Secular Evolution in Disk Galaxies

Total Page:16

File Type:pdf, Size:1020Kb

Secular Evolution in Disk Galaxies Kormendy 2013, In Secular Evolution of Galaxies, XXIII Canary Islands Winter School of Astrophysics, ed. J. Falc´on-Barroso & J. H. Knapen (Cambridge: Cambridge Univ. Press), p. 1 Secular Evolution in Disk Galaxies John Kormendy Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, Texas 78712-1205, USA, [email protected]; Max-Planck-Institut f¨ur Extraterrestrische Physik, Giessenbachstrasse, D-85748 Garching-bei-M¨unchen, Germany; Universit¨ats-Sternwarte, Scheinerstrasse 1, D-81679 M¨unchen, Germany Abstract Self-gravitating systems evolve toward the most tightly bound configuration that is reachable via the evolution processes that are available to them. They do this by spreading – the inner parts shrink while the outer parts expand – provided that some physical process efficiently transports energy or angular momentum outward. The reason is that self-gravitating systems have negative specific heats. As a result, the evolution of stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks are fundamentally similar. How evolution proceeds then depends on the evolution processes that are available to each kind of self-gravitating system. These processes and their consequences for galaxy disks are the subjects of my lectures and of this Canary Islands Winter School. I begin with a review of the formation, growth and death of bars. Then I review the slow (“secular”) rearrangement of energy, angular momentum, and mass that results from interactions between stars or gas clouds and collective phenomena such as bars, oval disks, spiral structure and triaxial dark halos. The “existence-proof” phase of this work is largely over: we have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the center. The results of simulations correspond closely to the morphology of barred and oval galaxies. Gas that is transported to small radii reaches high densities. arXiv:1311.2609v1 [astro-ph.CO] 11 Nov 2013 Observations confirm that many barred and oval galaxies have dense central concentrations of gas and star formation. The result is to grow, on timescales of a few Gyr, dense central components that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). The resulting picture of secular galaxy evolution accounts for the richness observed in galaxy structure. 1 2 John Kormendy We can distinguish between classical and pseudo bulges because the latter retain a “memory” of their disky origin. That is, they have one or more characteristics of disks: (1) flatter shapes than those of classical bulges, (2) correspondingly large ratios of ordered to random velocities, (3) small velocity dispersions σ with respect to the Faber-Jackson correlation between σ and bulge luminosity, (4) spiral structure or nuclear bars in the “bulge” part of the light profile, (5) nearly exponential brightness profiles and (6) starbursts. So the cleanest examples of pseudobulges are recognizable. However, pseudo and classical bulges can coexist in the same galaxy. I review two important implications of secular evolution: (1) The existence of pseudobulges highlights a problem with our theory of galaxy formation by hierarchical clustering. We cannot explain galaxies that are completely bulgeless. Galaxy mergers are expected to happen often enough so that every giant galaxy should have a classical bulge. But we observe that bulgleless giant galaxies are common in field environments. We now realize that many dense centers of galaxies that we used to think are bulges were not made by mergers; they were grown out of disks. So the challenge gets more difficult. This is the biggest problem faced by our theory of galaxy formation. (2) Pseudobulges are observed to contain supermassive black holes (BHs), but they do not show the well known, tight correlations between BH mass and the mass and velocity dispersion of the host bulge. This leads to the suggestion that there are two fundamentally different BH feeding processes. Rapid global inward gas transport in galaxy mergers leads to giant BHs that correlate with host ellipticals and classical bulges, whereas local and more stochastic feeding of small BHs in largely bulgeless galaxies evidently involves too little energy feedback to result in BH-host coevolution. It is an important success of the secular evolution picture that morphological differences can be used to divide bulges into two types that correlate differently with their BHs. I review environmental secular evolution – the transformation of gas-rich, star-forming spiral and irregular galaxies into gas-poor, “red and dead” S0 and spheroidal (“Sph”) galaxies. I show that Sph galaxies such as NGC 205 and Draco are not the low-luminosity end of the structural sequence (the “fundamental plane”) of elliptical galaxies. Instead, Sph galaxies have structural parameters like those of low-luminosity S+Im galaxies. Spheroidals are continuous in their structural parameters with the disks of S0 galaxies. They are bulgeless S0s. S+Im S0+Sph transformation involves → a variety of internal (supernova-driven baryon ejection) and environmental processes (e. g., ram-pressure gas stripping, harassment, and starvation). Finally, I summarize how hierarchical clustering and secular processes can be combined into a consistent and comprehensive picture of galaxy evolution. Secular Evolution in Disk Galaxies 3 1.1 Introduction These lectures review the slow (“secular”) evolution of disk galaxies, both internally and environmentally driven. As a heuristic introduction at a 2011 winter school, they emphasize a qualitative and intuitive understanding of physical processes. This provides a useful complement to Kormendy & Kennicutt (2004), which is a more complete review of technical details and the literature. Since this is a school, my lectures will be as self-contained as possible. There will therefore be some overlap with the above review and with Kormendy (1981, 1982b, 1993b, 2008a, b); Kormendy & Cornell (2004); Kormendy & Fisher (2005, 2008) and Kormendy & Bender (2012). 1.1.1 Outline The secular evolution of disk galaxies has deep similarities to the evolution of all other kinds of self-gravitating systems. I begin by emphasizing these similarities. In particular, the growth of pseudobulges in galaxy disks is as fundamental as the growth of stars in protostellar disks, the growth of black holes in black hole accretion disks and the growth of proto-white-dwarf cores in red giant stars. A big-picture understanding of these similarities is conceptually very important. The associated physics allows us to understand what kinds of galaxies evolve secularly and what kinds do not. This review discusses only disk galaxies; secular evolution of ellipticals is also important but is less thoroughly studied. Galaxy bars are important as “engines” that drive secular evolution, so I provide a heuristic introduction to how bars grow and how they die. Then I review in some detail the evolution processes that are driven by bars and by oval disks and the formation of the various kinds of structures that are built by these processes. I particularly emphasize the growth and properties of pseudobulges. Based on this, I summarize how we recognize pseudobulges and connect them up with our overall picture of galaxy formation. Two consequences (among many) of secular evolution are particularly important. I review the problem of understanding pure-disk galaxies. These are galaxies that do not contain classical bulges. We infer that they have not experienced a major merger since the first substantial star formation. Many have barely experienced secular evolution. We do not know how these galaxies are formed. Second, I review evidence that classical bulges coevolve with their supermassive black holes but pseudobulges do not. Next, I discuss secular evolution that is environmentally driven. Here, I concentrate on the evidence that gas-rich, star forming spiral and irregular galaxies are transformed into gas-poor, “red and dead” S0 and spheroidal 4 John Kormendy galaxies. I particular emphasize the properties of spheroidals – that is, tiny dwarfs such as Fornax, Draco and UMi and larger systems such as NGC 147, NGC 185 and NGC 205. These are, in essence, bulgeless S0 galaxies. And I review the various transformation processes that may make these objects. Finally, I tie together our picture of galaxy formation by hierarchical clustering and galaxy merging (lectures by Isaac Shlosman, Nick Scoville and Daniela Calzetti) and the secular evolution that is the theme of this School. 1.1.2 Fast versus slow processes of galaxy evolution Kormendy & Kennicutt (2004) emphasize that the Universe is in transition from early times when galaxy evolution was dominated by fast processes – hierarchical clustering and galaxy merging – to a future when merging will largely be over and evolution will be dominated by slow processes (Fig. 1.1). Fig. 1.1. Processes of galaxy evolution updated from Kormendy (1982b) and from Kormendy & Kennicutt (2004). Processes are divided vertically into fast (top) and slow (bottom). Fast evolution happens on a free-fall (“dynamical”) timescale, −1/2 tdyn (Gρ) , where ρ is the density of the object produced and G is the gravitational∼ constant. Slow means many galaxy rotation periods. Processes are divided horizontally into ones that happen internally in one
Recommended publications
  • Excesss Karaoke Master by Artist
    XS Master by ARTIST Artist Song Title Artist Song Title (hed) Planet Earth Bartender TOOTIMETOOTIMETOOTIM ? & The Mysterians 96 Tears E 10 Years Beautiful UGH! Wasteland 1999 Man United Squad Lift It High (All About 10,000 Maniacs Candy Everybody Wants Belief) More Than This 2 Chainz Bigger Than You (feat. Drake & Quavo) [clean] Trouble Me I'm Different 100 Proof Aged In Soul Somebody's Been Sleeping I'm Different (explicit) 10cc Donna 2 Chainz & Chris Brown Countdown Dreadlock Holiday 2 Chainz & Kendrick Fuckin' Problems I'm Mandy Fly Me Lamar I'm Not In Love 2 Chainz & Pharrell Feds Watching (explicit) Rubber Bullets 2 Chainz feat Drake No Lie (explicit) Things We Do For Love, 2 Chainz feat Kanye West Birthday Song (explicit) The 2 Evisa Oh La La La Wall Street Shuffle 2 Live Crew Do Wah Diddy Diddy 112 Dance With Me Me So Horny It's Over Now We Want Some Pussy Peaches & Cream 2 Pac California Love U Already Know Changes 112 feat Mase Puff Daddy Only You & Notorious B.I.G. Dear Mama 12 Gauge Dunkie Butt I Get Around 12 Stones We Are One Thugz Mansion 1910 Fruitgum Co. Simon Says Until The End Of Time 1975, The Chocolate 2 Pistols & Ray J You Know Me City, The 2 Pistols & T-Pain & Tay She Got It Dizm Girls (clean) 2 Unlimited No Limits If You're Too Shy (Let Me Know) 20 Fingers Short Dick Man If You're Too Shy (Let Me 21 Savage & Offset &Metro Ghostface Killers Know) Boomin & Travis Scott It's Not Living (If It's Not 21st Century Girls 21st Century Girls With You 2am Club Too Fucked Up To Call It's Not Living (If It's Not 2AM Club Not
    [Show full text]
  • Near-Infrared Luminosity Relations and Dust Colors L
    A&A 578, A47 (2015) Astronomy DOI: 10.1051/0004-6361/201525817 & c ESO 2015 Astrophysics Obscuration in active galactic nuclei: near-infrared luminosity relations and dust colors L. Burtscher1, G. Orban de Xivry1, R. I. Davies1, A. Janssen1, D. Lutz1, D. Rosario1, A. Contursi1, R. Genzel1, J. Graciá-Carpio1, M.-Y. Lin1, A. Schnorr-Müller1, A. Sternberg2, E. Sturm1, and L. Tacconi1 1 Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, Gießenbachstr., 85741 Garching, Germany e-mail: [email protected] 2 Raymond and Beverly Sackler School of Physics & Astronomy, Tel Aviv University, 69978 Ramat Aviv, Israel Received 5 February 2015 / Accepted 5 April 2015 ABSTRACT We combine two approaches to isolate the AGN luminosity at near-IR wavelengths and relate the near-IR pure AGN luminosity to other tracers of the AGN. Using integral-field spectroscopic data of an archival sample of 51 local AGNs, we estimate the fraction of non-stellar light by comparing the nuclear equivalent width of the stellar 2.3 µm CO absorption feature with the intrinsic value for each galaxy. We compare this fraction to that derived from a spectral decomposition of the integrated light in the central arcsecond and find them to be consistent with each other. Using our estimates of the near-IR AGN light, we find a strong correlation with presumably isotropic AGN tracers. We show that a significant offset exists between type 1 and type 2 sources in the sense that type 1 MIR X sources are 7 (10) times brighter in the near-IR at log LAGN = 42.5 (log LAGN = 42.5).
    [Show full text]
  • On the Origin and Propagation of Ultra-High Energy Cosmic Rays (Measurements & Prediction Techniques)
    Dissertation On the Origin and Propagation of Ultra-High Energy Cosmic Rays (Measurements & Prediction Techniques) Nils Nierstenhoefer Wuppertal, 2011 University of Wuppertal Supervisor/First reviewer: Prof. Dr. K.-H. Kampert Second reviewer: Prof. Dr. M. Risse Motivation & Preface It is a long known fact that cosmic rays reach Earth with tremendous energies of even above 1020 eV. Despite of decades of intensive research, it was not possible to finally reveal the origin of these par- ticles. The main obstacle in this field is their rare occurrence. This is due to a very steep energy spectrum. To make this point more clear, one roughly expects to observe less than one particle per km2 in one century exceeding energies larger than 1020 eV. To overcome the limitation of low statis- tics, larger and larger cosmic ray detectors have been deployed. Today’s largest cosmic ray detector is the Pierre Auger observatory (PAO) which was constructed in the Pampa Amarilla in Argentina. It covers an area of 3000 km2 and provides the largest set of observations of ultra-high energy cosmic rays (UHECR) in history. A second difficulty in understanding the origin of UHECR should be pointed out: Galactic and extra- galactic magnetic fields might alter the direction of even the highest energy events in a way that they do not point back to their source. In 2007 and 2008, already before the completion of the full detector, the Auger collaboration pub- lished a set of three important papers [1, 2, 3]. The first paper dealt with the correlation of the arrival directions of the highest energetic events with the distribution of active galactic nuclei (AGN) closer than 75Mpc from a catalog compiled by Veron-Cetty and Veron (VC-V) [4].
    [Show full text]
  • Stellar Tidal Streams As Cosmological Diagnostics: Comparing Data and Simulations at Low Galactic Scales
    RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG DOCTORAL THESIS Stellar Tidal Streams as Cosmological Diagnostics: Comparing data and simulations at low galactic scales Author: Referees: Gustavo MORALES Prof. Dr. Eva K. GREBEL Prof. Dr. Volker SPRINGEL Astronomisches Rechen-Institut Heidelberg Graduate School of Fundamental Physics Department of Physics and Astronomy 14th May, 2018 ii DISSERTATION submitted to the Combined Faculties of the Natural Sciences and Mathematics of the Ruperto-Carola-University of Heidelberg, Germany for the degree of DOCTOR OF NATURAL SCIENCES Put forward by GUSTAVO MORALES born in Copiapo ORAL EXAMINATION ON JULY 26, 2018 iii Stellar Tidal Streams as Cosmological Diagnostics: Comparing data and simulations at low galactic scales Referees: Prof. Dr. Eva K. GREBEL Prof. Dr. Volker SPRINGEL iv NOTE: Some parts of the written contents of this thesis have been adapted from a paper submitted as a co-authored scientific publication to the Astronomy & Astrophysics Journal: Morales et al. (2018). v NOTE: Some parts of this thesis have been adapted from a paper accepted for publi- cation in the Astronomy & Astrophysics Journal: Morales, G. et al. (2018). “Systematic search for tidal features around nearby galaxies: I. Enhanced SDSS imaging of the Local Volume". arXiv:1804.03330. DOI: 10.1051/0004-6361/201732271 vii Abstract In hierarchical models of galaxy formation, stellar tidal streams are expected around most galaxies. Although these features may provide useful diagnostics of the LCDM model, their observational properties remain poorly constrained. Statistical analysis of the counts and properties of such features is of interest for a direct comparison against results from numeri- cal simulations. In this work, we aim to study systematically the frequency of occurrence and other observational properties of tidal features around nearby galaxies.
    [Show full text]
  • April Constellations of the Month
    April Constellations of the Month Leo Small Scope Objects: Name R.A. Decl. Details M65! A large, bright Sa/Sb spiral galaxy. 7.8 x 1.6 arc minutes, magnitude 10.2. Very 11hr 18.9m +13° 05’ (NGC 3623) high surface brighness showing good detail in medium sized ‘scopes. M66! Another bright Sb galaxy, only 21 arc minutes from M65. Slightly brighter at mag. 11hr 20.2m +12° 59’ (NGC 3627) 9.7, measuring 8.0 x 2.5 arc minutes. M95 An easy SBb barred spiral, 4 x 3 arc minutes in size. Magnitude 10.5, with 10hr 44.0m +11° 42’ a bright central core. The bar and outer ring of material will require larger (NGC 3351) aperature and dark skies. M96 Another bright Sb spiral, about 42 arc minutes east of M95, but larger and 10hr 46.8m +11° 49’ (NGC 3368) brighter. 6 x 4 arc minutes, magnitude 10.1. Located about 48 arc minutes NNE of M96. This small elliptical galaxy measures M105 only 2 x 2.1 arc minutes, but at mag. 10.3 has very high surface brightness. 10hr 47.8m +12° 35’ (NGC 3379) Look for NGC 3384! (110NGC) and NGC 3389 (mag 11.0 and 12.2) which form a small triangle with M105. NGC 3384! 10hr 48.3m +12° 38’ See comment for M105. The brightest galaxy in Leo, this Sb/Sc spiral galaxy shines at mag. 9.5. Look for NGC 2903!! 09hr 32.2m +21° 30’ a hazy patch 11 x 4.7 arc minutes in size 1.5° south of l Leonis.
    [Show full text]
  • Guide Du Ciel Profond
    Guide du ciel profond Olivier PETIT 8 mai 2004 2 Introduction hjjdfhgf ghjfghfd fg hdfjgdf gfdhfdk dfkgfd fghfkg fdkg fhdkg fkg kfghfhk Table des mati`eres I Objets par constellation 21 1 Androm`ede (And) Andromeda 23 1.1 Messier 31 (La grande Galaxie d'Androm`ede) . 25 1.2 Messier 32 . 27 1.3 Messier 110 . 29 1.4 NGC 404 . 31 1.5 NGC 752 . 33 1.6 NGC 891 . 35 1.7 NGC 7640 . 37 1.8 NGC 7662 (La boule de neige bleue) . 39 2 La Machine pneumatique (Ant) Antlia 41 2.1 NGC 2997 . 43 3 le Verseau (Aqr) Aquarius 45 3.1 Messier 2 . 47 3.2 Messier 72 . 49 3.3 Messier 73 . 51 3.4 NGC 7009 (La n¶ebuleuse Saturne) . 53 3.5 NGC 7293 (La n¶ebuleuse de l'h¶elice) . 56 3.6 NGC 7492 . 58 3.7 NGC 7606 . 60 3.8 Cederblad 211 (N¶ebuleuse de R Aquarii) . 62 4 l'Aigle (Aql) Aquila 63 4.1 NGC 6709 . 65 4.2 NGC 6741 . 67 4.3 NGC 6751 (La n¶ebuleuse de l’œil flou) . 69 4.4 NGC 6760 . 71 4.5 NGC 6781 (Le nid de l'Aigle ) . 73 TABLE DES MATIERES` 5 4.6 NGC 6790 . 75 4.7 NGC 6804 . 77 4.8 Barnard 142-143 (La tani`ere noire) . 79 5 le B¶elier (Ari) Aries 81 5.1 NGC 772 . 83 6 le Cocher (Aur) Auriga 85 6.1 Messier 36 . 87 6.2 Messier 37 . 89 6.3 Messier 38 .
    [Show full text]
  • Report of Contributions
    Mapping the X-ray Sky with SRG: First Results from eROSITA and ART-XC Report of Contributions https://events.mpe.mpg.de/e/SRG2020 Mapping the X- … / Report of Contributions eROSITA discovery of a new AGN … Contribution ID : 4 Type : Oral Presentation eROSITA discovery of a new AGN state in 1H0707-495 Tuesday, 17 March 2020 17:45 (15) One of the most prominent AGNs, the ultrasoft Narrow-Line Seyfert 1 Galaxy 1H0707-495, has been observed with eROSITA as one of the first CAL/PV observations on October 13, 2019 for about 60.000 seconds. 1H 0707-495 is a highly variable AGN, with a complex, steep X-ray spectrum, which has been the subject of intense study with XMM-Newton in the past. 1H0707-495 entered an historical low hard flux state, first detected with eROSITA, never seen before in the 20 years of XMM-Newton observations. In addition ultra-soft emission with a variability factor of about 100 has been detected for the first time in the eROSITA light curves. We discuss fast spectral transitions between the cool and a hot phase of the accretion flow in the very strong GR regime as a physical model for 1H0707-495, and provide tests on previously discussed models. Presenter status Senior eROSITA consortium member Primary author(s) : Prof. BOLLER, Thomas (MPE); Prof. NANDRA, Kirpal (MPE Garching); Dr LIU, Teng (MPE Garching); MERLONI, Andrea; Dr DAUSER, Thomas (FAU Nürnberg); Dr RAU, Arne (MPE Garching); Dr BUCHNER, Johannes (MPE); Dr FREYBERG, Michael (MPE) Presenter(s) : Prof. BOLLER, Thomas (MPE) Session Classification : AGN physics, variability, clustering October 3, 2021 Page 1 Mapping the X- … / Report of Contributions X-ray emission from warm-hot int … Contribution ID : 9 Type : Poster X-ray emission from warm-hot intergalactic medium: the role of resonantly scattered cosmic X-ray background We revisit calculations of the X-ray emission from warm-hot intergalactic medium (WHIM) with particular focus on contribution from the resonantly scattered cosmic X-ray background (CXB).
    [Show full text]
  • ASTRONOMY and ASTROPHYSICS the Elliptical Galaxy Formerly Known As the Local Group: Merging the Globular Cluster Systems
    Astron. Astrophys. 358, 471–480 (2000) ASTRONOMY AND ASTROPHYSICS The elliptical galaxy formerly known as the Local Group: merging the globular cluster systems Duncan A. Forbes1,2, Karen L. Masters1, Dante Minniti3, and Pauline Barmby4 1 University of Birmingham, School of Physics and Astronomy, Edgbaston, Birmingham B15 2TT, UK 2 Swinburne University of Technology, Astrophysics and Supercomputing, Hawthorn, Victoria 3122, Australia 3 P. Universidad Catolica,´ Departamento de Astronom´ıa y Astrof´ısica, Casilla 104, Santiago 22, Chile 4 Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA Received 5 November 1999 / Accepted 27 January 2000 Abstract. Prompted by a new catalogue of M31 globular clus- al. 1995; Minniti et al. 1996). Furthermore Hubble Space Tele- ters, we have collected together individual metallicity values for scope studies of merging disk galaxies reveal evidence for the globular clusters in the Local Group. Although we briefly de- GC systems of the progenitor galaxies (e.g. Forbes & Hau 1999; scribe the globular cluster systems of the individual Local Group Whitmore et al. 1999). Thus GCs should survive the merger of galaxies, the main thrust of our paper is to examine the collec- their parent galaxies, and will form a new GC system around tive properties. In this way we are simulating the dissipationless the newly formed elliptical galaxy. merger of the Local Group, into presumably an elliptical galaxy. The globular clusters of the Local Group are the best studied Such a merger is dominated by the Milky Way and M31, which and offer a unique opportunity to examine their collective prop- appear to be fairly typical examples of globular cluster systems erties (reviews of LG star clusters can be found in Brodie 1993 of spiral galaxies.
    [Show full text]
  • A Disturbed Galactic Duo 20 April 2011
    A disturbed galactic duo 20 April 2011 neighbours. This galactic grouping, found about 70 million light- years away in the constellation Sextans (The Sextant), was discovered by the English astronomer William Herschel in 1783. Modern astronomers have gauged the distance between NGC 3169 (left) and NGC 3166 (right) as a mere 50 000 light-years, a separation that is only about half the diameter of the Milky Way galaxy. In such tight quarters, gravity can start to play havoc with galactic structure. Spiral galaxies like NGC 3169 and NGC 3166 tend to have orderly swirls of stars and dust pinwheeling about their glowing centres. Close encounters with other massive objects can jumble this classic configuration, often serving as a disfiguring prelude to the merging of galaxies into one larger galaxy. So far, the interactions of NGC 3169 and NGC 3166 have just lent a bit of character. NGC 3169's This image from the Wide Field Imager on the arms, shining bright with big, young, blue stars, MPG/ESO 2.2-meter telescope at the La Silla have been teased apart, and lots of luminous gas Observatory in Chile captures the pair of galaxies NGC has been drawn out from its disc. In NGC 3166's 3169 (left) and NGC 3166 (right). These adjacent case, the dust lanes that also usually outline spiral galaxies display some curious features, demonstrating arms are in disarray. Unlike its bluer counterpart, that each member of the duo is close enough to feel the NGC 3166 is not forming many new stars. distorting gravitational influence of the other.
    [Show full text]
  • Galaxies with Rows A
    Astronomy Reports, Vol. 45, No. 11, 2001, pp. 841–853. Translated from Astronomicheski˘ı Zhurnal, Vol. 78, No. 11, 2001, pp. 963–976. Original Russian Text Copyright c 2001 by Chernin, Kravtsova, Zasov, Arkhipova. Galaxies with Rows A. D. Chernin, A. S. Kravtsova, A. V. Zasov, and V. P. Arkhipova Sternberg Astronomical Institute, Universitetskii˘ pr. 13, Moscow, 119899 Russia Received March 16, 2001 Abstract—The results of a search for galaxies with straight structural elements, usually spiral-arm rows (“rows” in the terminology of Vorontsov-Vel’yaminov), are reported. The list of galaxies that possess (or probably possess) such rows includes about 200 objects, of which about 70% are brighter than 14m.On the whole, galaxies with rows make up 6–8% of all spiral galaxies with well-developed spiral patterns. Most galaxies with rows are gas-rich Sbc–Scd spirals. The fraction of interacting galaxies among them is appreciably higher than among galaxies without rows. Earlier conclusions that, as a rule, the lengths of rows are similar to their galactocentric distances and that the angles between adjacent rows are concentrated near 120◦ are confirmed. It is concluded that the rows must be transient hydrodynamic structures that develop in normal galaxies. c 2001 MAIK “Nauka/Interperiodica”. 1. INTRODUCTION images were reproduced by Vorontsov-Vel’yaminov and analyze the general properties of these objects. The long, straight features found in some galaxies, which usually appear as straight spiral-arm rows and persist in spite of differential rotation of the galaxy 2. THE SAMPLE OF GALAXIES disks, pose an intriguing problem. These features, WITH STRAIGHT ROWS first described by Vorontsov-Vel’yaminov (to whom we owe the term “rows”) have long escaped the To identify galaxies with rows, we inspected about attention of researchers.
    [Show full text]
  • L'italia E L'eurovision Song Contest Un Rinnovato
    La musica unisce l'Europa… e non solo C'è chi la definisce "La Champions League" della musica e in fondo non sbaglia. L'Eurovision è una grande festa, ma soprattutto è un concorso in cui i Paesi d'Europa si sfidano a colpi di note. Tecnicamente, è un concorso fra televisioni, visto che ad organizzarlo è l'EBU (European Broadcasting Union), l'ente che riunisce le tv pubbliche d'Europa e del bacino del Mediterraneo. Noi italiani l'abbiamo a lungo chiamato Eurofestival, i francesi sciovinisti lo chiamano Concours Eurovision de la Chanson, l'abbreviazione per tutti è Eurovision. Oggi più che mai una rassegna globale, che vede protagonisti nel 2016 43 paesi: 42 aderenti all'ente organizzatore più l'Australia, che dell'EBU è solo membro associato, essendo fuori dall'area (l’anno scorso fu invitata dall’EBU per festeggiare i 60 anni del concorso per via dei grandi ascolti che la rassegna fa in quel paese e che quest’anno è stata nuovamente invitata dall’organizzazione). L'ideatore della rassegna fu un italiano: Sergio Pugliese, nel 1956 direttore della RAI, che ispirandosi a Sanremo volle creare una rassegna musicale europea. La propose a Marcel Bezençon, il franco-svizzero allora direttore generale del neonato consorzio eurovisione, che mise il sigillo sull'idea: ecco così nascere un concorso di musica con lo scopo nobile di promuovere la collaborazione e l'amicizia tra i popoli europei, la ricostituzione di un continente dilaniato dalla guerra attraverso lo spettacolo e la tv. E oltre a questo, molto più prosaicamente, anche sperimentare una diretta in simultanea in più Paesi e promuovere il mezzo televisivo nel vecchio continente.
    [Show full text]
  • Karaoke Mietsystem Songlist
    Karaoke Mietsystem Songlist Ein Karaokesystem der Firma Showtronic Solutions AG in Zusammenarbeit mit Karafun. Karaoke-Katalog Update vom: 13/10/2020 Singen Sie online auf www.karafun.de Gesamter Katalog TOP 50 Shallow - A Star is Born Take Me Home, Country Roads - John Denver Skandal im Sperrbezirk - Spider Murphy Gang Griechischer Wein - Udo Jürgens Verdammt, Ich Lieb' Dich - Matthias Reim Dancing Queen - ABBA Dance Monkey - Tones and I Breaking Free - High School Musical In The Ghetto - Elvis Presley Angels - Robbie Williams Hulapalu - Andreas Gabalier Someone Like You - Adele 99 Luftballons - Nena Tage wie diese - Die Toten Hosen Ring of Fire - Johnny Cash Lemon Tree - Fool's Garden Ohne Dich (schlaf' ich heut' nacht nicht ein) - You Are the Reason - Calum Scott Perfect - Ed Sheeran Münchener Freiheit Stand by Me - Ben E. King Im Wagen Vor Mir - Henry Valentino And Uschi Let It Go - Idina Menzel Can You Feel The Love Tonight - The Lion King Atemlos durch die Nacht - Helene Fischer Roller - Apache 207 Someone You Loved - Lewis Capaldi I Want It That Way - Backstreet Boys Über Sieben Brücken Musst Du Gehn - Peter Maffay Summer Of '69 - Bryan Adams Cordula grün - Die Draufgänger Tequila - The Champs ...Baby One More Time - Britney Spears All of Me - John Legend Barbie Girl - Aqua Chasing Cars - Snow Patrol My Way - Frank Sinatra Hallelujah - Alexandra Burke Aber Bitte Mit Sahne - Udo Jürgens Bohemian Rhapsody - Queen Wannabe - Spice Girls Schrei nach Liebe - Die Ärzte Can't Help Falling In Love - Elvis Presley Country Roads - Hermes House Band Westerland - Die Ärzte Warum hast du nicht nein gesagt - Roland Kaiser Ich war noch niemals in New York - Ich War Noch Marmor, Stein Und Eisen Bricht - Drafi Deutscher Zombie - The Cranberries Niemals In New York Ich wollte nie erwachsen sein (Nessajas Lied) - Don't Stop Believing - Journey EXPLICIT Kann Texte enthalten, die nicht für Kinder und Jugendliche geeignet sind.
    [Show full text]