eds) The World at the Time of Messel - Conference Volume Time at the The World The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment and the History of Early Primates 22nd International Senckenberg Conference 2011 Frankfurt am Main, 15th - 19th November 2011 ISBN 978-3-929907-86-5 Conference Volume SENCKENBERG Gesellschaft für Naturforschung THOMAS LEHMANN & STEPHAN F.K. SCHAAL (eds) The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference Frankfurt am Main, 15th – 19th November 2011 Conference Volume Senckenberg Gesellschaft für Naturforschung IMPRINT The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates 22nd International Senckenberg Conference 15th – 19th November 2011, Frankfurt am Main, Germany Conference Volume Publisher PROF. DR. DR. H.C. VOLKER MOSBRUGGER Senckenberg Gesellschaft für Naturforschung Senckenberganlage 25, 60325 Frankfurt am Main, Germany Editors DR. THOMAS LEHMANN & DR. STEPHAN F.K. SCHAAL Senckenberg Research Institute and Natural History Museum Frankfurt Senckenberganlage 25, 60325 Frankfurt am Main, Germany [email protected]; [email protected] Language editors JOSEPH E.B. HOGAN & DR. KRISTER T. SMITH Layout JULIANE EBERHARDT & ANIKA VOGEL Cover Illustration EVELINE JUNQUEIRA Print Rhein-Main-Geschäftsdrucke, Hofheim-Wallau, Germany Citation LEHMANN, T. & SCHAAL, S.F.K. (eds) (2011). The World at the Time of Messel: Puzzles in Palaeobiology, Palaeoenvironment, and the History of Early Primates. 22nd International Senckenberg Conference. 15th – 19th November 2011, Frankfurt am Main. Conference Volume. Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main. pp. 203.
    [Show full text]
  • In Pliocene Deposits, Antarctic Continental Margin (ANDRILL 1B Drill Core) Molly F
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln ANDRILL Research and Publications Antarctic Drilling Program 2009 Significance of the Trace Fossil Zoophycos in Pliocene Deposits, Antarctic Continental Margin (ANDRILL 1B Drill Core) Molly F. Miller Vanderbilt University, [email protected] Ellen A. Cowan Appalachian State University, [email protected] Simon H. H. Nielsen Florida State University Follow this and additional works at: http://digitalcommons.unl.edu/andrillrespub Part of the Oceanography Commons, and the Paleobiology Commons Miller, Molly F.; Cowan, Ellen A.; and Nielsen, Simon H. H., "Significance of the Trace Fossil Zoophycos in Pliocene Deposits, Antarctic Continental Margin (ANDRILL 1B Drill Core)" (2009). ANDRILL Research and Publications. 61. http://digitalcommons.unl.edu/andrillrespub/61 This Article is brought to you for free and open access by the Antarctic Drilling Program at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in ANDRILL Research and Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Antarctic Science 21(6) (2009), & Antarctic Science Ltd (2009), pp. 609–618; doi: 10.1017/ s0954102009002041 Copyright © 2009 Cambridge University Press Submitted July 25, 2008, accepted February 9, 2009 Significance of the trace fossil Zoophycos in Pliocene deposits, Antarctic continental margin (ANDRILL 1B drill core) Molly F. Miller,1 Ellen A. Cowan,2 and Simon H.H. Nielsen3 1. Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN 37235, USA 2. Department of Geology, Appalachian State University, Boone, NC 28608, USA 3. Antarctic Research Facility, Florida State University, Tallahassee FL 32306-4100, USA Corresponding author — Molly F.
    [Show full text]
  • Artiodactyla and Perissodactyla (Mammalia) from the Early-Middle Eocene Kuldana Formation of Kohat (Pakistan)
    CO"uTK1BL 11015 FKOLI IHt \lC5tLL1 OF I' ALEO\ IOLOG1 THE UNIVERSITY OF IVICHIGAN VOI 77 Lo 10 p 717-37.1 October 33 1987 ARTIODACTYLA AND PERISSODACTYLA (MAMMALIA) FROM THE EARLY-MIDDLE EOCENE KULDANA FORMATION OF KOHAT (PAKISTAN) BY J. G. M. THEWISSEN. P. D. GINGERICH and D. E. RUSSELL MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN ANN ARBOR CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY Charles B. Beck, Director Jennifer A. Kitchell, Editor This series of contributions from the Museum of Paleontology is a medium for publication of papers based chiefly on collections in the Museum. When the number of pages issued is sufficient to make a volume, a title page and a table of contents will be sent to libraries on the mailing list, and to individuals upon request. A list of the separate issues may also be obtained by request. Correspond- ence should be directed to the Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan 48109. VOLS. II-XXVII. Parts of volumes may be obtained if available. Price lists are available upon inquiry. I ARTIODACTI L .-I A\D PERISSODACTYL4 (kl.iihlhlAL1A) FROM THE EARLY-h1IDDLE EOCEUE KCLD..I\4 FORMATIO\ OF KOHAT (PAKISTAY) J. G. M. THEWISSEN. P. D. GINGERICH AND D. E. RUSSELL Ah.strcict.-Chorlakki. yielding approximately 400 specimens (mostly isolated teeth and bone fragments). is one of four major early-to-middle Eocene niammal localities on the Indo-Pakistan subcontinent. On the basis of ung~~latesclescribed in this paper we consider the Chorlakki fauna to be younger than that from Barbora Banda.
    [Show full text]
  • Download File
    Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 © 2015 Kaori Tsukui All rights reserved ABSTRACT Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology Kaori Tsukui The age of the Bridgerian/Uintan boundary has been regarded as one of the most important outstanding problems in North American Land Mammal “Age” (NALMA) biochronology. The Bridger Basin in southwestern Wyoming preserves one of the best stratigraphic records of the faunal boundary as well as the preceding Bridgerian NALMA. In this dissertation, I first developed a chronological framework for the Eocene Bridger Formation including the age of the boundary, based on a combination of magnetostratigraphy and U-Pb ID-TIMS geochronology. Within the temporal framework, I attempted at making a regional correlation of the boundary-bearing strata within the western U.S., and also assessed the body size evolution of three representative taxa from the Bridger Basin within the context of Early Eocene Climatic Optimum. Integrating radioisotopic, magnetostratigraphic and astronomical data from the early to middle Eocene, I reviewed various calibration models for the Geological Time Scale and intercalibration of 40Ar/39Ar data among laboratories and against U-Pb data, toward the community goal of achieving a high precision and well integrated Geological Time Scale. In Chapter 2, I present a magnetostratigraphy and U-Pb zircon geochronology of the Bridger Formation from the Bridger Basin in southwestern Wyoming.
    [Show full text]
  • Studies on Continental Late Triassic Tetrapod Biochronology. I. the Type Locality of Saturnalia Tupiniquim and the Faunal Succession in South Brazil
    Journal of South American Earth Sciences 19 (2005) 205–218 www.elsevier.com/locate/jsames Studies on continental Late Triassic tetrapod biochronology. I. The type locality of Saturnalia tupiniquim and the faunal succession in south Brazil Max Cardoso Langer* Departamento de Biologia, FFCLRP, Universidade de Sa˜o Paulo (USP), Av. Bandeirantes 3900, 14040-901 Ribeira˜o Preto, SP, Brazil Received 1 November 2003; accepted 1 January 2005 Abstract Late Triassic deposits of the Parana´ Basin, Rio Grande do Sul, Brazil, encompass a single third-order, tetrapod-bearing sedimentary sequence that includes parts of the Alemoa Member (Santa Maria Formation) and the Caturrita Formation. A rich, diverse succession of terrestrial tetrapod communities is recorded in these sediments, which can be divided into at least three faunal associations. The stem- sauropodomorph Saturnalia tupiniquim was collected in the locality known as ‘Waldsanga’ near the city of Santa Maria. In that area, the deposits of the Alemoa Member yield the ‘Alemoa local fauna,’ which typifies the first association; includes the rhynchosaur Hyperodapedon, aetosaurs, and basal dinosaurs; and is coeval with the lower fauna of the Ischigualasto Formation, Bermejo Basin, NW Argentina. The second association is recorded in deposits of both the Alemoa Member and the Caturrita Formation, characterized by the rhynchosaur ‘Scaphonyx’ sulcognathus and the cynodont Exaeretodon, and correlated with the upper fauna of the Ischigualasto Formation. Various isolated outcrops of the Caturrita Formation yield tetrapod fossils that correspond to post-Ischigualastian faunas but might not belong to a single faunal association. The record of the dicynodont Jachaleria suggests correlations with the lower part of the Los Colorados Formation, NW Argentina, whereas remains of derived tritheledontid cynodonts indicate younger ages.
    [Show full text]
  • Tetrapod Biostratigraphy and Biochronology of the Triassic–Jurassic Transition on the Southern Colorado Plateau, USA
    Palaeogeography, Palaeoclimatology, Palaeoecology 244 (2007) 242–256 www.elsevier.com/locate/palaeo Tetrapod biostratigraphy and biochronology of the Triassic–Jurassic transition on the southern Colorado Plateau, USA Spencer G. Lucas a,⁎, Lawrence H. Tanner b a New Mexico Museum of Natural History, 1801 Mountain Rd. N.W., Albuquerque, NM 87104-1375, USA b Department of Biology, Le Moyne College, 1419 Salt Springs Road, Syracuse, NY 13214, USA Received 15 March 2006; accepted 20 June 2006 Abstract Nonmarine fluvial, eolian and lacustrine strata of the Chinle and Glen Canyon groups on the southern Colorado Plateau preserve tetrapod body fossils and footprints that are one of the world's most extensive tetrapod fossil records across the Triassic– Jurassic boundary. We organize these tetrapod fossils into five, time-successive biostratigraphic assemblages (in ascending order, Owl Rock, Rock Point, Dinosaur Canyon, Whitmore Point and Kayenta) that we assign to the (ascending order) Revueltian, Apachean, Wassonian and Dawan land-vertebrate faunachrons (LVF). In doing so, we redefine the Wassonian and the Dawan LVFs. The Apachean–Wassonian boundary approximates the Triassic–Jurassic boundary. This tetrapod biostratigraphy and biochronology of the Triassic–Jurassic transition on the southern Colorado Plateau confirms that crurotarsan extinction closely corresponds to the end of the Triassic, and that a dramatic increase in dinosaur diversity, abundance and body size preceded the end of the Triassic. © 2006 Elsevier B.V. All rights reserved. Keywords: Triassic–Jurassic boundary; Colorado Plateau; Chinle Group; Glen Canyon Group; Tetrapod 1. Introduction 190 Ma. On the southern Colorado Plateau, the Triassic– Jurassic transition was a time of significant changes in the The Four Corners (common boundary of Utah, composition of the terrestrial vertebrate (tetrapod) fauna.
    [Show full text]
  • The Earliest Hapalodectes (Mesonychia, Mammalia) from the Paleocene of Mongolia
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/236617870 The Earliest Hapalodectes (Mesonychia, Mammalia) from the Paleocene of Mongolia Article in Paleontological Journal · July 2001 CITATIONS READS 10 212 1 author: Alexey V. Lopatin Russian Academy of Sciences 369 PUBLICATIONS 1,647 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: New genera of baleen whales (Cetacea, Mammalia) from the Miocene of the northern Caucasus and Ciscaucasia View project Early evolution of mammals View project All content following this page was uploaded by Alexey V. Lopatin on 05 August 2014. The user has requested enhancement of the downloaded file. Paleontological Journal, Vol. 35, No. 4, 2001, pp. 426–432. Translated from Paleontologicheskii Zhurnal, No. 4, 2001, pp. 90–96. Original Russian Text Copyright © 2001 by Lopatin. English Translation Copyright © 2001 by åÄIä “Nauka /Interperiodica” (Russia). The Earliest Hapalodectes (Mesonychia, Mammalia) from the Paleocene of Mongolia A. V. Lopatin Paleontological Institute, Russian Academy of Sciences, ul. Profsoyuznaya 123, Moscow, 117868 Russia Received October 20, 1999 Abstract—A lower jaw containing complete tooth rows of the earliest hapalodectid mesonychian, Hapalo- dectes dux sp. nov., is described from the Upper Paleocene of Tsagan-Khushu, Mongolia (Naran Bulak Forma- tion, Zhigden Member). The new species is smaller than the Middle Eocene H. serus and larger than the Early Eocene H. hetangensis. The lower molars of H. dux have distinct metaconid, protocristid, rudimentary hypo- conulid, and entoconid; M2 and M3 are equal in size. These characters suggest that H. dux is the most primitive species of the genus Hapalodectes.
    [Show full text]
  • Mammal Faunal Change in the Zone of the Paleogene Hyperthermals ETM2 and H2
    Clim. Past, 11, 1223–1237, 2015 www.clim-past.net/11/1223/2015/ doi:10.5194/cp-11-1223-2015 © Author(s) 2015. CC Attribution 3.0 License. Mammal faunal change in the zone of the Paleogene hyperthermals ETM2 and H2 A. E. Chew Department of Anatomy, Western University of Health Sciences, 309 E Second St., Pomona, CA 91767, USA Correspondence to: A. E. Chew ([email protected]) Received: 13 March 2015 – Published in Clim. Past Discuss.: 16 April 2015 Revised: 4 August 2015 – Accepted: 19 August 2015 – Published: 24 September 2015 Abstract. “Hyperthermals” are past intervals of geologically vulnerability in response to changes already underway in the rapid global warming that provide the opportunity to study lead-up to the EECO. Faunal response at faunal events B-1 the effects of climate change on existing faunas over thou- and B-2 is also distinctive in that it shows high proportions sands of years. A series of hyperthermals is known from of beta richness, suggestive of increased geographic disper- the early Eocene ( ∼ 56–54 million years ago), including sal related to transient increases in habitat (floral) complexity the Paleocene–Eocene Thermal Maximum (PETM) and two and/or precipitation or seasonality of precipitation. subsequent hyperthermals (Eocene Thermal Maximum 2 – ETM2 – and H2). The later hyperthermals occurred during warming that resulted in the Early Eocene Climatic Opti- mum (EECO), the hottest sustained period of the Cenozoic. 1 Introduction The PETM has been comprehensively studied in marine and terrestrial settings, but the terrestrial biotic effects of ETM2 The late Paleocene and early Eocene (ca.
    [Show full text]
  • Episodes 149 September 2009 Published by the International Union of Geological Sciences Vol.32, No.3
    Contents Episodes 149 September 2009 Published by the International Union of Geological Sciences Vol.32, No.3 Editorial 150 IUGS: 2008-2009 Status Report by Alberto Riccardi Articles 152 The Global Stratotype Section and Point (GSSP) of the Serravallian Stage (Middle Miocene) by F.J. Hilgen, H.A. Abels, S. Iaccarino, W. Krijgsman, I. Raffi, R. Sprovieri, E. Turco and W.J. Zachariasse 167 Using carbon, hydrogen and helium isotopes to unravel the origin of hydrocarbons in the Wujiaweizi area of the Songliao Basin, China by Zhijun Jin, Liuping Zhang, Yang Wang, Yongqiang Cui and Katherine Milla 177 Geoconservation of Springs in Poland by Maria Bascik, Wojciech Chelmicki and Jan Urban 186 Worldwide outlook of geology journals: Challenges in South America by Susana E. Damborenea 194 The 20th International Geological Congress, Mexico (1956) by Luis Felipe Mazadiego Martínez and Octavio Puche Riart English translation by John Stevenson Conference Reports 208 The Third and Final Workshop of IGCP-524: Continent-Island Arc Collisions: How Anomalous is the Macquarie Arc? 210 Pre-congress Meeting of the Fifth Conference of the African Association of Women in Geosciences entitled “Women and Geosciences for Peace”. 212 World Summit on Ancient Microfossils. 214 News from the Geological Society of Africa. Book Reviews 216 The Geology of India. 217 Reservoir Geomechanics. 218 Calendar Cover The Ras il Pellegrin section on Malta. The Global Stratotype Section and Point (GSSP) of the Serravallian Stage (Miocene) is now formally defined at the boundary between the more indurated yellowish limestones of the Globigerina Limestone Formation at the base of the section and the softer greyish marls and clays of the Blue Clay Formation.
    [Show full text]
  • Mammal and Plant Localities of the Fort Union, Willwood, and Iktman Formations, Southern Bighorn Basin* Wyoming
    Distribution and Stratigraphip Correlation of Upper:UB_ • Ju Paleocene and Lower Eocene Fossil Mammal and Plant Localities of the Fort Union, Willwood, and Iktman Formations, Southern Bighorn Basin* Wyoming U,S. GEOLOGICAL SURVEY PROFESS IONAL PAPER 1540 Cover. A member of the American Museum of Natural History 1896 expedition enter­ ing the badlands of the Willwood Formation on Dorsey Creek, Wyoming, near what is now U.S. Geological Survey fossil vertebrate locality D1691 (Wardel Reservoir quadran­ gle). View to the southwest. Photograph by Walter Granger, courtesy of the Department of Library Services, American Museum of Natural History, New York, negative no. 35957. DISTRIBUTION AND STRATIGRAPHIC CORRELATION OF UPPER PALEOCENE AND LOWER EOCENE FOSSIL MAMMAL AND PLANT LOCALITIES OF THE FORT UNION, WILLWOOD, AND TATMAN FORMATIONS, SOUTHERN BIGHORN BASIN, WYOMING Upper part of the Will wood Formation on East Ridge, Middle Fork of Fifteenmile Creek, southern Bighorn Basin, Wyoming. The Kirwin intrusive complex of the Absaroka Range is in the background. View to the west. Distribution and Stratigraphic Correlation of Upper Paleocene and Lower Eocene Fossil Mammal and Plant Localities of the Fort Union, Willwood, and Tatman Formations, Southern Bighorn Basin, Wyoming By Thomas M. Down, Kenneth D. Rose, Elwyn L. Simons, and Scott L. Wing U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1540 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Robert M. Hirsch, Acting Director For sale by U.S. Geological Survey, Map Distribution Box 25286, MS 306, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]