Comparison of Chloroplast Genomes of Gynura Species: Sequence
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identification of Medicinal Plants Within the Apocynaceae Family Using ITS2 and Psba-Trnh Barcodes
Available online at www.sciencedirect.com Chinese Journal of Natural Medicines 2020, 18(8): 594-605 doi: 10.1016/S1875-5364(20)30071-6 •Special topic• Identification of medicinal plants within the Apocynaceae family using ITS2 and psbA-trnH barcodes LV Ya-Na1, 2Δ, YANG Chun-Yong1, 2Δ, SHI Lin-Chun3, 4, ZHANG Zhong-Lian1, 2, XU An-Shun1, 2, ZHANG Li-Xia1, 2, 4, LI Xue-Lan1, 2, 4, LI Hai-Tao1, 2, 4* 1 Yunnan Branch, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical Col- lege, Jinghong 666100, China; 2 Key Laborartory of Dai and Southern Medicine of Xishuangbanna Dai Autonomous Prefecture, Jinghong 666100, China; 3 Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People’s Re- public of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical Col- lege, Beijing, 100193, China; 4 Engineering Research Center of Tradition Chinese Medicine Resource, Ministry of Education, Institute of Medicinal Plant De- velopment, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China Available online 20 Aug., 2020 [ABSTRACT] To ensure the safety of medications, it is vital to accurately authenticate species of the Apocynaceae family, which is rich in poisonous medicinal plants. We identified Apocynaceae species by using nuclear internal transcribed spacer 2 (ITS2) and psbA- trnH based on experimental data. The identification ability of ITS2 and psbA-trnH was assessed using specific genetic divergence, BLAST1, and neighbor-joining trees. For DNA barcoding, ITS2 and psbA-trnH regions of 122 plant samples of 31 species from 19 genera in the Apocynaceae family were amplified. -
ITINERARY for CONQUER KILIMANJARO - LUXURY - 2020 Tanzania
ITINERARY FOR CONQUER KILIMANJARO - LUXURY - 2020 Tanzania Let your imagination soar Journey overview Conquer Mount Kilimanjaro on this exceptional 9-day hiking adventure to the “Roof of Africa”. This once-in-a-lifetime journey, can be taken as a standalone tour or as an add-on to an East Africa safari. It will take you along the beautiful Machame Route to the summit of Kilimanjaro, where you will have the opportunity to rest at various campsites along the way. The hike is led by expert guides, with years of experience climbing this majestic mountain. You will also be assisted by a friendly crew of mountaineers to ensure your Kilimanjaro experience is truly unforgettable. The route winds through a spectacular array of landscapes, which include verdant afromontane forests, a heath zone of yellow helichrysum (also known as golden eternal flowers) and purple lobelia plants, alpine forests and glacial valleys, making for exceptional photographic opportunities. Highlights of this Itinerary The Machame Route is the most beautiful and scenic hike up Mount Kilimanjaro Reward yourself after conquering Kilimanjaro with a luxurious and relaxing stay on idyllic &Beyond Mnemba Island. Take in the incredible views from the Roof of Africa Make the most of your Adventure Discover the various stages of coffee production at a working plantation in Arusha Be sure to try Kilimanjaro Beer Don’t miss out on the opportunity to unwind on &Beyond Mnemba Island, one of the most romantic destinations in Africa. Add to your adventure with an incredible safari -
The Significance of Abiotic Control on Gynura Procumbens (Lour.) Merr Herbs in Malaysia for Better Growth and Secondary Metabolite Enrichment
AsPac J. Mol. Biol.Biol. Biotechnol. Biotechnol. 2015 Vol. 23 (2), 2015 Abiotic control in Gynura procumbens culture 303 Vol. 23 (2) : 303-313 Watering and nitrogen and potassium fertilization: The significance of abiotic control on Gynura procumbens (Lour.) Merr herbs in Malaysia for better growth and secondary metabolite enrichment Mohamad Fhaizal Mohamad Bukhori1,2*, Hawa Z.E. Jaafar1, Ali Ghasemzadeh1 1Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia 2Centre for Pre-University Studies, Universiti Malaysia Sarawak, 94300 Samarahan, Sarawak, Malaysia Received 3rd June 2015 / Accepted 10th October 2015 Abstract. Environmental changes have led to cellular adjustment and adaptation in plant growth. External factors have, for example, influenced the growth pattern of Gynura procumbens plants and led to production of specific secondary metabolite internally for the purpose of differentiation and conditional interaction. These developmental patterns and production of metabolites are expressional characteristics of the plant, and so growers can have only a restricted range of movement or limited control over their reaction to environmental changes compared to their reaction to human or animal interactions. Even though metabolite production is pervasive among the plants, the need to explore abiotic control strategies for regulating the patterns of growth of Gynura procumbens as well as their accumulation of metabolites has been shown to be significant in recent studies of plant-abiotic interactions. Keywords: Abiotic, growth, Gynura procumbens, herbs, metabolite INTRODUCTION Conventional value of Gynura procumbens. complementary medicine production called for by Traditionally, Malaysia has had an extensive array of the Malaysian government. The Globinmed has herbal medicinal plant species and traditional promoted the importance of medicinal plants by medical systems. -
Mountains of the Moon
MOUNTAINS OF THE MOON Some names just resonate with mystery and one such place that does that for me is the Rwenzori or Mountains of the Moon, a spectacular equatorial range that straddles Uganda and the DRC. It has that ‘heart of Africa’ appeal, truly somewhere off the beaten path - and given the effort required to get there it’s no surprise so few tourists come here. Without doubt it is the domain of the serious trekker and climber, the trails penetrate dense mossy forests and climb steeply to breathless heights above the treeline, where the reward is some of the most remarkable alpine flora to be found anywhere. I undertook my own journey with a university friend. We walked first through sweaty sub-tropical forests where the striking orange tubes of Scadoxus cyrtanthiflorus stood out from the dense undergrowth. Heavy bamboo dominated above this and then it was into the subalpine zone where the otherworldly stuff began. Gorgeous broad corymbs of Helichrysum formosissimum appeared, with silvery phyllaries blushed pink - surely the ultimate everlasting daisy. Then we reached the alpine zone. Dendrosenecio adnivalis Interestingly, as with the Espletia of the Scadoxus cyrtanthiflorus northern Andes, the alpine equivalent here also belongs to Asteraceae. The dominant species in the Rwenzori (with similar species in other east African mountains) Dendrosenecio adnivalis, a magnificent plant that formed dense forests in places, clothing whole mountainsides. The most obvious difference between the two genera is Dendrosenecio branch and Espletia do not. I remember seeing a specimen of a Dendrosenecio at Kew, sitting beneath a strong sunlamp. -
Observations on the Restoration of Herbaceous Vegetation in Some Areas in Bacǎu End Harghita County
Studii şi Cercetări Martie 2020 Biologie 29/1 14-19 Universitatea”Vasile Alecsandri” din Bacău OBSERVATIONS ON THE RESTORATION OF HERBACEOUS VEGETATION IN SOME AREAS IN BACǍU END HARGHITA COUNTY Milian Gurău Key words: natural ecological reconstruction, Calthetum laetae- Ligularietum sibiricae N. Ştefan 2007, Botriochloetum ischaemi (Krist 1937) I. Pop 1977, Thymo panonici-Chrysopogonetum grylii Doniţă et all 1992 INTRODUCTION the association Calthetum laetae - Ligularietum sibiricae Ştefan 2007. Since 1990, the social situation in Romania The Trotuş River has its source upstream has changed in all fields, nature it self has not Făgetul de Sus village (Harghita County); the first escaped some of this influence, often negative stream, a tributary on the right side, located near the aspects have been reported, although the areas of village of Lunca de Sus, has a swampy area protected nature have increased. After 1-2 decades completely surrounded by spruce. Here there was from the decrease or even disappearance of identified an area with numerous specimens of anthropogenic influences on insignificant areas of Ligularia sibiricaand other rare plants. It is an easily low-quality agricultural land, there was an accessible area, surrounded by forest and pasture, but unexpected return of plant formations, which are not which has never been destroyed by the locals’ cattle. identical to those of the primary vegetation, but It currently benefits from the existence of a small which have many elements in common. These electric fence. natural experiments have transformed agricultural Regarding research history in these places, we lands without economic yield into transitional can mention that two more such areas were cited, one meadows which, after 2-3 decades, also came to nearby, in Făgeţel (Ghergheli şi Raţiu, 1974; Palfalvi include extensive scrubland regions. -
Chromosome Numbers of the East African Giant Senecios and Giant Lobelias and Their Evolutionary Significancei
American Journal of Botany 80(7): 847-853. 1993. CHROMOSOME NUMBERS OF THE EAST AFRICAN GIANT SENECIOS AND GIANT LOBELIAS AND THEIR EVOLUTIONARY SIGNIFICANCEI ERIC B. KNox2 AND ROBERT R, KOWAL Herbarium and Department of Biology, University of Michigan, Ann Arbor, Michigan 48109-1048; and Department of Botany, University of Wisconsin, Madison, Wisconsin 53706-1981 The gametophytic chromosome number for the giant senecios (Asteraceae, Senecioneae, Dendrosenecio) is n = 50, and for the giant lobelias (Lobeliaceae, Lobelia subgenus Tupa section Rhynchopetalumi it is n = 14. Previous sporophytic counts are generally verified, but earlier reports for the giant senecios of2n = 20 and ca. 80, the bases for claims ofintraspecific polyploidy, are unsubstantiated. The 14 new counts for the giant senecios and the ten new counts for the giant lobelias are the first garnetophytic records for these plants and include the first reports for six and four taxa, respectively, for the two groups. Only five of the II species of giant senecio and three of the 21 species of giant lobelia from eastern Africa remain uncounted. Although both groups are polyploid, the former presumably decaploid and the latter more certainly tetraploid, their adaptive radiations involved no further change in chromosome number. The cytological uniformity within each group, while providing circumstantial evidence ofmonophyly and simplifying interpretations ofcladistic analyses, provides neither positive nor negative support for a possible role of polyploidy in evolving the giant-rosette growth-form. Since their discovery last century, the giant senecios MATERIALS AND METHODS (Dendrosenecio; Nordenstam, 1978) and giant lobelias (Lobelia subgenus Tupa section Rhynchopetalum; Mab Excised anthers or very young flower buds of Lobelia berley, 1974b) of eastern Africa have attracted consid and immature heads of Dendrosenecio were fixed in the erable attention from taxonomists and evolutionary bi field in Carnoy's solution (3 chloroform: 2 absolute eth ologists (cf. -
AN OVERVIEW of the Gynura Procumbens LEAVES
Vol. 12 | No. 3 |1235 - 1246| July - September | 2019 ISSN: 0974-1496 | e-ISSN: 0976-0083 | CODEN: RJCABP http://www.rasayanjournal.com http://www.rasayanjournal.co.in AN OVERVIEW OF THE Gynura procumbens LEAVES EXTRACTION AND POTENTIAL OF HYBRID PREDICTIVE TOOLS APPLICATION FOR PREDICTION AND SIMULATION IN SUPERCRITICAL FLUID EXTRACTION Sitinoor Adeib Idris 1,2,3,* and Masturah Markom 2,3 1Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia. 2Chemical Engineering Program, Faculty of Engineering & Built Environment,43600 UKM Bangi, Selangor, Malaysia. 3Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering & Built Environment, 43600 UKM Bangi, Selangor, Malaysia. *E-mail: [email protected] ABSTRACT Supercritical Fluid (SCF) technology has been applied in many areas, such as the pharmaceutical and food sectors due to its outstanding features. It is an efficient technology that performs extraction and leaves none or less organic residues compared to conventional processes. Recently, the simulation and prediction of process output from supercritical fluid extraction (SFE) have been determined using intelligent system predictive tools, such as artificial neural networks. The prediction of the set of results from SFE for designing and scale up purposes is because apart from reducing the usage of extraction solvent, and the energy and time of the process, it can also generate a solution for problems that a complex mathematical model cannot solve. For example, the prediction of solubility is important because this particular fundamental value contributes to the optimizing process. A neural network is considered as one of the artificially intelligent systems, and furthermore a key technology in Industry 4.0. -
The Effects of Gynura Procumbens Extracts on Drug Metabolizing Enzymes
THE EFFECTS OF GYNURA PROCUMBENS EXTRACTS ON DRUG METABOLIZING ENZYMES ATIQAH BINTI AFANDI UNIVERSITI SAINS MALAYSIA 2015 THE EFFECTS OF GYNURA PROCUMBENS EXTRACTS ON DRUG METABOLIZING ENZYMES by ATIQAH BINTI AFANDI Thesis submitted in fulfillment of the requirements for the degree of Master of Science July 2015 ACKNOWLEDGEMENT First and foremost, all praise be to Allah, the Almighty, the Benevolent for His blessing and guidance for giving me the patience and facilitate the completion of my thesis. I would like to express my gratitude to Prof. Dr. Sharif Mahsufi Mansor, Director of Centre for Drug Research, for giving me the opportunity to continue my master study in this Centre as a full research master’s student and also providing me with facilities vital to the completion of my master study. I would like to extend my appreciation to my supervisor, Assoc. Prof. Dr. Sabariah Ismail for her constructive criticism, guidance, understanding and endless support during the completion of my study. I am thankful to all lab assistants and staffs of Centre for Drug Research for their assistance during the research, especially Nuraziah Hanapi, Nur Sabrina Mohd Yusof and Aznorhaida Ramli for their continuous encouragement. I would like to express my special appreciation to all who have helped in one way or another, especially my dearest lab mates and friends, Nurul Afifah Mohd Salleh, Nor Liyana Mohd Salleh, Zulhilmi Husni and Munirah Haron for their sound judgements and moral support during my study. My special gratitude to the USM Graduate Assistant Scheme, My Brain 15 by the Ministry of Higher Education Malaysia and Short Term Grant Scheme (Modulation of Drug Metabolizing Enzyme Activity by Gynura procumbens Standardized Extracts) for their financial support in these two years. -
C: Lectotypification of Senecio Kingianus W. W. Sm. (Asteraceae)
358 植物研究雑誌 第 87 巻 第 5 号 2012 年 10 月 J. Jpn. Bot. 87: 358–360 (2012) a, b c Irina illarionova *, Vinay ranjan and Anant kumar : Lectotypification of Senecio kingianus W. W. Sm. (Asteraceae) a Komarov Botanical Institute, Russian Academy of Sciences, 2, Prof. Popov Str., Saint Petersburg, 197376 RUSSIA; bCentral National Herbarium, Howrah – 711 103 INDIA; c Botanical Survey of India, Kolkata – 700 064 INDIA * Corresponding author: [email protected] Summary: A lectotype is designated for Senecio Hand.-Mazz. based on it. kingianus W. W. Sm. (Asteraceae). Ligularia kingiana (W. W. Sm.) Hand.- The genus Ligularia is represented by ca. Mazz. in J. Bot. (London) 76: 289 (1938). 140 species distributed in temperate Asia, only Senecio kingianus W. W. Sm. in J. Proc. two species are found in Europe; the highest Asiat. Soc. Bengal 7: 71 (1911). diversity of species occurs in South-Western Lectotype (designated here): INDIA. China (ca. 70 species; Liu et al. 1994, Liu and Sikkim, Changu, 12–13000 ft., 12 July 1910, Illarionova 2011). In India, the genus Ligularia W. W. Smith 3401 (CAL 23565 !, Fig. 1; K– is represented by 10–17 species (Mathur 1995, isolectotype !). Karthikeyan et al. 2009). Many Ligularia species were originally The authors are thankful to Dr. Paramjit described in the genus Senecio. Senecio Singh, Director, Botanical Survey of India, kingianus W. W. Sm. is the type of the species Kolkata for his kind help and support. Ligularia kingiana (W. W. Sm.) Hand.-Mazz. In the protologue of Senecio kingianus W. W. Sm. Literatures Cited cited four specimens without indicating a type, Karthikeyan S., Sanjappa M. -
SEED BANKING for LONG-TERM CONSERVATION Ligularia Sibirica (L.) Cass
AgroLife Scientific Journal - Volume 8, Number 2, 2019 ISSN 2285-5718; ISSN CD-ROM 2285-5726; ISSN ONLINE 2286-0126; ISSN-L 2285-5718 gardens and researches institutes (Păunescu, MATERIALS AND METHODS 2009). SEED BANKING FOR LONG-TERM CONSERVATION Ligularia sibirica (L.) Cass. is a glacial relict Since there are no specific standards for the OF GLACIAL RELICT Ligularia sibirica (L.) CASS. plant species with a main continuous conservation of seeds from wild plant species distribution from east Asia to Southern Siberia (Hay and Probert, 2013) the presented protocol and a fragmented range with small and isolated was developed (Figure 1) according to latest Anca MANOLE, Cristian BANCIU, Ioana Cătălina PAICA, Mihnea VLADIMIRESCU, populations in Europe (Meusel and Jager, release of Gene bank Standards for Plant Gabriel Mihai MARIA 1992). The latest assessments reveal that Genetic Resources for Food and Agriculture populations with European range, originated in (FAO, 2014). In addition, when we have tested Institute of Biology Bucharest, Plant and Animal Cytobiology Department, 296 Independenței Spl., the early postglacial period and thus represent different storage temperatures and water District 6, 060031, Bucharest, Romania, Phone: +4 021 221 9092, Fax: +4 021 221 9071 rare remnants of a former continuous content, we have considered Roberts’s rule Corresponding author email: [email protected] distribution (Šmídová et al., 2011). In Europe, which states that seed longevity increases as species is protected under the Habitats moisture content and temperature are reduced Abstract Directive, Annex II of the Council of the (Roberts, 1973). European Community (1992). As consequence, The latest assessment of world vascular plant diversity showed that the current rate of their extinction has reached L. -
Géologie Et Biodiversité Végétale Quelques Rappels
Géologie et Biodiversité végétale Quelques rappels Modifications climatiques Isolement géographique génèrent de la biodiversité Rift Est-Africain : Longueur : 6000 km Ecartement : 1 cm/an Début : il y a 20 MA Sommets : Volcans sauf Rwenzori Ages : 2 à 3 Ma Kili : activité récente Meru : encore actif Petite parenthèse Cette région est considérée comme le berceau de l’humanité Théorie développée par Yves Coppens… Mais… Mais revenons à la botanique… avec les Seneçons géants Du genre Dendrosenecio Dendrosenecio adnivalis 11 espèces. erici-rosenii elgonensis Initialement comprises dans le genre Senecio cheranganensis Se rencontrent entre 2500 m et 4600 m sur brassiciformis les montagnes d’Afrique de l’Est. battiscombei keniodendron keniensis kilimandjari Senecio ovatus (Seneçon de Fuchs) johnstonii meruensis Dendrosenecio adnivalis Rwenzori erici-rosenii elgonensis Elgon cheranganensis Cherangani brassiciformis battiscombei Aderb . keniodendron Kenya keniensis kilimandjari Kilimandjaro johnstonii meruensis Meru Dendrosenecio adnivalis Rwenzori erici-rosenii elgonensis Elgon cheranganensis Cherangani brassiciformis battiscombei Aderb . keniodendron Kenya keniensis kilimandjari Kilimandjaro johnstonii meruensis Meru Mt Stanley 5109 m Rwenzori Lobelia 3500 m 3800 m Lobelia deckenii Dendrosenecio keniensis 4500 m Lobelia telekiii 4300 m Dendrosenecio keniodendron Kilimandjaro 4000 m Dendrosenecio kilimandjari Lien de parenté avec les genres proches: Euryops brownei Cineraria deltoidea Dendrosenecio Le genre Dendrosenecio est très isolé, les genres -
Gynura Procumbens: an Overview of the Biological Activities
MINI REVIEW published: 15 March 2016 doi: 10.3389/fphar.2016.00052 Gynura procumbens: An Overview of the Biological Activities Hui-Li Tan 1, Kok-Gan Chan 2, Priyia Pusparajah 1, Learn-Han Lee 1* and Bey-Hing Goh 1* 1 Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia, 2 Division of Genetic and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia Gynura procumbens (Lour.) Merr. (Family Asteraceae) is a medicinal plant commonly found in tropical Asia countries such as China, Thailand, Indonesia, Malaysia, and Vietnam. Traditionally, it is widely used in many different countries for the treatment of a wide variety of health ailments such as kidney discomfort, rheumatism, diabetes mellitus, constipation, and hypertension. Based on the traditional uses of G. procumbens, it seems to possess high therapeutic potential for treatment of various diseases making it a target for pharmacological studies aiming to validate and provide scientific evidence for the traditional claims of its efficacy. Although there has been considerable progress in the research on G. procumbens, to date there is no review paper gathering the reported Edited by: biological activities of G. procumbens. Hence, this review aims to provide an overview of Lyndy Joy McGaw, the biological activities of G. procumbens based on reported in vitro and in vivo studies. University of Pretoria, South Africa In brief, G. procumbens has been reported to exhibit antihypertensive, cardioprotective, Reviewed by: antihyperglycemic, fertility enhancement, anticancer, antimicrobial, antioxidant, organ Bhekumthetho Ncube, University of KwaZulu-Natal, protective, and antiinflammatory activity.