Integrative and systematics of Winnertz (Diptera, )  Trude Magnussen 

 'LVVHUWDWLRQIRUWKHGHJUHHRI3KLORVRSKLDH'RFWRU 3K'   1DWXUDO+LVWRU\0XVHXP )DFXOW\RI0DWKHPDWLFVDQG1DWXUDO6FLHQFHV  81,9(56,7<2)26/2 



                            ‹7UXGH0DJQXVVHQ   Series of dissertations submitted to the Faculty of Mathematics and Natural Sciences, University of Oslo No. 2260

,661   $OOULJKWVUHVHUYHG1RSDUWRIWKLVSXEOLFDWLRQPD\EH UHSURGXFHGRUWUDQVPLWWHGLQDQ\IRUPRUE\DQ\PHDQVZLWKRXWSHUPLVVLRQ          &RYHU+DQQH%DDGVJDDUG8WLJDUG 3ULQWSURGXFWLRQ5HSURVHQWUDOHQ8QLYHUVLW\RI2VOR   $FNQRZOHGJHPHQWV

0DQ\JUHDWSHRSOHKDYHFRQWULEXWHGWRWKHUHDOL]DWLRQRIWKLVWKHVLV)LUVWDQGIRUHPRVW,ZRXOGOLNHWR WKDQNP\WKUHHVXSHUYLVRUVZHPDNHDJUHDWWHDP*HLUWKDQN\RXIRUJLYLQJPHWKHRSSRUWXQLW\WRGR WKLVZRUN,DPJUDWHIXOWKDW\RXLQWURGXFHGPHWRWKHIDQWDVWLFZRUOGRIIXQJXVJQDWVDQGIRUVKDULQJ \RXUYDVWNQRZOHGJHRIWKLVSHFXOLDUJURXSRIIOLHV,DPDOVRJUDWHIXOIRU\RXUSDWLHQFHWKRURXJKQHVV DQGVHQVHIRUGHWDLOZKLFKKDYHKHOSHGPHWUHPHQGRXVO\WKURXJKWKHZULWLQJSURFHVV$ULOGWKDQN \RXIRUEHLQJLQYROYHGDELWDVDQRXWVLGHUEXWFRQWULEXWLQJZLWKHQWKXVLDVPDQGTXHVWLRQVWKDWPDNH XV “LQVHFW SHRSOH” WKLQN D ELW GLIIHUHQWO\ -RVWHLQ , DP VR JUDWHIXO WKDW \RX KDYH LQYROYHG PH LQ ILHOGZRUNDQGIRUOHWWLQJPHZRUNLQ\RXUFROOHFWLRQ

7KH1DWXUDO+LVWRU\0XVHXPLV DXQLTXHSODFHWRZRUNZLWKVRPDQ\IULHQGO\DQGKHOSIXOSHRSOH ZKLFKDOOKDYHFRQWULEXWHGWRWKHWKHVLVDQGRUP\HYHU\GD\OLIHIRUWKHODVWIRXU\HDUV7RP\IHOORZ HQWRPRORJLVWV/DUV2YH/HLI+DOOYDUG'DZQ$\D5DQMHQLDQG-RQ3HGHUWKDQN\RXIRUPRUQLQJ FRIIHHFRPSDQ\GLVFXVVLRQVDQGIRUVKDULQJ\RXUNQRZOHGJHDERXWLQVHFWVDQGFROOHFWLRQV$VSHFLDO WKDQNVWR+DOOYDUGDQG/DUV2YHIRUYDOXDEOHFRPPHQWVRQP\WKHVLV+DOOYDUGWKDQN\RXIRUVKDULQJ \RXU NQRZOHGJH DERXW WKH $GREH ZRUOG \RX KDYH PDGH P\ WKHVLV OLIH HDVLHU *XQQKLOG P\ GHDU EDUFRGHDQGWUDYHOSDUWQHUWKDQN\RXIRUEHLQJ\RXDQGIRUFKHHULQJPHXS/DUV(ULN-DQDQGWKHUHVW RIWKHELUGJURXSWKDQN\RXIRULQFOXGLQJPH7RUVWHQWKDQN\RXIRUJHWWLQJLQYROYHGLQ3DSHUDQG IRU LQWURGXFLQJ PH WR WKH ILHOG RI ELRLQIRUPDWLFV \RX KDYH EHHQ D JUHDW WHDFKHU DQG FROODERUDWRU 9ODGLPLUWKDQN\RXIRUWDNLQJWKHWLPHWRWUDQVODWHODEHOVDQGSDSHUV/XW]WKDQN\RXIRUH[SODLQLQJ 0,72ELPWRPH/LVEHWK-DUO$QGUHDVDQG$XGXQDWWKH'1$ODE,DPJUDWHIXOIRU\RXUKHOSDQG LQYROYHPHQWLQP\ZRUNDQGIRUDOZD\VEHLQJSRVLWLYHDQGIULHQGO\

7RP\GHDU1+0IULHQGV6RQMDDQG6LULWKDQN\RXIRUPRWLYDWLRQDQGFRPSDQ\-RVHWKDQN\RXIRU ORQJFRIIHHEUHDNVGLVFXVVLRQVDQGEDFNLQJ6LOMH\RXKDYHEHHQP\IULHQGDOPRVWIURPWKHILUVWGD\, VHWIRRWLQWKLVPXVHXPDQGWRKDYH\RXUVXSSRUWDQGFRPSDQ\KDYHEHHQLQYDOXDEOH

7R DOO P\ IULHQGV RXWVLGHWKHIHQFHV RI WKH ERWDQLFDO JDUGHQWKDQN \RX IRUVXSSRUW DQG JLYLQJ PH SHUVSHFWLYH 7R P\ SDUHQWV DQG VLVWHU WKDQN \RX IRU HQFRXUDJLQJ PH WR GR ZKDWHYHU , ZDQW DQG EHOLHYLQJLQPHIURPWKHVWDUW

7RP\ER\VDWKRPH+HLQHDQG*LJJV\RXPDGHWKLVSRVVLEOH*LJJVWKDQN\RXIRUFKHHULQJPHXS DQGZDONLQJPHHYHU\GD\+HLQH,FRXOGQRWKDYHGRQHWKLVZLWKRXW\RX,ORYH\RX



7UXGH

Contents

6XPPDU\……………………………………………………………………………………

/LVWRISDSHUV………………………………………………………………………...... ……....….. 

_,QWURGXFWLRQ……………………………………………………...... …………………………..……

_)XQJXVJQDWV…………………………………………...... ……………………………………

_7KHJHQXVAllodia:LQQHUW]…………………………………………...

_0RUSKRORJ\………………………………...... …………

_'LYHUVLW\DQGGLVWULEXWLRQ……………………………………………………….

_&ODVVLILFDWLRQDQGWD[RQRPLFKLVWRU\………………………….….

_2EMHFWLYHV……………………………...... ……………...... 

_7D[RQVDPSOLQJDQGPHWKRGRORJ\...……………………

_0DWHULDO…………………………………………………………….…

_0RUSKRORJ\DQGWHUPLQRORJ\

_'1$EDUFRGLQJ

_*HQRPHVNLPPLQJ

_0DLQILQGLQJVDQGGLVFXVVLRQ

_%ULHIVXPPDU\RIUHVXOWV

_*HQHUDRUVXEJHQHUD"

_0ROHFXODUUHVXOWV

_0RUSKRORJ\

_7KHQHZVSHFLHVGHOLPLWDWLRQDQGFKDUDFWHUV

_0RUSKRORJ\

_0ROHFXODUUHVXOWV

_&RQFOXGLQJUHPDUNVDQGIXWXUHSHUVSHFWLYHV  

5HIHUHQFHV

3DSHUV,–,9  

6XPPDU\

7KLVWKHVLVIRFXVHVRQWKHGLYHUVLW\GLVWULEXWLRQWD[RQRP\DQGSK\ORJHQ\RIWKHIXQJXVJQDWJHQXVAllodia 0\FHWRSKLOLGDH  Allodia VSHFLHVDUHFRPPRQDQGZLGHVSUHDGLQWKH+RODUFWLFUHJLRQEXWWKHJHQXVKDV DOVREHHQUHFRUGHGIURPWKH2ULHQWDO$IURWURSLFDODQG2FHDQLDQUHJLRQVDOWKRXJKRXUNQRZOHGJHRIWKHVH UHJLRQVLVOLPLWHG7KHJHQXVKDVKLVWRULFDOO\JRQHWKURXJKVHYHUDOV\VWHPDWLFFKDQJHVZLWKDGGLWLRQVDQG H[FOXVLRQV RI WD[D 8VLQJ PRUSKRORJLFDO FKDUDFWHUV '1$ EDUFRGHV DQG ZKROH JHQRPH VHTXHQFLQJ ZH H[DPLQHDQGUHYLVHWKHWD[RQRP\RIWKHJHQXV

,Q WKH ILUVWWZR SDSHUVZHORRNLQWRWKHSK\ORJHQHWLFUHODWLRQVKLSVRI AllodiaDQGUHYLVHWKHWD[RQRP\ DFFRUGLQJWRRXUUHVXOWVREWDLQHGIURPDQDO\VHVRIERWKPROHFXODUDQGPRUSKRORJLFDOGDWD,Q3DSHU,WKH PRQRSK\O\DQGVXEJHQHULFVWDWXVRIWKHWZRVXEJHQHUDAllodiaDQGBrachycamptaLVLQYHVWLJDWHGXVLQJD JHQRPHVNLPPLQJPHWKRGRORJ\&RPSOHWHPLWRFKRQGULDOJHQRPHVHTXHQFHVLVFRPELQHGZLWKWKHQXFOHDU 6 DQG 6 JHQHV DQG XVHG WR LQIHU D PROHFXODU SK\ORJHQ\ 7KH UHVXOWLQJ SK\ORJHQ\ FRQILUPHG WKH PRQRSK\O\RIWKHWZRVXEJHQHUD%DVHGRQWKLVERWKVXEJHQHUDZHUHUDLVHGWRJHQXVUDQN$GGLWLRQDOO\WKH PRUSKRORJLFDO FKDUDFWHUV XVHG E\ SUHYLRXV DXWKRUV WR VHSDUDWH WKH WZR JURXSV DUH UHYLHZHG DQG UHH[DPLQHG $V D UHVXOW RI WKLV UHH[DPLQDWLRQ D QHZ FKDUDFWHU LV IRXQG ZKLFK VXSSRUWV WKH QHZ FODVVLILFDWLRQWKH PLFURVWUXFWXUHRIWKHVHWDHRQ WKHVFXWXP FOHDUO\ VHSDUDWHV WKH WZR JURXSV 7KH QHZ PRUSKRORJLFDOFKDUDFWHULVGRFXPHQWHGXVLQJ6FDQQLQJ(OHFWURQ0LFURVFRSH,Q3DSHU,,ZHUHYLVHDQG UHYLHZWKHAllodiaVSHFLHVRFFXUULQJLQWKH+RODUFWLFZKHUHWKHJHQXVKDVLWVKLJKHVWGLYHUVLW\7KURXJK H[DPLQDWLRQRIPDWHULDOVXEMHFWHGWR'1$EDUFRGLQJVHYHUDO QHZVSHFLHVDUHGHVFULEHGDQGLQWHUHVWLQJ SDWWHUQVRIFLUFXPSRODUGLVWULEXWLRQRIVSHFLHVDUHLQYHVWLJDWHG7KHVWXG\LVPRVWO\EDVHGRQPDWHULDOIURP 1RUZD\DQG&DQDGD5HODWLRQVKLSVEHWZHHQFORVHO\UHODWHGVSHFLHVDUHVWXGLHGXVLQJ'1$EDUFRGHV,76 VHTXHQFHV DQG PRUSKRORJ\ 7ZR VSHFLHV FRPSOH[HV DUH GHWHFWHG ZKHUH WKH '1$ EDUFRGHV LQGLFDWH D GLIIHUHQWSDWWHUQWKDQPRUSKRORJ\PDNLQJWKHERUGHUVEHWZHHQWKHFODGHVXQFOHDU,QWRWDOVL[VSHFLHVDUH GHVFULEHGDVQHZWRVFLHQFH)XUWKHUPRUHWKHIHPDOHVRIVHYHUDOVSHFLHVDUHGHVFULEHGDQGLOOXVWUDWHGIRUWKH ILUVWWLPH$QLOOXVWUDWHGNH\WRDOOWKHVSHFLHVRFFXUULQJLQWKH+RODUFWLFUHJLRQLVSURYLGHG

,QSDSHUVDQGWKHXQNQRZQGLYHUVLW\RIWKHVXEJHQXVAllodia VVLQPRXQWDLQRXVDUHDVRXWVLGHWKHPDLQ GLVWULEXWLRQDUHDRIWKHJHQXVLVH[SORUHGIRUWKHILUVWWLPH,Q3DSHU,,,VL[QHZVSHFLHVDUHGHVFULEHG EDVHG RQ PDWHULDO FROOHFWHG LQ GLIIHUHQW PRXQWDLQRXV DUHDV LQ VRXWK DQG HDVW $IULFD 7KH VSHFLHV DUH PRUSKRORJLFDOO\YHU\VLPLODUDQGFDQRQO\EHVHSDUDWHGEDVHGRQPLQRUGLIIHUHQFHVLQZLQJYHQDWLRQDQG FKDUDFWHUVRIWKHPDOHWHUPLQDOLD7KHJHQHWLFGLIIHUHQFHVEHWZHHQWKHVSHFLHVLQWKH'1$EDUFRGHUHJLRQ &2, VXSSRUWVHSDUDWLRQRIWKHVSHFLHV7KHRULJLQDQGGLVWULEXWLRQRIWKH$IURWURSLFDOWD[DLQUHODWLRQWR HDFK RWKHU DQG WR WKHLU +RODUFWLF UHODWLYHV LV DOVR GLVFXVVHG LQ WKLV SDSHU ,Q3DSHU,9 DQ H[WHQVLYH



FROOHFWLRQRIIXQJXVJQDWVIURP1HSDODQG%KXWDQLVH[DPLQHGUHYHDOLQJQLQHVSHFLHVRIAllodia QHZWR VFLHQFH$OOVSHFLPHQVZHUHFROOHFWHGDWKLJKDOWLWXGHVLQWKH&HQWUDODQG(DVWHUQ+LPDOD\DV7KHIXQJXV JQDWIDXQDRIWKLVUHJLRQLVSRRUO\NQRZQDQGWKHVSHFLHVGHVFULEHGLQWKLVSDSHUUHSUHVHQWWKHILUVWUHFRUGV RIWKHJHQXVAllodiaLQWKHWZRFRXQWULHVDQGKHOSXVWREHWWHUXQGHUVWDQGWKHGLYHUVLW\LQWKHUHJLRQ

,QVXPPDU\WKHSDSHUVSUHVHQWHGLQWKLVWKHVLVFRQWULEXWHWRGHVFULEHWKHJOREDOGLYHUVLW\RIAllodiaDQG UHYLVHVWKHWD[RQRP\RIWKHJHQXV XVLQJERWKWUDGLWLRQDODQGQHZPHWKRGV$WRWDORIQHZVSHFLHVDUH GHVFULEHGVSDQQLQJWKH2ULHQWDOWKH$IURWURSLFDODQGWKH+RODUFWLFUHJLRQ%DVHGRQPROHFXODUDQDO\VHV ZHUHHVWDEOLVKBrachycamptaDVDYDOLGJHQXVDQGSURYLGHDQHZFKDUDFWHUWRVHSDUDWHLWIURPLWVVLVWHU JHQXV Allodia:H UHYLVH WKH +RODUFWLFIDXQD RI Allodia VV DQG FRPSDUH WKH 1HDUFWLF DQG 3DODHDUFWLF VSHFLHVXVLQJ'1$VHTXHQFHGDWDIRUWKHILUVWWLPH$VWKHUHVXOWVRIWKHWKHVLVLQGLFDWHWKHH[LVWHQFHRID ODUJHQXPEHURIVWLOOXQNQRZQVSHFLHVLWVKRXOGHQFRXUDJHIXUWKHUVWXGLHVRQWKHAllodiaIDXQDSDUWLFXODUO\ LQSRRUO\VWXGLHGDUHDV,WLVDOVRRXUKRSHWKDWWKHVWXG\ZLOOFRQVWLWXWHDWKRURXJKIRXQGDWLRQIRUVLPLODU IXWXUHVWXGLHVRIRWKHUJHQHUDLQWKHWULEH







/LVWRISDSHUV

7KHWKHVLVLVEDVHGRQWKHIROORZLQJIRXUSDSHUVZKLFKZLOOEHUHIHUUHGWRLQWKHWH[WE\WKHLUURPDQ QXPHUDOV

, 0DJQXVVHQ7-RKQVHQ$.M UDQGVHQ-6WUXFN7+DQG6¡OL*((0ROHFXODUSK\ORJHQ\RI Allodia:LQQHUW]sensu lato 0\FHWRSKLOLGDH FRQVWUXFWHGXVLQJJHQRPHVNLPPLQJ Submitted manuscript 

,, 0DJQXVVHQ7.M UDQGVHQ--RKQVHQ$DQG6¡OL*((5HYLVLRQRIAllodia 'LSWHUD 0\FHWRSKLOLGDH XVLQJDQLQWHJUDWLYHDSSURDFKManuscript 

,,, 0DJQXVVHQ7.M UDQGVHQ--RKQVHQ$DQG6¡OL*((  6L[QHZVSHFLHVRI$IURWURSLFDO Allodia 'LSWHUD0\FHWRSKLOLGDH '1$EDUFRGHVLQGLFDWHUHFHQWGLYHUVLILFDWLRQZLWKDVLQJOH RULJLQZootaxa  –KWWSG[GRLRUJ]RRWD[D 

,9 0DJQXVVHQ76¡OL*((DQG.M UDQGVHQ-  Allodia:LQQHUW] 'LSWHUD0\FHWRSKLOLGDH  IURPWKH+LPDOD\DVZLWKQLQHVSHFLHVQHZWRVFLHQFHZookeys– KWWSVGRLRUJ]RRNH\V   7KHQHZVSHFLHVQDPHVDQGWD[RQRPLFFKDQJHVGHVFULEHGLQ3DSHU,DQG,,DUHSURYLVLRQDOVLQFHWKHSDSHUV DUHQRWSXEOLVKHGRUIRUPDOO\DFFHSWHGHOVHZKHUH  







,QWURGXFWLRQ

$OWKRXJKDSSUR[LPDWHO\RQHLQHYHU\WHQWKGHVFULEHGVSHFLHVLVDIO\ aVSHFLHV HVWLPDWHVVXJJHVW WKDWDVPDQ\DVVSHFLHVDZDLWGHVFULSWLRQ 3DSHHWDO :KHQDODUJHSDUWRIWKHGLYHUVLW\LQD JURXSLVXQNQRZQDVLWLVLQDPHJDGLYHUVHJURXSVXFKDV'LSWHUDWKLVOLPLWVDPRUHFRPSOHWHXQGHUVWDQGLQJ RIWKHELRORJ\HYROXWLRQDQGGLVWULEXWLRQRIVHYHUDORILWVWD[D2QHLPSRUWDQWUHDVRQZK\VRPDQ\VSHFLHV RI'LSWHUDDUHVWLOOXQGLVFRYHUHGLVWKDWWKHRUGHULQFOXGHVVHYHUDOPDMRUWD[DWKDWwe can refer to as “open ended”. 6XFK WD[D DUH GHILQHG E\ %LFNHO   DV H[WUHPHO\ VSHFLRVH ZLGHO\ GLVWULEXWHG WD[D ZKHUH HVWLPDWLQJWKHDFWXDOGLYHUVLW\LVFORVHWRLPSRVVLEOH:LWKLQVXFKJURXSVDSSURSULDWHNH\VDUHIUHTXHQWO\ ODFNLQJDQGPDQ\RIWKHVSHFLHVGHVFULSWLRQVDUHROGGHILFLHQWRUKDUGWRGHFLSKHUHYHQIRUVSHFLDOLVWV

_)XQJXVJQDWV

)XQJXVJQDWVLQWKHEURDGVHQVHLHWKHVXSHUIDPLO\6FLDURLGHDLQFOXGHVPRUHWKDQVSHFLHVDQGLV OLVWHG E\ %LFNHO   DV RQH RI VHYHUDO RSHQ HQGHG GLSWHUDQ WD[D 7KH 6FLDURLGHD DUH FRQVLGHUHG PRQRSK\OHWLF DQG LV FRPPRQO\ GLYLGHG LQWR WKH IDPLOLHV &HFLGRP\LLGDH 'LDGRFLGLLGDH 'LWRP\LLGDH %ROLWRSKLOLGDH .HURSODWLGDH /\JLVWRUUKLQLGDH 0DQRWLGDH 6FLDULGDH, 5DQJRPDUDPLGDH DQG 0\FHWRSKLOLGDH LQ DGGLWLRQ WR +HWHURWULFKLD /RHZ  ,QFHUWD 6HGLV  Ševþík HW DO   0\FHWRSKLOLGDHWUXHIXQJXVJQDWVFRQVWLWXWHVWKHWKLUGODUJHVWRIWKHVHIDPLOLHVDIWHU&HFLGRP\LLGDHDQG 6FLDULGDHDQGFRQWDLQVDSSUR[LPDWHO\GHVFULEHGVSHFLHV 3DSHHWDO 7KHIDPLO\LVSDUWLFXODUO\ GLYHUVHDQGHFRORJLFDOO\LPSRUWDQWLQIRUHVWKDELWDWVZKHUHLWVPHPEHUVSOD\DNH\UROHLQGHFRPSRVLWLRQ DQGUHF\FOLQJRIRUJDQLFPDWWHU6SHFLHVDUHFRQWLQXDOO\EHLQJGHVFULEHGIURPDOOELRJHRJUDSKLFDOUHJLRQV SURPRWHGE\WKHLUIUHTXHQWRFFXUUHQFHLQWUDSFDWFKHVVXFKDV0DODLVHDQGIOLJKWLQWHUFHSWLRQWUDSV HJ %RUNHQWHWDO+HEHUWHWDO0RULQLqUHHWDO $OWKRXJKWKHOLIHF\FOHYDULHVEHWZHHQWD[D WKHODUYDHRIPRVWVSHFLHVDUHIXQJLYRUHVIHHGLQJRQP\FHOLXPSHQHWUDWLQJGHFD\LQJRUJDQLFPDWWHUVXFKDV URWWLQJZRRGRULQIOHVK\RUZRRG\VSRURSKRUHV VHHRYHUYLHZLQ-DNRYOHY 7KHDGXOWVFDQEHVHHQ DQG FROOHFWHG LQPRLVWVKDGHGSODFHV FORVHWR WKH IRUHVWIORRUZKHUHWKH\DJJUHJDWHLQODUJHQXPEHUV W\SLFDOO\XQGHURYHUKDQJVLQVPDOOFDYHVRUXQGHUURRWVRUWUXQNVRIIDOOHQWUHHV'XHWRWKHLUOLIHKLVWRU\DQG FORVH DVVRFLDWLRQ ZLWK IRUHVW HQYLURQPHQWV WKH JURXS LV RI SDUWLFXODU LQWHUHVWLQ IRUHVW HFRORJ\ DQG DV LQGLFDWRUVRIFRQWLQXLW\DQGYXOQHUDELOLW\LQFRQVHUYDWLRQDQGPDQDJHPHQWRISDUWLFXODUIRUHVWKDELWDWV HJ ‘NODQG‘NODQG‘NODQG‘NODQGHWDO 

0\FHWRSKLOLGDH LV FRPPRQO\ GLYLGHG LQWR VL[ VXEIDPLOLHV *QRULVWLQDH /HLLQDH 0DQRWLQDH 0\FHWRSKLOLQDH0\FRP\LQDHDQG6FLRSKLOLQDH VHHHJ6¡OLHWDO (GZDUGV  ZDVWKHRQHZKR LQWURGXFHG0\FHWRSKLOLQDHDQGDOVRGLYLGHGWKHVXEIDPLO\LQWRWKHWZRWULEHV([HFKLLQLDQG0\FHWRSKLOLQL



7KLVFODVVLILFDWLRQLVIROORZHGE\VXEVHTXHQWDXWKRUVDOWKRXJKWKHGHOLQHDWLRQRIWKHWZRWULEHVKDVFKDQJHG LH 7XRPLNRVNL   ([HFKLLQL LV WKH OHDVW GLYHUVH RI WKH WZR WULEHV DQG FRQVLVWV RI  JHQHUD DQG approximately 700 described species (Ševþík and Kjærandsen 2012; Burdíková et al. 2019), ZKHUHDV 0\FHWRSKLOLQLFRXQWVJHQHUDDQGDSSUR[LPDWHO\GHVFULEHGVSHFLHV 5LQGDOHWDO %RWKWULEHV DUHFRQVLGHUHGPRQRSK\OHWLF 5LQGDODQG6¡OL5LQGDOHWDO5LQGDOHWDO DQGDUHFOHDUO\ GHILQHGPRUSKRORJLFDOO\ 7XRPLNRVNL  

7KHFLUFXPVFULSWLRQRIJHQHUDZLWKLQ0\FHWRSKLOLQLLVUHODWLYHO\VWDEOHDQGWKHLUSK\ORJHQHWLFUHODWLRQVKLSV DUH FRQVLGHUHG ZHOO XQGHUVWRRG HJ 5LQGDOHW DO  5LQGDO HW DO  ,Q WKH WULEH ([HFKLLQL WKH VLWXDWLRQLV TXLWH GLIIHUHQW 'HVSLWH VHYHUDODWWHPSWV WKH SK\ORJHQHWLF UHODWLRQVKLSV EHWZHHQ WKH JHQHUD UHPDLQODUJHO\XQUHVROYHG 5LQGDODQG6¡OL5LQGDOHWDO%XUGtNRYiHWDO 7KHIDFWWKDW UHODWLRQVKLSVDUHPRUHGLIILFXOWWRUHVROYHLQ([HFKLLQLWKDQLQ0\FHWRSKLOLQLKDVEHHQK\SRWKHVL]HGWREH GXHWRDUHODWLYHO\\RXQJDJHRI([HFKLLQLFRPELQHGZLWKUDSLGUDGLDWLRQDWWKHJHQHULFOHYHOOHDGLQJWRVKRUW LQWHUQRGHV DQG D ZHDN SK\ORJHQHWLF VLJQDO 5LQGDO HW DO %XUGtNRYi HW DO   $ PRUH UHFHQW UDGLDWLRQRIVSHFLHVLQWKHWULEH([HFKLLQLPLJKWDOVRH[SODLQWKHUHODWLYHO\KRPRJHQHRXVPRUSKRORJ\DQG ELRORJ\RILWVPHPEHUV

_7KHJHQXVAllodia:LQQHUW]

AllodiaLVDODUJHJHQXVZLWKLQWKHWULEH([HFKLLQLZKLFKLVPDLQO\FRQILQHGWRWKH+RODUFWLFUHJLRQ3ULRUWR WKHILQGLQJVSUHVHQWHGLQWKLVWKHVLVWKHJHQXVZDVGLYLGHGLQWZRVXEJHQHUDAllodiaVVDQGBrachycampta :LQQHUW]HDFKZLWKDSSUR[LPDWHO\GHVFULEHGVSHFLHV0HPEHUVRIWKHJHQXVDUHVPDOOVL]HG a PP VOHQGHUEURZQLVKJQDWVZLWKWUDQVSDUHQWZLQJVDQGORQJOHJV )LJ 0RUSKRORJLFDOO\WKHVSHFLHV DUH UDWKHU KRPRJHQRXV DQG DOWKRXJK WKH WZR VXEJHQHUD VKRZ GLIIHUHQFHV LQ JHQHUDO PRUSKRORJ\ IHZ GLDJQRVWLFFKDUDFWHUVH[LVWZKLFKVHUYHWRVHSDUDWHWKHP:LWKLQHDFKVXEJHQXVWKHRQO\UHOLDEOHFKDUDFWHUV IRUVHSDUDWLQJWKHGLIIHUHQWVSHFLHVDUHIRXQGLQWKHPDOHWHUPLQDOLDZKLFKDOVRKROGFKDUDFWHUVXVHGWR GLVWLQJXLVKWKHWZRVXEJHQHUD0HPEHUVRIWKHJHQXVDUHW\SLFDOO\IRXQGLQPRLVWIRUHVWVZKHUHVSHFLHVRI WKHVXEJHQXVAllodiaFDQEHH[WUHPHO\QXPHURXVDQGPDNHXSDFRQVLGHUDEOHSURSRUWLRQRIWUDSVDPSOHV,Q WKHVXEJHQXVBrachycamptaRQWKHRWKHUKDQGWKHVSHFLHVDUHXVXDOO\UDUHLQVXFKVDPSOHVDQGPRVWO\ FROOHFWHGLQORZQXPEHUV6HYHUDOGLIIHUHQWVSHFLHVRIWHQRFFXULQV\PSDWU\ZLWKIOLJKWSHULRGV GXULQJ VSULQJDQGDXWXPQ0XOWLSOHUHDULQJUHFRUGVH[LVWRIAllodiaVVDQGBrachycampta HJ%X[WRQ &KDQGler 1993; Ševík 2006; Jakovlev 2011 0RVWVSHFLHVRIAllodiaDUHFRQVLGHUHGWRKDYHSRO\SKDJRXV ODUYDHDVVRFLDWHGZLWKVRIWIUXLWLQJERGLHVRIPDFURIXQJLLQWKHRUGHUV$JDULFDOHV%ROHWDOHVDQG5XVVXODOHV -DNRYOHY-DNRYOHY  



$QXPEHURIVSHFLHVRIBrachycamptaVHHPPRUHVSHFLDOL]HGDQGDQLQWHUHVWLQJDVVRFLDWLRQEHWZHHQWKH ODUYDHRIVHYHUDOVSHFLHVRIBrachycamptaDQGWKHRUGHU3H]L]DOHV LVIRXQG E\-DNRYOHY   DVUHIHUUHG WR LQ -DNRYOHY   $GGLWLRQDOO\ WKH IOLJKW DFWLYLW\ RI DGXOW Brachycampta VHHPV WR FRLQFLGH ZLWK DVFRFDUSSURGXFWLRQE\3H]L]DOHV



)LJXUH*HQHUDOPRUSKRORJ\RIAllodia$A. (A.) anglofennica (GZDUGV%A. (B.) VS.IHPDOHDQG&A. (A.) truncata (GZDUGV3KRWRV-RVWHLQ.M UDQGVHQ  _0RUSKRORJ\

$OWKRXJKGLIIHUHQFHVLQDSSHDUDQFHEHWZHHQAllodiaDQGBrachycamptaH[LVWWKHLUJHQHUDOPRUSKRORJ\LV YHU\VLPLODU7KHPRUSKRORJLFDOFKDUDFWHUVXVHGWRVHSDUDWHWKHWZRVXEJHQHUDLQYROYHWKHSODFHPHQWRQ GLVFDOEULVWOHVRQVFXWXPZLQJYHQDWLRQDQGDEGRPLQDOFRORUDWLRQ7KHODWWHUFKDUDFWHUKRZHYHUYDULHV FRQVLGHUDEO\DOVRZLWKLQVSHFLHVDQGVKRXOGEHXVHGZLWKFDUH0RUHVXLWDEOHFKDUDFWHUVDUHWKXVQHHGHGWR GHOLPLWWKHWZRVXEJHQHUDDVWKHIHDWXUHVPHQWLRQHGDUHQRWXQLTXHV\QDSRPRUSKLHVDQGQRWQHFHVVDULO\ SUHVHQWLQDOOVSHFLHV

/LNHLQPRVWRWKHU([HFKLLQLJHQHUDWKHPRUSKRORJLFDOFKDUDFWHUVXVHGWRGLVWLQJXLVKVSHFLHVDUHDOPRVW H[FOXVLYHO\IRXQGLQWKHPDOHWHUPLQDOLDSDUWLFXODUO\LQWKHRXWOLQHDQGFKDHWRWD[\RIWKHGLIIHUHQWOREHVRI WKHJRQRVW\OH$FFRUGLQJO\GHWDLOHGLOOXVWUDWLRQVRIWKHGRUVDOPHGLDODQGYHQWUDOOREHRIWKHJRQRVW\OHDUH JLYHQDQGXVHGDVWKHSULPDU\VRXUFHIRUWKHLGHQWLILFDWLRQRIVSHFLHVRIAllodia HJ=DLW]HY  7KHRXWOLQHDQGVWUXFWXUHRIWKHPDOHWHUPLQDOLDLQPHPEHUVRIAllodiaVVDUHUHODWLYHO\VLPSOHDQG KRPRJHQRXVFRPSDUHGWRWKRVHLQBrachycampta0DOHVLQAllodiaVVW\SLFDOO\KDYHDSURQRXQFHGDQG



KHDYLO\VFOHURWL]HGGRUVDOOREHDIODWPRUHZHDNO\VFOHURWL]HGPHGLDQOREHDQGDVPDOOFOXEVKDSHGYHQWUDO OREH )LJ$ ,QBrachycamptaDOOWKUHHOREHVYDU\FRQVLGHUDEO\EHWZHHQVSHFLHVDQGFDQEHH[WUHPHO\ LQWULFDWH DQG HODERUDWH )LJ %  %DVHG RQ WKH ODUJH YDULDWLRQ REVHUYHG LQ WKH JHQLWDO VWUXFWXUHV RI BrachycamptaWKHVXEJHQXVKDVEHHQGLYLGHGLQWRGLIIHUHQWVSHFLHVJURXSV HJ.M UDQGVHQ 



)LJXUH7KHPDOHJRQRVW\OHLQWKHWZRVXEJHQHUDAllodiaDQGBrachycamptaH[HPSOLILHGE\$A. (A.) ornaticollis 0HLJHQ  DQG %A. (B.) foliifera 6WUREO  

$OWKRXJKWKHFKDUDFWHUVIRXQGLQWKHPDOHWHUPLQDOLDDUHFRQVLGHUHGWREHVWDEOHZLWKOLWWOHYDULDWLRQZLWKLQ VSHFLHVDQGKHQFHZHOOVXLWHGIRUGLVWLQJXLVKLQJVSHFLHVWKHFKDUDFWHUV\VWHPKDVRQHELJGUDZEDFNLW DSSOLHVWRPDOHVRQO\$OPRVWDOOAllodiaVSHFLHVDUHGHVFULEHGEDVHGRQPDOHVZLWKWKHIHPDOHVUHPDLQLQJ ODUJHO\XQGHVFULEHGDQGXQNQRZQ7KHUHDVRQIRUWKLVFRXOGEHWKDWWKHIHPDOHWHUPLQDOLDLQJHQHUDOKDYH EHHQFRQVLGHUHGWRKDYHVPDOOHULQWHUVSHFLILFGLIIHUHQFHV HJ0F$OSLQH 7KLVGRHVQRWKRZHYHU PHDQWKDWPRUSKRORJLFDOGLIIHUHQFHVGRQRWH[LVWLQWKHIHPDOHVRUWKDWGHVFULELQJWKHVHGLIIHUHQFHVDQG KHQFHEHLQJDEOHWRLGHQWLI\WKHPGRHVQRWPDWWHU,QIDFWLQFOXGLQJIHPDOHVFDQKDYHDODUJHHIIHFWRQRXU XQGHUVWDQGLQJRIGLYHUVLW\ HJ(NUHPHWDO    _'LYHUVLW\DQGGLVWULEXWLRQ

)ROORZLQJ:LQQHUW] 7XRPLNRVNLDQG0DUVKDOOAllodia LVWKHIRXUWKODUJHVWJHQXVLQWKHWULEH([HFKLLQL %XUGtNRYiHWDO $VIRUPRVWRWKHUJHQHUDLQWKHWULEH WKHFRPSOHWHDQGH[DFWGLVWULEXWLRQVRIPRVWVSHFLHVDUHSRRUO\NQRZQ,QIDFWYHU\IHZVWXGLHVGHDOLQJZLWK WKHGLVWULEXWLRQSDWWHUQVLQ0\FHWRSKLOLGDHKDYHEHHQSXEOLVKHG EXWVHH*DJQp%HFKHY%HFKHY



 %DVHGRQRXUFXUUHQWNQRZOHGJHWKHKLJKHVWGLYHUVLW\RIAllodia VSHFLHVLVIRXQGLQWKH+RODUFWLF UHJLRQDQGRXUXQGHUVWDQGLQJRIWKHIDXQDRXWVLGHWKLVUHJLRQLVOLPLWHG )LJ 6HYHUDOVSHFLHVRIAllodia DUHEHOLHYHGWRKDYHDFLUFXPSRODUGLVWULEXWLRQEHLQJSUHVHQWWKURXJKRXWWKHPRUHRUOHVVKRPRJHQRXVDQG FRQWLQXRXV KDELWDW PDGH XS E\ WKH ERUHDO WDLJD 1HYHUWKHOHVV WKHUH LV XQGRXEWHGO\ D ODUJH QXPEHU RI XQUHFRUGHGVSHFLHVDOVRLQRWKHUSDUWVRIWKHZRUOGZKHUHWKHQXPEHURIIXQJXVJQDWH[SHUWVLVORZHUWKDQLQ WKH+RODUFWLF

 )LJXUH  0DSRI Allodia UHFRUGVLQ*OREDO%LRGLYHUVLW\,QIRUPDWLRQ)DFLOLW\ *%,) EHWZHHQ %DVHGRQa RFFXUUHQFHV>&KHFNOLVWGDWDVHWKWWSVGRLRUJRPHLDFFHVVHGYLD*%,)RUJRQ@  %HFKHY  LQKLVUHYLHZRIWKHGLVWULEXWLRQSDWWHUQVLQIXQJXVJQDWVFRQVLGHUVAllodiaWRKDYHD VXEFRVPRSROLWDQGLVWULEXWLRQDVPHPEHUVDUHIRXQGLQDOOELRJHRJUDSKLFDOUHJLRQVH[FHSWWKH1HRWURSLFV 3ULRUWRWKHSDSHUVSUHVHQWHGKHUHRXUNQRZOHGJHRIAllodiaVSHFLHVRXWVLGHWKH+RODUFWLFUHJLRQFRQVLVWHG RIVHYHQVSHFLHVGHVFULEHGIURP6(&KLQD :XHWDO WZRIURP,QGLDDQG&H\ORQ %UXQHWWL 6HQLRU:KLWH RQHIURP0DOD\VLD (GZDUGV RQHIURPWKH3DODX,VODQG0LFURQHVLD &ROOHVV  DQGRQHBrachycamptaVSHFLHVIURPWKH&RPRURV $IURWURSLFDO GHVFULEHGE\0DWLOH  1RQH RIWKHVSHFLHVGHVFULEHGVRIDUIURPWKH+RODUFWLFKDYHEHHQUHFRUGHGIURPRWKHUELRJHRJUDSKLFDOUHJLRQV   _&ODVVLILFDWLRQDQGWD[RQRPLFKLVWRU\

7KHFODVVLILFDWLRQRIAllodiaKDVEHHQXQVWDEOH, DQGDVIRUPRVW([HFKLLQLJHQHUDLWVFLUFXPVFULSWLRQDQG XQGHUVWDQGLQJKDVFKDQJHGDORWVLQFHWKHLQLWLDOZRUNE\:LQQHUW]  7XRPLNRVNL  JLYHVWKH KLWKHUWRPRVWFRPSUHKHQVLYHUHYLHZRIWKHWD[RQRPLFKLVWRU\RIAllodiaVOEXWDVKRUWVXPPDU\RIWKH PDLQHYHQWVZLOOEHJLYHQEHORZ

Allodia DQGBrachycampta ZHUHRULJLQDOO\GHVFULEHGDVVHSDUDWHJHQHUDE\:LQQHUW]  $WWKDWWLPH ILYHVSHFLHVZHUHLQFOXGHGLQ AllodiaA. obscura:LQQHUW] A. crassicornis 6WDQQLXV   A. punctipes 6WDHJHU A. ornaticollis 0HLJHQ  DQG A. barbipes:LQQHUW](LJKWZHUH LQFOXGHGLQBrachycamptaB. alternans =HWWHUVWHGW B. bicolor 0DFTXDUW B. brachycera



=HWWHUVWHGW B. serena:LQQHUW]B. amoena:LQQHUW]B. hastata:LQQHUW]B. caudata:LQQHUW]DQGB. griseicollis 6WDHJHU 2QO\RQHVSHFLHVLQHDFKRIWKHVXEJHQHUDKDV UHWDLQHGLWVSRVLWLRQA. ornaticollis A. lugens :LHGHPDQQ LQAllodia DQGB. alternans A. (B.) grata 0HLJHQ   LQ Brachycampta-RKDQQVHQ   PHUJHG WKH WZRVXEJHQHUD DV KHIRXQGWKH FKDUDFWHUV SUHVHQWHGE\:LQQHUW]  WRVHSDUDWHWKHPWREHLQVXIILFLHQW ZKHQDSSOLHGWRWKH1RUWK $PHULFDQVSHFLHV/DWHU(GZDUGV  LQFOXGHGSynplasta6NXVHDQGBrevicornu0DUVKDOOLQ Allodia7XRPLNRVNL  VHSDUDWHGBrevicornu IURPAllodiaLQKLVUHYLHZRI([HFKLLQLEXWGLGQRWILQG Allodia DQGBrachycampta GLVWLQFWHQRXJKWRUDLVHWKHPWRJHQXVOHYHO7KHYLHZRI7XRPLNRVNLKDVEHHQ IROORZHG E\VXEVHTXHQWDXWKRUV 3ODVVPDQQ  GHVFULEHG D QHZJHQXV ParallodiaZKLFK ZDVODWHU V\QRQ\PL]HGZLWKAllodia 0DWLOH =DLW]HY  UHYLHZHGWKH+RODUFWLFIDXQDRIWKHWZR VXEJHQHUDVHSDUDWHO\DQGGHVFULEHGDQXPEHURIVSHFLHVQHZWRVFLHQFH

_2EMHFWLYHV

7KHREMHFWLYHVRIWKLVWKHVLV DUHWRLQYHVWLJDWHWKHGLYHUVLW\SK\ORJHQHWLFUHODWLRQVKLSV DQGGLVWULEXWLRQ SDWWHUQV RI WKH PHPEHUV RI WKH JHQXV Allodia XVLQJ DQ LQWHJUDWLYH DSSURDFK 7KH DSSURDFK LQYROYHV PRUSKRORJLFDOH[DPLQDWLRQVDQGFRPSDULVRQVDVZHOODVSK\ORJHQHWLFDQDO\VHVEDVHGRQVHTXHQFHGDWD IURPERWK6DQJHUDQGKLJKWKURXJKSXWVHTXHQFLQJ7KHRYHUDOODLPLVWRLQFUHDVHWKHNQRZOHGJHDERXWWKH JHQXVE\UHYLVLQJWKHWD[RQRP\SURGXFLQJLGHQWLILFDWLRQNH\VWRWKHVSHFLHVDQGE\H[SORULQJWKHGLYHUVLW\ RISRRUO\NQRZQDUHDVZLWKVSHFLILFIRFXVRQVXEJHQXVAllodia VV   0RUHVSHFLILFDOO\ZHDLPWR  ² 7HVWWKHPRQRSK\O\RIWKHWZRVXEJHQHUDAllodiaDQGBrachycampta WKURXJKJHQRPHVNLPPLQJ DQGUHYLVHWKHFODVVLILFDWLRQRIWKHJHQXVDFFRUGLQJO\ 3DSHU,   ² 5HYLVHDQGGHVFULEHWKHGLYHUVLW\RIAllodia VVLQWKH+RODUFWLFE\FRPSDULQJWKHIDXQDRI1RUZD\ DQG&DQDGDLQSDUWLFXODU 3DSHU,,   ² ([SORUHWKHXVHRI'1$EDUFRGHVIRULGHQWLILFDWLRQDQGGHOLPLWDWLRQRIVSHFLHVDVFRPSDUHGWR PRUSKRORJ\ 3DSHU,,DQG,,,   ² ,QYHVWLJDWHWKHGLYHUVLW\RIAllodia VVLQPRXQWDLQRXVUHJLRQVRXWVLGHWKHPDLQGLVWULEXWLRQDUHDRI WKHJHQXV 3DSHU,,,DQG,9 



7D[RQVDPSOLQJDQGPHWKRGRORJ\

_0DWHULDO

7KHPDWHULDOXVHGDVEDVLVIRUWKHIRXUSDSHUVSUHGRPLQDQWO\RULJLQDWHVIURPWKHFROOHFWLRQVRI1+02DQG 708LQ1RUZD\7KHVHFROOHFWLRQVERWKKROGODUJHFROOHFWLRQVRIIXQJXVJQDWVIURPDURXQGWKHZRUOG DOWKRXJKZLWKSDUWLFXODUHPSKDVLVRQWKH6FDQGLQDYLDQFRXQWULHV0RVWRIWKHYRXFKHUVSHFLPHQVXVHGIRU '1$H[WUDFWLRQLQ3DSHUV,DQG,,ZHUHFROOHFWHGWKURXJKUHFHQWVSHFLHVLQYHQWRU\SURMHFWVLQ)LQQPDUNDQG 7URPV 1RUWKHUQ 1RUZD\ )LJ   ,Q DGGLWLRQ UHOHYDQW SXEOLFO\ DYDLODEOH '1$ VHTXHQFHV ZHUH GRZQORDGHG IURP *HQ%DQN %HQVRQ HW DO   DQG %DUFRGH RI /LIH GDWDV\VWHP Y  %2/'  5DWQDVLQJKDPDQG+HEHUW LQ3DSHUV,,,DQG,,,$OOFROOHFWLRQVZLWKDEEUHYLDWLRQVDUHOLVWHGLQ 7DEOH  7DEOH/LVWRIFROOHFWLRQVDQGDEEUHYLDWLRQV EDVHGRQ(YHQKXLV  

$EEUHYLDWLRQ &ROOHFWLRQ 3DSHU

1+02 1DWXUDO+LVWRU\0XVHXP8QLYHUVLW\RI2VOR1RUZD\ 3DSHU,,,,,,

&1& &DQDGLDQ1DWLRQDO&ROOHFWLRQRI,QVHFWV&DQDGD 3DSHU,,

708 7URPV¡0XVHXP7KH$UFWLF8QLYHUVLW\RI1RUZD\1RUZD\ 3DSHU,,,,,,

.8(& .\XVKX8QLYHUVLW\&ROOHFWLRQ-DSDQ 3DSHUV,,,9

=,1 =RRORJLFDO ,QVWLWXWH 5XVVLDQ $FDGHP\ RI 6FLHQFHV 6W 3HWHUVEXUJ 3DSHU,, 5XVVLD

,=%( ,QVWLWXWHRI=RRORJ\DQG%RWDQ\7DUWX(VWRQLD 3DSHU,,

-63& -XNND6DOPHODSULYDWHFROOHFWLRQ)LQODQG 3DSHU,,

0=/8 /XQG0XVHXPRI=RRORJ\6ZHGHQ 3DSHU,,

0=+ 8QLYHUVLW\RI+HOVLQNL)LQODQG 3DSHU,,

1+56 6ZHGLVK0XVHXPRI1DWXUDO+LVWRU\6ZHGHQ 3DSHU,,

%06$ 7KH1DWLRQDO0XVHXP%ORHPIRQWHLQ6RXWK$IULFD 3DSHU,,,

&$6 7KHFROOHFWLRQRIWKH&DOLIRUQLD$FDGHP\RI6FLHQFHV86$ 3DSHU,,

&8,& &RUQHOO8QLYHUVLW\,QVHFW&ROOHFWLRQ86$ 3DSHU,, 



 )LJXUH&ROOHFWLQJWULSWR'LYLGDOHQFRQVHUYDWLRQDUHDLQ7URPVFRXQW\LQ1RUWKHUQ1RUZD\/HIW5DYLQHPDGHE\WKHZDWHUIDOO ‘YUH'LYLIRVVDVXEWHUUDQHDUHDZLWKPDQ\ROGSLQHWUHHV5LJKW)OLJKWLQWHUFHSWLRQWUDSLQWKHXSSHU'LYLGDOYDOOH\3KRWRV-RVWHLQ .M UDQGVHQ

,Q3DSHU,WKHVDPSOLQJVWUDWHJ\ZDVODUJHO\GHWHUPLQHGE\WKHPHWKRGRORJLFDODSSURDFK VHHVHFWLRQ  :HVHWWKHOLPLWWRDSSUR[LPDWHO\WD[DDOWRJHWKHUEHFDXVHZHZHUHVHTXHQFLQJDOOLQRQH,OOXPLQDODQH VHHEHORZ $GGLWLRQDOO\ZHZHUHGHSHQGHQWRQIUHVKVDPSOHVZKLFKOLPLWHGRXUJHRJUDSKLFVDPSOLQJ $OVRWKHVSHFLPHQVVWRUHGLQHWKDQROZRUNHGEHWWHUZLWKUHJDUGVWR'1$TXDOLW\ LHFRQFHQWUDWLRQDQG IUDJPHQWDWLRQ FRPSDUHGWRWKHSLQQHGVSHFLPHQV:LWKWKHVHUHVWULFWLRQVRXUPDLQIRFXVZKHQFKRRVLQJ LQJURXSWD[DZDVWRWU\WRFRYHUPRVWRIWKHPRUSKRORJLFDOJURXSV:HWKXVLQFOXGHGLQJURXSVSHFLHV QLQHRIWKHVSHFLHVIURPAllodiaVVDQGVHYHQIURPBrachycampta:HIRFXVHGSDUWLFXODUO\RQLQFOXGLQJ WKHVSHFLHVWKDWSRVVHVVZKDWDSSHDUWREHDPRUHLQWHUPHGLDWHPRUSKRORJ\EHWZHHQWKHWZRVXEJHQHUDLH A. (B.) czernyi /DQGURFN DQGA. (B.) alternans =HWWHUVWHGW $VRXWJURXSZHLQFOXGHGIRXU VSHFLHVIURPRWKHU([HFKLLQLJHQHUDVHOHFWHGEDVHGRQSUHYLRXVK\SRWKHVHVRQSK\ORJHQHWLFUHODWLRQVKLSV EHWZHHQWKH([HFKLLQLJHQHUD

,Q 3DSHU ,, PRVW RI WKH PDWHULDO RULJLQDWHGIURP 1+02 DQG708 ,Q DGGLWLRQ VHYHUDO VSHFLPHQV RI AllodiaIURP&DQDGD &1& FROOHFWHGPRVWO\WKURXJKDODUJHLQVHFWLQYHQWRU\SURMHFWXVLQJ0DODLVHWUDSV VHH+HEHUWHWDO ZHUHVWXGLHG7\SHPDWHULDOZDVDOVRERUURZHGIURPRWKHUPXVHXPV

7KH $IURWURSLFDO PDWHULDO VWXGLHG LQ 3DSHU ,,, FRQVLVWHG RI DOLPLWHGQXPEHURIVSHFLPHQVFROOHFWHGLQ 6RXWK$IULFD.HQ\DDQG7DQ]DQLDEHWZHHQDQG7KHRULHQWDOPDWHULDOVWXGLHGLQ3DSHU,9ZDV SDUWRIDFROOHFWLRQRIIXQJXVJQDWVIURP.\XVKX8QLYHUVLW\0XVHXPDQGFRQVLVWHGRIDSSUR[LPDWHO\ SLQQHG VSHFLPHQV FROOHFWHG DW YDULRXV VLWHV LQ 1HSDO DQG %KXWDQ 7KH VWXGLHG PDWHULDO ZDV FROOHFWHG EHWZHHQDQGDVXEVWDQWLDOSDUWRILWFROOHFWHGGXULQJWKH.\XVKX8QLYHUVLW\VFLHQWLILFH[SHGLWLRQ WRWKH1HSDO+LPDOD\DLQDQG



_0RUSKRORJ\DQGWHUPLQRORJ\

0RVW VSHFLPHQV SUHVHUYHG GU\ RU LQ HWKDQRO ZHUH ILUVW VWXGLHGDQGVRUWHGZLWKD/HLFD0= VWHUHRPLFURVFRSH$PRQJLPSRUWDQWNH\VIRULGHQWLILFDWLRQZHUHWKRVHRI6¡OLHWDO   JHQXVOHYHO DQG =DLW]HY   VSHFLHVOHYHO  ,QDGGLWLRQWKHRULJLQDOGHVFULSWLRQVDQGLIDYDLODEOHLOOXVWUDWLRQV ZHUHFRQVXOWHG$VWKHNH\VDWVSHFLHVOHYHODOOPDNHXVHRIPDOHFKDUDFWHUVWKHIHPDOHVLQ3DSHU,,ZHUH VRUWHGWRJURXSVEDVHGRQPRUSKRORJLFDOGLIIHUHQFHVDQGVXEVHTXHQWO\VHQWIRU'1$EDUFRGLQJ

$IWHUPDFHUDWLRQLQKHDWHGODFWLFDFLGWHPSRUDU\VOLGHVRIWKHWHUPLQDOLDZHUHPDGHXVLQJJO\FHURODVD PHGLXP$IWHUWKHVOLGHVKDGEHHQVWXGLHGWKHWHUPLQDOLDZHUHNHSWLQPLFURYLDOVZLWKJO\FHUROWRJHWKHU ZLWK WKH SLQQHG VSHFLPHQV 0HDVXUHPHQWV ZHUH PDGH RQ HLWKHU HWKDQROSUHVHUYHG VSHFLPHQV RU GU\ VSHFLPHQV 0RVW RI WKH ILJXUHV LQ WKH WKHVLV DUH VWDFNLQJ LPDJHV WDNHQ ZLWK D =HLVV $[LR LPDJHU 0 PLFURVFRSH ILWWHG ZLWK WKH FDPHUD $[LRFDP  FRORU DQG VWDFNHG XVLQJ =HUHQH 6WDFNHU YHUVLRQ  =HUHQH6\VWHPV//& ,QVRPHFDVHVPRUHVLPSOLILHGLOOXVWUDWLRQVZHUHPDGH HJWKHLOOXVWUDWLRQVRIWKH WHUPLQDOLDLQ3DSHU,9 EDVHGRQWKHSKRWRJUDSKVWRJLYHDEHWWHUSUHVHQWDWLRQRIWKHDFWXDOGLIIHUHQFHV XVLQJ,OOXVWUDWRUDQG3KRWRVKRS $GREH ,QSDSHU,6FDQQLQJ(OHFWURQ0LFURVFRSH 6(0 SKRWRVZHUH WDNHQLQWKH*HR/DEDWWKH1DWXUDO+LVWRU\0XVHXPRISLQQHGQRQFRDWHGVSHFLPHQV 

7KHWHUPLQRORJ\IRUWKHJHQHUDOPRUSKRORJ\RIWKHERG\SDUWVIROORZV0F$OSLQHHWDO  DQG6¡OL   ZKLOH WKH WHUPLQRORJ\ XVHG WR GHVFULEH WKH ZLQJ YHQDWLRQ IROORZV WKH 0DQXDO RI $IURWURSLFDO 'LSWHUD &XPPLQJDQG:RRG ,Q3DSHU,DGHWDLOHGRXWOLQHRIWKHWHUPLQRORJ\RIWKHPDOHDQGIHPDOH WHUPLQDOLD LV JLYHQ ODUJHO\ EDVHG RQ.M UDQGVHQ    DQGKLV LQWHUSUHWDWLRQV LQ DQG 7XRPLNRVNL  UHVSHFWLYHO\ 7KH WHUPV XVHG IRU WKH WHUPLQDOLD DUH DOVR VSHFLILFDOO\ H[SODLQHGLQHDFKSDSHUZKHUHWKLVLVUHOHYDQW 3DSHUV,,,,,DQG,9 

_'1$EDUFRGLQJ

6LQFH LWV LQLWLDWLRQ E\ +HEHUW HW DO   WKH FRQFHSW RI '1$ EDUFRGLQJ KDV EHFRPH D SRSXODU DQG VXFFHVVIXOZD\WRLGHQWLI\VSHFLHVEDVHGRQDVKRUWVWDQGDUGL]HGIUDJPHQWRI'1$,QDQLPDOVWKH'1$ EDUFRGHLVDESIUDJPHQWRIWKHPLWRFKRQGULDOJHQHF\WRFKURPHR[LGDVHVXEXQLW &2, ZKLFKLQPRVW FDVHVFDQVHSDUDWHEHWZHHQVSHFLHVGXHWRLWVORZOHYHORILQWUDVSHFLILFYDULDWLRQDQGJHQHUDOO\KLJKOHYHORI LQWHUVSHFLILFYDULDWLRQ7KHSULPDU\DQGRULJLQDOJRDORIWKHLQLWLDWLYHZDVWRLGHQWLI\VSHFLHVEXWLWKDVVLQFH DOVREHFRPHDSRZHUIXOWRROWRUHFRJQLVHSRVVLEOHFU\SWLFGLYHUVLW\DQGHYHQGLVFRYHUQHZVSHFLHV HJ 5LYHUDDQG&XUULH3RKMRLVPlNLHWDO$QGHUVRQHWDO 2QHSDUWLFXODUO\KHOSIXOWRROIRU UHFRJQL]LQJSRVVLEOHFU\SWLFGLYHUVLW\WKURXJK'1$EDUFRGHVLVWKH%DUFRGH,QGH[1XPEHUV$OJRULWKP %,1V\VWHP LPSOHPHQWHGLQWKH%DUFRGHRI/LIH'DWD6\VWHP %2/'  5DWQDVLQJKDPDQG+HEHUW 



7KH%,1V\VWHPDVVLJQV'1$EDUFRGHVHTXHQFHVLQWRRSHUDWLRQDOWD[RQRPLFXQLWV 278V DQGLVEDVHGRQ SDLUZLVHVHTXHQFHGLVWDQFHVRIWKHDYDLODEOHGDWDLQWKHGDWDEDVH

,QRUGHUIRUWKHGDWDEDVHWRVHUYHLWVSULPDU\SXUSRVHLQLGHQWLI\LQJVSHFLHVZHDUHGHSHQGHQWRQDZHOO FXUDWHGDQGSUHFLVH'1$EDUFRGHOLEUDU\7KLVLVZKHUHPXVHXPFROOHFWLRQVDUHSDUWLFXODUO\LPSRUWDQW,Q WKH1RUZHJLDQEUDQFKRIWKH,QWHUQDWLRQDO%DUFRGHRI/LIH,QLWLDWLYH L%2/ WKH1RUZHJLDQ%DUFRGHRI/LIH 1RU%2/ KDVHVWDEOLVKHGURXWLQHVIRUEXLOGLQJDUHIHUHQFHOLEUDU\IRU1RUZHJLDQSODQWVDQLPDOVDQGIXQJL 7KURXJK 1RU%2/ D ODUJH QXPEHU RI IXQJXV JQDW VSHFLHV IURP WKH FROOHFWLRQV LQ 2VOR 1+0  DQG LQ 7URPV¡ 708 KDYHEHHQVXEMHFWHGWR'1$EDUFRGLQJ7KHDFFXPXODWHG'1$EDUFRGHVDUHOLQNHGWR LGHQWLILHGYRXFKHUVSHFLPHQVSUHVHUYHGLQWKHHQWRPRORJLFDOFROOHFWLRQV

,QWKLVWKHVLV'1$EDUFRGHVDUHLPSOHPHQWHGLQ3DSHU,,DQG,,,DQGXVHGIRULGHQWLILFDWLRQGLVFRYHU\RI XQNQRZQGLYHUVLW\DQGDVDWRROWRDLGLQWKHGHOLQHDWLRQRIWD[D7KH'1$EDUFRGHUHIHUHQFHOLEUDU\VHUYHV DVDEDVLVIRUWKHUHYLVLRQRI+RODUFWLFAllodiaSHUIRUPHGLQ3DSHU,,6HTXHQFHVIURPWKH'1$EDUFRGH UHIHUHQFHOLEUDU\ZHUHXVHGWRVHOHFWDQGJURXSSXEOLFEXWXQLGHQWLILHG'1$EDUFRGHVLQSDUWLFXODUIURP &DQDGD VHH+HEHUWHWDO 0RUHRYHUZHXVHG'1$EDUFRGHVWRFRQVWUXFWDSK\ORJHQ\RIWKH+RODUFWLF Allodia VVDQGFRPSDUHGWKHUHVXOWVZLWKWKRVHREWDLQHGE\DQDO\VLQJWKHQXFOHDUULERVRPDO,76PDUNHU :HVXEVHTXHQWO\HYDOXDWHGWKHWZRLQGHSHQGHQWJHQHWUHHVWRLQYHVWLJDWHWKHVSHFLHVERXQGDULHVLQAllodia VV,Q3DSHU,,,'1$EDUFRGHVIURPIRXURIWKHVL[QHZO\GHVFULEHGVSHFLHVDUHFRPSDUHGWRHDFKRWKHUDQG WREDUFRGHVRIFRQJHQHULFVSHFLHV,QWKLVZD\WKH'1$EDUFRGHOLEUDU\RILGHQWLILHGIXQJXVJQDWVLVXVHG IRUFRPSDULVRQDQGDVDUHIHUHQFHWRVHTXHQFHVREWDLQHGIURPWKH$IURWURSLFDOVSHFLHV7RFRPSDUHDQG HYDOXDWH WKH VSHFLHV LQ 3DSHU ,,, ZH XVHG D WUHHEDVHG DSSURDFK LQ DGGLWLRQ WR JHQHWLF GLVWDQFHV LQWHUVSHFLILFSGLVWDQFHV FRPELQHGZLWKPRUSKRORJLFDOGLIIHUHQFHV

_*HQRPHVNLPPLQJ

7KURXJKWKHGHYHORSPHQWRIKLJKWKURXJKSXWVHTXHQFLQJ +76 ODUJHDPRXQWVRI'1$VHTXHQFHGDWDFDQ EH REWDLQHG UHODWLYHO\ TXLFNO\ DQG FRVW HIIHFWLYH FRPSDUHG ZLWK WUDGLWLRQDO VHTXHQFLQJ PHWKRGV 7KH DSSOLFDWLRQRI+76LVDOVREHFRPLQJIUHTXHQWO\XVHGLQQRQPRGHORUJDQLVPVDVQHZELRLQIRUPDWLFWRROV DUHPDNLQJWKHKDQGOLQJRIWKHGDWDIURPZKROHJHQRPHVHTXHQFLQJ :*6 LQFUHDVLQJO\VWUDLJKWIRUZDUG $WHFKQLTXHRIWHQXVHGRQGHJUDGHGRUORZFRQFHQWUDWLRQ'1$LVVKRWJXQVHTXHQFLQJLQZKLFKODUJHSLHFHV RI'1$DUHFXWLQWRVPDOOIUDJPHQWV W\SLFDOO\ES DQGVXEVHTXHQWO\UDQGRPO\VHTXHQFHG LH ZLWK ,OOXPLQD  *HQRPH VNLPPLQJ LV GHILQHG DV ORZFRYHUDJH VKRWJXQVHTXHQFLQJ RI JHQRPLF '1$ 6WUDXEHWDO0DOpHWDO 7KHLGHDFDQEHEULHIO\H[SODLQHGDVIROORZVE\UDQGRPO\VHTXHQFLQJ JHQRPLF'1$RQHH[SHFWVWRJHWPRUHVHTXHQFHVIURPWKH'1$WKDWLVPRVWDEXQGDQWLQWKHVDPSOH'1$ RIRUJDQHOODURULJLQVXFKDVPLWRFKRQGULDDQGFKORURSODVWVRUDOVRULERVRPDOFOXVWHUVZKLFKDOOKDYHD



PXFKKLJKHUUDWLRLQDVDPSOH DQGWKHFHOOV FRPSDUHGWRQXFOHDU'1$ZLOOWKHUHIRUHOLNHO\PDNHXSD ODUJHSURSRUWLRQRIWKHVHTXHQFHGUHDGV*HQRPHVNLPPLQJLVWKHUHIRUHDVWUDLJKWIRUZDUGZD\WRREWDLQ ZKROHPLWRFKRQGULDOJHQRPHV PLWRJHQRPHV DQGKDYHWRJHWKHUZLWKVLPLODUPHWKRGVFRQWULEXWHGWRWKH DFFHOHUDWLQJDYDLODELOLW\RIPLWRFKRQGULDOJHQRPHVIURPDEURDGUDQJHRIDQLPDOWD[D VHH6PLWK   7KH PHWKRG LV DOVR SURPLVLQJ DV D ZD\ WR H[WHQG WKH FRQFHSW RI WUDGLWLRQDO '1$ EDUFRGLQJ E\ FRPSOHPHQWLQJ WKH WUDGLWLRQDO EDUFRGHV &RLVVDF HW DO   )XUWKHUPRUH JHQRPH VNLPPLQJ FDQ EH DSSOLHGWREXONVDPSOHVVXFKDVSRROVRILQVHFWV /LQDUGHWDO RULQPHWDEDUFRGLQJVWXGLHV HJ 3DSDGRSRXORXHWDO 7KHDSSURDFKKDVDOVREHHQXVHGWRFRQVWUXFWSK\ORJHQLHVLQDEURDGUDQJHRI DQLPDOVVXFKDVLQILVK *UDQGHMHDQHWDO DQQHOLGV 5LFKWHUHWDO DQGLQVHFWV 5HQHWDO 

,Q3DSHU,ZHXVHGWKHJHQRPHVNLPPLQJPHWKRGWRREWDLQPROHFXODUPDUNHUVIRUWKHSK\ORJHQHWLFDQDO\VLV RIAllodiaVO7KHPHWKRGKDVQRWSUHYLRXVO\EHHQXVHGLQ0\FHWRSKLOLGDH7KHWDUJHWHGJHQHVZHUHWKH SURWHLQFRGLQJJHQHV DWSDWSFR[FR[FR[FREQDGQDGQDGQDGQDGQDGDQGQDG/ DQG ULERVRPDO PLWRFKRQGULDO JHQHV UUQ/ DQG UUQ6  DV ZHOO DV WKH QXFOHDU 6 DQG 6 ULERVRPDO 51$V /LEUDU\SUHSDUDWLRQVZHUHGRQHXVLQJWKH1H[WHUD'1$)OH[/LEUDU\3UHSDUDWLRQ.LW ,OOXPLQD DQGWKH VHTXHQFLQJZDVGRQHRQRQHODQHRI,OOXPLQD+L6HT%RWKWKHOLEUDU\SUHSDUDWLRQDQGVHTXHQFLQJZHUH SHUIRUPHG DW 7KH 1RUZHJLDQ 6HTXHQFLQJ &HQWUH $VVHPEO\ RI WKH VHTXHQFHV ZDV FRQGXFWHG LQ WZR DOWHUQDWLYHZD\VGHQRYRDQGXVLQJDUHIHUHQFH7KHGHQRYRDVVHPEO\ZDVSHUIRUPHGXVLQJ 63$GHV %DQNHYLFKHWDO ZHFRXOGWKHQVXEVHTXHQWO\VHDUFKIRUVHTXHQFHVRIWKHWDUJHWHGJHQHVXVLQJ7KH %DVLF /RFDO $OLJQPHQW 6HDUFK 7RRO YHUVLRQ  %/$67  $OWVFKXO HW DO   :LWK 0,72ELP YHUVLRQ  +DKQ HW DO   ZH XVHG PXOWLSOH GLIIHUHQW UHIHUHQFHV DV EDLWV DLPLQJ WR DVVHPEOH RXU WDUJHWHGJHQHVGLUHFWO\IURPWKHUHDGSRRO 



0DLQILQGLQJVDQGGLVFXVVLRQ

,QWKLVVHFWLRQWKHPDLQUHVXOWVRIWKHWKHVLVZLOOEHVXPPDUL]HGIROORZHGE\VXEVHTXHQWGLVFXVVLRQVRQ VSHFLILFWRSLFV7KHVHGLVFXVVLRQVZLOOKDYHDEURDGHUVFRSHFRPSDUHGWRWKRVHLQWKHRULJLQDOSDSHUVDQG GHDOZLWKVRPHRIWKHPRUHJHQHUDOFKDOOHQJHVLQGHVFULELQJDQGFKDQJLQJWKHFODVVLILFDWLRQRIWD[D

_%ULHIVXPPDU\RIUHVXOWV

,Q3DSHU,ZHXVHJHQRPHVNLPPLQJWRUHFRQVWUXFWDPROHFXODUSK\ORJHQ\RIWKHJHQXVAllodiaZLWKWKH VSHFLILFDLPWRLQYHVWLJDWHWKHPRQRSK\O\RIWKHWZRVXEJHQHUDAllodia DQGBrachycampta%DVHGRQ'1$ VHTXHQFHGDWDIURPDOPRVWFRPSOHWHPLWRFKRQGULDOJHQRPHVDQGWKHQXFOHDUPDUNHUV6DQG6RXU DQDO\VHVVKRZVWURQJVXSSRUWIRUWKHPRQRSK\O\RIERWKJURXSV:HDGGLWLRQDOO\LQYHVWLJDWHWKHFKDUDFWHUV XVHGE\IRUPHUDXWKRUVWRGHOLPLWWKHWZRVXEJHQHUD0RVWFKDUDFWHUVSUHYLRXVO\XVHGSDUWO\RYHUODSLQWKH WZRJHQHUDEXWE\FDUHIXOO\H[DPLQLQJWKHPLFURVWUXFWXUHRIWKHEULVWOHVRQWKHVFXWXPWKHVWXG\UHYHDOHGD FRQVLVWHQWEXWSUHYLRXVO\RYHUORRNHGFKDUDFWHU%DVHGRQWKHVHUHVXOWVZHFRQFOXGHWKDWWKHWZRVXEJHQHUD VKRXOGEHUHJDUGHGDVVHSDUDWHJHQHUDDQGHPHQGWKHGLDJQRVLVRIAllodiaDQGUHLQVWDWHBrachycamptaDVD VHSDUDWHJHQXV 

3DSHU,,LVDUHYLHZRIWKHAllodia VV VSHFLHVRFFXUULQJLQWKH+RODUFWLFUHJLRQ$OWRJHWKHUVSHFLHVDUH UHFRJQL]HGRIZKLFKVL[DUHGHVFULEHGDVQHZWRVFLHQFH0ROHFXODU GDWD IURP '1$ EDUFRGHV DQG WKH QXFOHDU ULERVRPDO ,76 PDUNHU DUH XVHG LQ FRPELQDWLRQ ZLWK PRUSKRORJLFDO FKDUDFWHUV WR GHOLPLW DQG HYDOXDWH WKH +RODUFWLF VSHFLHV %DVHG RQ '1$ EDUFRGHV DQG PRUSKRORJ\ WZR VSHFLHV FRPSOH[HV DUH GHWHFWHGWKHanglofennicaFRPSOH[ DQG WKH septentrionalisFRPSOH[ :LWKLQHDFKFRPSOH[WKHOHYHORI JHQHWLFGLYHUJHQFHZDVKLJKEXWWKLVZDVQRWUHIOHFWHGLQWKHGHJUHHRIPRUSKRORJLFDOGLIIHUHQFHVEHWZHHQ FODGHV $ NH\ WR WKH UHFRJQL]HG VSHFLHV EDVHG RQ PDOH FKDUDFWHUV LV SURYLGHG LQ DGGLWLRQ WR GHWDLOHG SKRWRJUDSKVRIWKHPDOHWHUPLQDOLDRIDOOVSHFLHV0RUHRYHUIHPDOHVRIVHYHUDOVSHFLHVDUHDVVRFLDWHGZLWK PDOHVWKURXJK'1$EDUFRGLQJDQGLOOXVWUDWHGIRUWKHILUVWWLPH

7KHPDLQUHVXOWLQ3DSHU,,,LVWKHGHVFULSWLRQRIVL[QHZVSHFLHVRIAllodiaVV7KHVHVL[VSHFLHVFROOHFWHG LQ.HQ\D6RXWK$IULFDDQG7DQ]DQLDFRQVWLWXWHWKHILUVWUHFRUGVRIAllodiaVVLQWKH$IURWURSLFDOUHJLRQ $OOVSHFLHVDUHIRXQGLQGLIIHUHQWKLJKDOWLWXGHDUHDVLQGLFDWLQJDQ$IURPRQWDQHGLVWULEXWLRQ'1$EDUFRGHV DUHXVHGWRHYDOXDWHVSHFLHVERXQGDULHVDVWKHPRUSKRORJLFDOGLIIHUHQFHVEHWZHHQWKHVSHFLHVZHUHVPDOO DOVRFRPSDUHGWRZKDWLVFRPPRQO\DVFULEHGAllodia VSHFLHV LQJHQHUDO7KHVWXG\LVEDVHGRQDOLPLWHG PDWHULDOVRWKHQXPEHURIVSHFLHVLVVXUSULVLQJO\KLJK7KHUHVXOWVRIWKHVWXG\LQGLFDWHDSRVVLEO\ODUJH XQNQRZQGLYHUVLW\LQWKHUHJLRQ



,Q 3DSHU ,9 D FROOHFWLRQRI Allodia VSHFLPHQV IURP WKH +LPDOD\DQ PRXQWDLQV FROOHFWHGLQ 1HSDO DQG %KXWDQLVVWXGLHG7KHLQYHVWLJDWLRQUHVXOWVLQWKHGHVFULSWLRQRIQLQHVSHFLHV QHZWRVFLHQFH$OOQLQH VSHFLHVEHDUGLVWLQFWPRUSKRORJLFDOGLIIHUHQFHV7KHGLYHUVLW\LVKLJKDOVRLQWKLVVWXG\FRQVLGHULQJWKDWWKH PDWHULDOFRQVLVWHGRIUHODWLYHO\IHZVSHFLPHQVFROOHFWHGIURPDOLPLWHGJHRJUDSKLFDODUHD7KHQHZVSHFLHV UHSUHVHQWWKHILUVWUHFRUGVRIAllodia LQ1HSDODQG%KXWDQ7KHUHVXOWVRIWKHVWXG\LQGLFDWHDKLJKGHJUHHRI XQLTXHQHVVRIWD[DDQGDUHWKHUHIRUHSURPLVLQJIRUIXUWKHUVWXGLHVRQAllodiaDQGRWKHUIXQJXVJQDWWD[DLQ WKH+LPDOD\DQPRXQWDLQUDQJH

_*HQHUDRUVXEJHQHUD"

&ODVVLILFDWLRQLHWKHJURXSLQJRIWD[DLQWRDV\VWHPVKRXOGUHIOHFWWKHSK\ORJHQHWLFUHODWLRQVKLSVEHWZHHQ WD[DDQGPRQRSK\O\RIWD[DVKRXOGEHWKHSULPDU\JRDORIRXUFODVVLILFDWLRQV\VWHP(YHQVRGHILFLHQFLHV H[LVWDQGFOHDUFXWERUGHUVVXFKDVWKRVHIRXQGLQWKH/LQQDHDQV\VWHP HJIDPLOLHVJHQHUDHWF GRQRW H[LVWLQQDWXUH7KHUHIRUHGHFLGLQJWKHOLPLWVRIKLJKHUWD[RQRPLFHQWLWLHV LHDERYHWKHVSHFLHVOHYHO LV FKDOOHQJLQJ7KHSULPDU\REMHFWLYHRI3DSHU,ZDVWRWHVWWKHUHFLSURFDOPRQRSK\O\RIWKHWZRVXEJHQHUD AllodiaDQGBrachycamptaE\FRQVWUXFWLQJDPROHFXODUSK\ORJHQ\EDVHGRQ'1$VHTXHQFHGDWDUHWULHYHG WKURXJKJHQRPHVNLPPLQJ )LJ %DVHGRQDSK\ORJHQHWLFDQDO\VLVRIWKHPROHFXODUGDWDZLWKVXSSRUW IURPPRUSKRORJLFDOFKDUDFWHUVZHUHLQVWDWHBrachycampta DVDJHQXVVHSDUDWHIURPAllodia:KHWKHUZH WUHDW AllodiaDQGBrachycampta DV JHQHUD RU VXEJHQHUD RI Allodia LV XOWLPDWHO\ SXUHO\ D TXHVWLRQ RI taxonomic level, because the ‘rule’ of monophyly applLHVWRERWKOHYHOV7KHEDVLVRIRXUUHVXOWVLVGLVFXVVHG VHSDUDWHO\LQWKHWZRIROORZLQJVHFWLRQVZLWKDQRYHUYLHZRIWKHUHDVRQLQJEHKLQGUDLVLQJWKHVXEJHQHUDWR JHQXVOHYHO



 )LJXUH6LPSOLILHGSK\ORJHQHWLFWUHHIURP3DSHU,6WURQJO\VXSSRUWHGEUDQFKHV ERRWVWUDSVXSSRUW! DUHPDUNHGLQEROG7KH 5$[0/DQDO\VLVLVEDVHGRQWKHSULPDU\GDWDVHWFRQWDLQLQJDOWRJHWKHUJHQHV QXFOHRWLGHSRVLWLRQV RIERWKPLWRFKRQGULDO DQGQXFOHDURULJLQ(DFKVSHFLHVLVUHSUHVHQWHGZLWKDSLFWXUHRIWKHJRQRVW\OXVWRLOOXVWUDWHWKHPRUSKRORJLFDOVLPLODULWLHVDQG GLIIHUHQFHV6SHFLHV IURPWRSWRERWWRP A. zaitzeviA. ornaticollisA. anglofenicaA. -.-VS$A. lundstroemiA. truncataA. tuomikoskiiA. pyxidiiformisA. (B.) alternansA. (B.) czernyiA. (B.) neglectaA. (B.) protentaA. (B.) foliiferaA. (B.) angulata DQGA. (B.) barbata 



_0ROHFXODUUHVXOWV

7KHGHFLVLRQWRUDLVHWKHWZRVXEJHQHUDWRJHQXVOHYHOLVSULPDULO\EDVHGRQPROHFXODUGDWD,Q3DSHU,ZH ZHUHDEOHWRVHTXHQFHFRPSOHWHRUQHDUO\FRPSOHWHPLWRJHQRPHVIURPPRVWRIWKHVSHFLHVLQFOXGHGLQ WKHVWXG\H[FHSWIRURQHRXWJURXSVSHFLHV VS:HZHUHDOVRDEOHWRDVVHPEOH6DQGSDUWLDO6 IRUDOOVSHFLHV%DVHGRQWKHVHGDWDZHFRQVWUXFWHGRQHPDLQGDWDVHWFRQWDLQLQJDOOPLWRFKRQGULDOJHQHV SURWHLQFRGLQJ DQG U51$ JHQHV  DQG WKH 6 DQG 6 VHTXHQFHV :H DOVR FRPSLOHG IRXU DGGLWLRQDO GDWDVHWVZLWKGLIIHUHQWSDUWVRIWKHGDWDIURPWKHPDLQGDWDVHWWRFRQVLGHUWKHLPSDFWXVLQJGLIIHUHQWVHWVRI JHQHVZLWKGLIIHUHQWFKDUDFWHULVWLFV DPLQRDFLGVYVQXFOHRWLGHVSURWHLQFRGLQJYVVWUXFWXUDOJHQHV  

5$[0/ DQDO\VHV RI DOO ILYH GDWDVHWV FRUURERUDWH WKH K\SRWKHVLVHG PRQRSK\O\ RI ERWK Allodia DQG BrachycamptaZLWKKLJKERRWVWUDSVXSSRUW )LJ  +RZHYHUZLWKLQHDFKVXEJHQXVLQFRQJUXHQFHVLQ WRSRORJ\EHWZHHQWKHGLIIHUHQWGDWDVHWVRFFXU6HYHUDOUHODWLRQVKLSVZLWKLQAllodiaKDYHORZVXSSRUWDQG YDU\FRQVLGHUDEO\EHWZHHQWKHGDWDVHWV :LWKLQBrachycamptaRQWKHRWKHUKDQGVHYHUDOSK\ORJHQHWLF UHODWLRQVKLSVDUHVWURQJO\VXSSRUWHG7KHUHVROXWLRQLVEHWWHULQWKHGDWDVHWVFRQWDLQLQJPLWRFKRQGULDOGDWD ZLWKORQJHUEUDQFKHVDQGKLJKHUERRWVWUDSVXSSRUWFRPSDUHGWRWKHQXFOHDUULERVRPDOJHQHV7KLVVLWXDWLRQ UHIOHFWVGLIIHUHQFHVLQHYROXWLRQEHWZHHQPLWRFKRQGULDODQGQXFOHDUPDUNHUVDQGKLJKOLJKWVWKHLPSRUWDQFH RI FRPELQLQJ DQGFRPSDULQJ PLWRFKRQGULDO DQG QXFOHDU GDWDLQ SK\ORJHQHWLF VWXGLHV HJ &DUDYDV DQG )ULHGULFK   7KH PHWKRGRORJ\ ZDV VXFFHVVIXOO\ DSSOLHG DQG WKH FRPELQDWLRQ RI PLWRJHQRPHV DQG QXFOHDUULERVRPDOJHQHVVHHPVXLWHGWRHOXFLGDWHJHQXVOHYHOSK\ORJHQHWLFUHODWLRQVKLSVLQ'LSWHUD 

_0RUSKRORJ\

7KHPRUSKRORJLFDOFKDUDFWHUVWUDGLWLRQDOO\XVHGWRVHSDUDWHAllodiaDQGBrachycampta KDYHEHHQ

D  7KHSODFHPHQWRIEULVWOHVRQVFXWXP,QAllodiaWKHGLVFDOEULVWOHVDUHPLQXWHRUDEVHQWDWOHDVWRQWKH DQWHULRUKDOIRIWKHVFXWXP,QBrachycamptaWKHGLVFDOEULVWOHVDUHGLVWLQFWDQGH[WHQGWRWKHIURQWRI WKHVFXWXP E  &RORXURIDEGRPLQDOWHUJLWHV,ISUHVHQWWKHSDOHDUHDRIWKHDEGRPLQDOWHUJLWHVLQAllodiaLVPRUH H[WHQVLYHWRZDUGVWKHSRVWHULRUSDUWRIWKHWHUJLWHVZKLOHLQBrachycamptaWKHDUHDLVPRUHH[WHQVLYH WRZDUGVWKHDQWHULRUSDUWRIWKHWHUJLWHV F  :LQJYHQDWLRQVSHFLILFDOO\WKHRXWOLQHRIWKHDQDOYHLQDQGWKHSRVLWLRQRIWKHDQWHULRUIRUNLQUHODWLRQ WRWKHEDVHRIWKH50FURVVYHLQ,QAllodiaWKHEDVHRIWKHSRVWHULRUIRUNLVXVXDOO\EH\RQGRUXQGHUWKH EDVHRI50,QBrachycamptaWKHEDVHRIWKHFXELWDOIRUNLVXVXDOO\EHIRUHRUXQGHUWKHEDVHRI50

$OORIWKHFKDUDFWHUVOLVWHGDERYHKDYHDPELJXLWLHV:HILQGWKHFKDUDFWHUVGHVFULEHGLQD WREHODUJHO\ FRQVLVWHQWLQWKHWZRJHQHUDDOWKRXJKDELWYDJXH,QWKHGLDJQRVLVRIWKHWZRJHQHUDZHWKHUHIRUHIRFXVRQ



HODERUDWLQJWKHFKDUDFWHUVVRWKDWLVFDQEHPRUHHDVLO\XQGHUVWRRG VHH)LJ$' 7KHXVHRIWKHZRUGV usuallyDQGwhen presentLQGLFDWHWKHXQFHUWDLQW\DQGLQFRQVLVWHQF\RIWKHFKDUDFWHUVLQE DQGF ,QWKH GLDJQRVLV RI WKH WZR JHQHUD ZH WKHUHIRUH LQFOXGH WKH FKDUDFWHUV LQ WKH WZR ODWWHU SRLQWV DV DGGLWLRQDO FKDUDFWHUVKHOSIXOIRULGHQWLILFDWLRQEXWQRWFRPSOHWHO\UHOLDEOHWRVHSDUDWHWKHWZRJHQHUD 

,Q3DSHU,ZHGHVFULEHDQHZFKDUDFWHUWKDWKDV QRW SUHYLRXVO\EHHQXVHGLQ([HFKLLQL7KLVFKDUDFWHU DSSOLHVWRWKHPLFURVWUXFWXUHRIWKHEULVWOHVRQVFXWXPDQGVFXWHOOXPDQGDSSHDUVWRGLVWLQJXLVKWKHWZR JHQHUD,QAllodiaWKHVHEULVWOHVKDYHDQDSLFDOVSOLWRQHWLSORQJHUWKDQWKHRWKHUZKLOHLQBrachycampta WKHVHWDHLQTXHVWLRQDUHSRLQW\PRUHRUOHVVFXWVWUDLJKWRUZLWKVOLJKWO\MDJJHGWLSV7KHVHGLIIHUHQFHVDUH YLVLEOHZLWKDVWDQGDUGVWHUHRPLFURVFRSH LHDVLQ)LJ%& EXWLQ3DSHU,ZHDGGLWLRQDOO\SKRWRJUDSKHG WKHEULVWOHVZLWK6(0WRJHWDPRUHGHWDLOHGYLHZRIWKHVWUXFWXUH7KHFKDUDFWHULVFRQVWDQWLQDOOVSHFLHV H[DPLQHGVRIDULHLQVSHFLHVRIAllodiaDQGVSHFLHVRIBrachycampta 

 )LJXUH7KHRXWOLQHDQGSRVLWLRQRIEULVWOHVRQVFXWXPLQAllodiaDQGBrachycampta$'RUVDOYLHZRIVFXWXPRI Allodia (A.) pyxidiiformis=DLW]HY%3KRWRRIWKHDSLFDOVSOLWIRXQGRQWKHEULVWOHVRQVFXWXPLQA. (A.) pyxidiiformis&3KRWRRIWKH DSH[RIWKHEULVWOHVRQVFXWXPLQAllodia (B.) alternans =HWWHUVWHGW ''RUVDOYLHZRIVFXWXPRIA. (B.) alternans 

_7KHQHZVSHFLHVGHOLPLWDWLRQDQGFKDUDFWHUV

$OSKD WD[RQRP\ IRUPV WKH EDVLV RI PDQ\ GLVFLSOLQHV LQ ELRORJ\ DQG LQFOXGHV ILQGLQJ GHVFULELQJ DQG FODVVLI\LQJQHZVSHFLHVLQDGGLWLRQWRUHYLHZLQJSUHYLRXVO\GHVFULEHGVSHFLHV:LWKWKHDODUPLQJUDWHRI ELRGLYHUVLW\ORVVVSHHGLQJXSWD[RQRP\LVPRUHLPSRUWDQWQRZWKDQHYHUVLQFHWKHUHLVDKXJHPLVPDWFK EHWZHHQVSHFLHVGLYHUVLW\DQGWKHQXPEHURISHRSOHGHVFULELQJWKHP WKHWD[RQRPLFLPSHGLPHQW*RGIUD\  :KHHOHU HW DO  $JQDUVVRQ DQG .XQWQHU   7KHUHIRUH WUDGLWLRQDO DQG QHZO\ GHYHORSHG



PHWKRGVPXVWEHFRPELQHGWRUHYLVHDQGGHVFULEHELRGLYHUVLW\DURXQGWKHZRUOG(YHQVRGHVFULELQJDQG QDPLQJQHZVSHFLHVLVQRWDOZD\VDVWUDLJKWIRUZDUGGHFLVLRQ$WUDGHRIIH[LVWVEHWZHHQWKHULVNRIFUHDWLQJ V\QRQ\PVYHUVXVIDLOLQJWRGHVFULEHXQNQRZQGLYHUVLW\2QHVKRXOGDFNQRZOHGJHWKDWDVSHFLHVGHVFULSWLRQ LVDK\SRWKHVLVEDVHGRQDYDLODEOHLQIRUPDWLRQDERXWWKHVWXGLHGRUJDQLVP

,QWKLVWKHVLVDOWRJHWKHUVSHFLHVDUHQDPHGDQGGHVFULEHGDVQHZWRVFLHQFHZKLFKJUHDWO\LQFUHDVHVWKH QXPEHURINQRZQVSHFLHVLQWKHJHQXVAllodiaIURPWR VHH7DEOH 2IWKHQHZVSHFLHVVL[DUH GHVFULEHGIURPWKH+RODUFWLFUHJLRQ 3DSHU,, VL[IURPWKH$IURWURSLFDOUHJLRQ 3DSHU,,, DQGQLQHIURPWKH +LPDOD\DV 3DSHU,9  

7DEOH$OSKDEHWLFOLVWRIVSHFLHVUHFRJQL]HGLQAllodia VV 7KHVSHFLHVPDUNHGZLWKDVWHULVNVDUHQRWWUHDWHGRUGLVFXVVHGLQDQ\ RIWKHSDSHUVRUWKHLUYDOLGLW\FDQEHTXHVWLRQHG

6SHFLHV $XWKRU &RPPHQWV Allodia anglinensis 0DJQXVVHQ VSQ 3DSHU,, 1HDUFWLF Allodia anglofennica (GZDUGV +RODUFWLF Allodia attenuata :X=KHQJDQG;X 6(&KLQD Allodia caligata 0DJQXVVHQ VSQ 3DSHU,9  Allodia confusa =DLW]HY +RODUFWLF Allodia conspicua =DLW]HY 1HDUFWLF Allodia drakensbergensis 0DJQXVVHQ VSQ 3DSHU,,,  Allodia dibolia 0DJQXVVHQ VSQ 3DSHU,9  Allodia disa .M UDQGVHQ VSQ 3DSHU,, +RODUFWLF Allodia embla +DFNPDQ +RODUFWLF Allodia frenata  ']LHG]LFNL 7\SHORFDOLW\*HUPDQ\ Allodia fuliginosa :X=KHQJDQG;X 6(&KLQD Allodia horologia 0DJQXVVHQ VSQ 3DSHU,9  Allodia himalayensis 0DJQXVVHQ VSQ 3DSHU,9  Allodia iduna 0DJQXVVHQ VSQ 3DSHU,, 1HDUFWLF Allodia jaschhofi 0DJQXVVHQ VSQ 3DSHU,,,  Allodia karkloofensis 0DJQXVVHQ VSQ 3DSHU,,,  Allodia keurbosensis 0DJQXVVHQ VSQ 3DSHU,,,  Allodia lugens :LHGHPDQQ 3DODHDUFWLF Allodia lundstroemi (GZDUGV +RODUFWLF Allodia laccariae 6DVDNDZDDQG,VKL]DNL -DSDQ Allodia macrodontusa :X=KHQJDQG;X 6(&KLQD Allodia mazumbaiensis 0DJQXVVHQ VSQ 3DSHU,,,  Allodia micans  (GZDUGV 'HVFULEHGEDVHGRQIHPDOH Allodia nepalensis 0DJQXVVHQ VSQ 3DSHU,9  Allodia nita 0DJQXVVHQ VSQ 3DSHU,, 1HDUFWLF Allodia nyeriensis 0DJQXVVHQ VSQ 3DSHU,9  Allodia oblonga :X=KHQJDQG;X 6(&KLQD



Allodia obscuripennis  6DQWRV$EUHX 7\SHORFDOLW\&DQDU\,VODQGV Allodia ornaticollis 0HLJHQ +RODUFWLF  Allodia parornaticollis 0DJQXVVHQDQG.M UDQGVHQ VSQ 3DSHU,, 3DODHDUFWLF Allodia pectinata :X=KHQJDQG;X 6(&KLQD Allodia polevoii 0DJQXVVHQ VSQ 3DSHU,, +RODUFWLF Allodia prominens =DLW]HY 1HDUFWLF Allodia pyxidiiformis =DLW]HY +RODUFWLF Allodia rara  3ODVVPDQQ 7\SHORFDOLW\*HUPDQ\ Allodia sabroskyi* &ROOHVV 7\SHORFDOLW\0LFURQHVLDQ,VODQGV Allodia scalprata 0DJQXVVHQ VSQ 3DSHU,9  Allodia septentrionalis +DFNPDQ +RODUFWLF Allodia shimai 0DJQXVVHQ VSQ 3DSHU,9  Allodia solida :X=KHQJDQG;X 6(&KLQD Allodia spathulata 0DJQXVVHQ VSQ 3DSHU,9  Allodia thudamensis 0DJQXVVHQ VSQ 3DSHU,9  Allodia truncata (GZDUGV +RODUFWLF Allodia tuomikoskii +DFNPDQ +RODUFWLF Allodia varicornis 6HQLRU:KLWH 'HVFULEHGEDVHGRQIHPDOH Allodia zaitzevi .XULQD 3DODHDUFWLF 

_0RUSKRORJ\

$OOWKHQHZVSHFLHVDUHGHVFULEHGSULPDULO\EDVHGRQPRUSKRORJ\DQGWKHFKDUDFWHUVXVHGWRGHVFULEHDQG VHSDUDWHWKHVSHFLHVDUHDOPRVWH[FOXVLYHO\IRXQGLQWKHVWUXFWXUHVRIWKHPDOHWHUPLQDOLD6HYHUDOVSHFLHV FRPSOH[HVDUHGHWHFWHGLQ3DSHU,,SULPDULO\WKURXJK'1$EDUFRGLQJ:LWKLQHDFKRIWKHVHWZRFRPSOH[HV WKHJHQHWLFYDULDWLRQLVQRWUHIOHFWHGLQWKHPRUSKRORJ\RIWKH%,1V7KHanglofennicaFRPSOH[FRQVLVWVRI WKUHHFODGHVDOOPRUSKRORJLFDOO\KLJKO\VLPLODU7KHseptentrionalisFRPSOH[FRQVLVWVRIWZRPRUSKRORJLFDO JURXSV$DQG%ZLWKWZRDQGIRXUFODGHVUHVSHFWLYHO\ WKHJRQRVW\OLRIWKHFODGHVRIseptentrionalisJURXS %DUHLOOXVWUDWHGLQ)LJ $VRIQRZZHILQGWKHVPDOOPRUSKRORJLFDOGLIIHUHQFHVEHWZHHQWKH%,1VWREH WRRLQVLJQLILFDQWWRUHSUHVHQWVSHFLHVOHYHOGLIIHUHQFHV2XULQWHUSUHWDWLRQLVWKDWLQERWKVSHFLHVFRPSOH[HV PRUHGDWDLVQHHGHGWRXQUDYHOWKHWUXHVWRU\DERXWWKHGLYHUVLW\7KRXJKWKHUHVXOWVKLQWDWWKHH[LVWHQFHRI KLGGHQFU\SWLFVSHFLHVRXULQWHUSUHWDWLRQLVWKDWLQERWKVSHFLHVFRPSOH[HVPRUHGDWDLVQHHGHGWRXQUDYHO WKHVWRU\DERXWWKHLUGLYHUVLW\ VHHGLVFXVVLRQLQ )XWXUHVWXGLHVLQWKH+RODUFWLFUHJLRQVKRXOGIRFXV RQDOVRLQFOXGLQJVSHFLPHQVIURP5XVVLDWRJHWDPRUHFRPSOHWHXQGHUVWDQGLQJRIWKHGLVWULEXWLRQSDWWHUQV DQGWKHSRVVLEOHFLUFXPSRODUGLVWULEXWLRQRIWKHVSHFLHV



 )LJXUH6SHFLHVFRPSOH[VWXGLHGLQ3DSHU,,*URXS%LQWKHseptentrionalisFRPSOH[$%2/'$$8%%2/'$$3 &Allodia polevoiiVSQDQG'%2/'$$3  ,Q 3DSHU ,,, DOO VL[ $IURWURSLFDO VSHFLHV VKRZ D KLJK GHJUHH RI PRUSKRORJLFDO VLPLODULW\ LQFOXGLQJ FKDUDFWHUVLQWKHPDOHWHUPLQDOLD(YHQVRVPDOOEXWFRQVLVWHQWGLIIHUHQFHVDUHIRXQGEHWZHHQWKHVSHFLHV FRPSDUDEOH WR WKRVH IRXQG EHWZHHQ VRPH RI WKH +RODUFWLF VSHFLHV GHVFULEHG LQ 3DSHU ,, 7KH VPDOO GLIIHUHQFHVREVHUYHGEHWZHHQWKH$IURWURSLFDOVSHFLHVDUHKRZHYHUOHVVSURQRXQFHGWKDQZKDWLVJHQHUDOO\ VHHQ LQ RWKHU Allodia VSHFLHV 7KH VLWXDWLRQ LV TXLWH GLIIHUHQW LQ 3DSHU ,9 ZKHUH WKH PRUSKRORJLFDO GLIIHUHQFHVEHWZHHQWKHQLQH+LPDOD\DQVSHFLHVDUHHYLGHQWDQGZHOOGHILQHG

,Q3DSHU,,DQG3DSHU,,,DOVRWKHIHPDOHVRIDQXPEHURIVSHFLHVDUHGHVFULEHGDQGLOOXVWUDWHG%DVHGRQ WKHVHGHVFULSWLRQVPLQXWHEXWFRQVWDQWPRUSKRORJLFDOGLIIHUHQFHVVHHPWRH[LVWEHWZHHQWKHVSHFLHVDOVRLQ WKHIHPDOHWHUPLQDOLD

_0ROHFXODUUHVXOWV

7UDGLWLRQDOO\ PRVW 'LSWHUD VSHFLHV DUH GHVFULEHG EDVHG RQ PRUSKRORJLFDO FKDUDFWHUV RQO\ EXW LW LV EHFRPLQJ LQFUHDVLQJO\ FRPPRQ WR DOVR DGG PROHFXODULQIRUPDWLRQ 2IWHQWKHPROHFXODULQIRUPDWLRQLV SURYLGHG LQ WKH IRUP RI '1$ EDUFRGHV LQ SDUWLFXODU LQ WD[D ZKHUH WKH LGHQWLILFDWLRQ LV HVSHFLDOO\ FKDOOHQJLQJHJLQ&KLURQRPLGDH /LQHWDO DQG7DFKLQLGDH 3RKMRLVPlNLHWDO $OWKRXJKWKH VSHFLHVLQWKLVWKHVLVDUHSULPDULO\GHVFULEHGEDVHGRQPRUSKRORJ\PROHFXODUGDWDLVXVHGDVDQDGGLWLRQDO VRXUFHRILQIRUPDWLRQLQ3DSHUV,,DQG,,,WRHYDOXDWHWKHVSHFLHVERXQGDULHV

,Q 3DSHU ,,, LQWHUVSHFLILF JHQHWLF GLVWDQFHV ZHUH XVHG WRFRPSDUHWKHGHVFULEHGVSHFLHV7KHSGLVWDQFH YDULHGEHWZHHQDQGEHWZHHQWKHGHVFULEHGVSHFLHV'XHWRVPDOOVDPSOHVL]HDQGWKHIDFWWKDW FRQVSHFLILFVSHFLPHQVZHUHFROOHFWHGDWWKHVDPHWLPHDWWKHVDPHORFDOLW\WKHLQWUDVSHFLILFGLVWDQFHVFRXOG QRW EH FDOFXODWHG DQG FRPSDUHG WR WKH LQWHUVSHFLILF JHQHWLF GLVWDQFH %DVHG RQ SUHYLRXV VWXGLHV HJ



-UJHQVWHLQHWDO.XULQDHWDO DQGH[SHULHQFHIURP'1$EDUFRGLQJRI0\FHWRSKLOLGDHZHILQG WKHLQWHUVSHFLILFGLVWDQFHVWREHRIWKHVDPHGHJUHHDVIRURWKHUFORVHO\UHODWHGVSHFLHV,Q3DSHU,,ZH FRPSDUHSXEOLFO\DYDLODEOH'1$EDUFRGHVIURPXQLGHQWLILHGIXQJXVJQDWVIURP&DQDGDZLWKWKHAllodia VHTXHQFHVLQWKHUHIHUHQFHOLEUDU\DQGJHWQHZLQVLJKWVLQWRWKH+RODUFWLFIDXQD%\VXEVHTXHQWO\VWXG\LQJ WKHYRXFKHUVSHFLPHQVIURPERWKOLEUDULHVPRUSKRORJLFDOO\ZHHYDOXDWHWKH%,1GHVLJQDWLRQVSHFLILFDOO\ IRUWKHUHFRJQLVHGVSHFLHV,QWRWDOVSHFLHVZHUHZHOOVXSSRUWHGLQWKHDQDO\VLVRIWKH'1$EDUFRGHV,Q DGGLWLRQWZRVSHFLHVFRPSOH[HVZHUHUHFRJQL]HGLHFDVHVZKHUHWKHJHQHWLFGLYHUJHQFHZDVKLJKHQRXJK WRSXWVSHFLPHQVLQ VHSDUDWH %,1V EXWWKH PRUSKRORJ\VKRZHG QRFRUUHVSRQGLQJGLYHUJHQFH7KHWZR VSHFLHV FRPSOH[HV WHUPHG WKH anglofennica DQG septentrionalis FRPSOH[HV ZHUH DOVR DQDO\VHG LQGLYLGXDOO\ E\ LQFOXGLQJ PRUH SXEOLFO\ DYDLODEOH &2, VHTXHQFHV ,Q WKH septentrionalisFRPSOH[ WZR JURXSV JURXS$DQG% ZHUHGLVWLQJXLVKDEOHZLWK'1$EDUFRGHVDQGZLWKPRUSKRORJ\7KHVHWZRJURXSV FRUUHVSRQGWRWZRPRUSKRVSHFLHVDOUHDG\GHWHFWHGLQPDWHULDOIURP)HQQRVFDQGLD:LWKLQJURXSV$DQG %WKUHHDQGILYH%,1VH[LVWUHVSHFWLYHO\,QWKHanglofennicaFRPSOH[WKUHH%,1VZHUHUHFRJQL]HGZLWK RQO\VPDOOPRUSKRORJLFDOGLIIHUHQFHVDQGJHQHWLFGLVWDQFHUDQJLQJEHWZHHQDQG 

,76LVXVHGDVDVXSSOHPHQWDU\PROHFXODUPDUNHULQ3DSHU,,LQRUGHUWREHDEOHWRFRPSDUHWKHUHVXOWVIURP WKHPLWRFKRQGULDOGDWD LH&2, ZLWKDQLQGHSHQGHQWQXFOHDUPDUNHU,76LVIUHTXHQWO\XVHGLQVLPLODU VWXGLHVIRFXVLQJRQGHOLPLWDWLRQDQGSK\ORJHQHWLFUHODWLRQVKLSVEHWZHHQFORVHO\UHODWHGVSHFLHV HJ+DDUWR DQG6WnKOV.XULQDHWDO (YHQWKRXJKQRFOHDUFRQIOLFWVZHUHIRXQGEHWZHHQ&2,DQG,76LQ RXU DQDO\VHV WKH ,76 VHTXHQFHV GLG QRW JLYH DGGLWLRQDO LQIRUPDWLRQ UHJDUGLQJ WKH SK\ORJHQHWLF UHODWLRQVKLSEHWZHHQWKHVSHFLHVRUUHJDUGLQJWKHPHQWLRQHGVSHFLHVFRPSOH[HV 

:KHQHYDOXDWLQJERWKRIWKHVSHFLHVFRPSOH[HVZHGHVFULEHRQHQHZVSHFLHVA. polevoiiIRUJURXS%LQ WKHseptentrionalisFRPSOH[ZKLOHWUHDWLQJJURXS$DVWKHUHDOA. septentrionalisDIWHUFRPSDULVRQZLWK W\SH PDWHULDO ,Q WKH FDVHRIWKH anglofennicaFRPSOH[ ZH FKRRVHWR WUHDW WKH WKUHH %,1V DV YDULDWLRQ ZLWKLQA. anlofennica7KLVUHSUHVHQWVDFRQVHUYDWLYHDSSURDFKRQRXUSDUWDVZHEHOLHYHPRUHGDWDDUH QHHGHGWREHWWHUHOXFLGDWHWKHSRWHQWLDOVSHFLHVERXQGDULHVLQWKHVHVSHFLHVFRPSOH[HV$VWKHGDWDEDVHRI '1$EDUFRGHVJURZVPRUHDQGPRUHVWXGLHVDUHLQYHVWLJDWLQJWKHHIIHFWRIVDPSOHVL]HDQGJHRJUDSKLFDO FRYHUDJHRQWKH%,1GHVLJQDWLRQVand the ‘barcode gap’ HJ%HUJVWHQHWDO+XHPHUHWDO +XHPHU HW DO   $ EHWWHU XQGHUVWDQGLQJ RI WKH FRQVHTXHQFHV RI VDPSOLQJ ELDV RQ '1$ EDUFRGHV FRXOG SRVVLEO\KHOSXV WREHWWHUXQGHUVWDQGWKH LVVXHV PHWLQWKHWZRVSHFLHVFRPSOH[HV 7KHUHYHDOHG LQWUD DQG LQWHUVSHFLILF YDULDWLRQ RIWKHVH FRPSOH[HV LQ ERWK PRUSKRORJ\ DQG '1$ EDUFRGHV LH WKHLU DVVLJQHG%,1V LQGLFDWHFRPSOH[FDVHVSUREDEO\DOVRIRXQGLQRWKHUZLGHO\GLVWULEXWHGWD[D 



&RQFOXGLQJUHPDUNVDQGIXWXUHSHUVSHFWLYHV

7KLV WKHVLV FRQWULEXWHV WR RXU XQGHUVWDQGLQJ RI WKH V\VWHPDWLFV GLYHUVLW\ DQG GLVWULEXWLRQ RI WKH JHQXV Allodia :H KDYH GHPRQVWUDWHG WKH PRQRSK\O\ RI AllodiaDQGBrachycampta SUHVHQWLQJ WKH PRVW FRPSUHKHQVLYHPROHFXODUSK\ORJHQ\RIDQ\P\FHWRSKLOLGJHQXVVRIDU7KHSK\ORJHQ\UHWULHYHGIURPWKH PROHFXODUGDWDLVVXSSRUWHGE\GLIIHUHQFHVLQWKHPLFURVWUXFWXUHRIWKHEULVWOHVRQVFXWXPLQWKHWZRJHQHUD DFKDUDFWHUSUHYLRXVO\QRWLQYHVWLJDWHGLQ0\FHWRSKLOLGDH%DVHGRQRXUUHVXOWVZHKDYHSURSRVHGFKDQJHV WRWKHFODVVLILFDWLRQRIWKHJHQXVE\UDLVLQJWKHWZRVXEJHQHUDBrachycampta DQGAllodiaWRJHQXVOHYHO%\ DQLQWHJUDWLYHDSSURDFKXVLQJERWKPROHFXODUDQGPRUSKRORJLFDOFKDUDFWHUVZHKDYHLQWRWDOGHVFULEHGRU UHGHVFULEHGVSHFLHVRIAllodia)XUWKHUPRUHWKHVSHFLHVIRXQGLQWKHPDLQGLVWULEXWLRQDODUHDRIAllodia VV  WKH +RODUFWLF DUH UHYLVHG WKURXJK DQ LQWHJUDWLYH DSSURDFK XVLQJ '1$ EDUFRGHV ,76 GDWD DQG PRUSKRORJ\WRHOXFLGDWHVSHFLHVERXQGDULHVSK\ORJHQHWLFUHODWLRQVKLSVDQGGLVWULEXWLRQSDWWHUQVRIWKH UHFRJQL]HG VSHFLHV7KH XVH RIDQ LQWHJUDWLYH DSSURDFK WR LQYHVWLJDWH DOID WD[RQRPLFDO LVVXHV KDV EHHQ ODUJHO\VXFFHVVIXO(YHQVRWZRVSHFLHVFRPSOH[HVWKHanglofennicaDQGseptentrionalisFRPSOH[ZKHUH WKH FOXVWHULQJRI'1$EDUFRGHV ZDVQRWUHIOHFWHGLQPRUSKRORJLFDOGLIIHUHQFHVFRXOGQRWEHUHVROYHG 7KHVHFRPSOH[HVVKRXOGEHLQYHVWLJDWHGIXUWKHUE\LQFOXGLQJDEURDGHUJHRJUDSKLFDOVDPSOLQJVWXG\LQJWKH SRSXODWLRQVWUXFWXUHDQGDQDO\VHDGGLWLRQDOJHQHWLFPDUNHUV%\H[SORULQJWKHFRPSOH[HVLQPRUHGHWDLO DOVRPRUSKRORJLFDOO\SHUKDSVWKURXJKPRUHDGYDQFHGSKRWRRUPLFURVFRSHWHFKQLTXHVZHFRXOGJDLQD EHWWHU XQGHUVWDQGLQJ RI WKH VPDOO GLIIHUHQFHV REVHUYHG DQG LQ VR GRLQJ SXVK RXU XQGHUVWDQGLQJ RI VSHFLHVVSHFLILFPRUSKRORJLFDOGLIIHUHQFHVHYHQIXUWKHU

7KHODUJHQXPEHURIQHZVSHFLHVGHVFULEHGLQ3DSHUV,,,,,DQG,9HPSKDVLVHVWKHQHHGIRUPRUHGHWDLOHG VWXGLHVDQGVDPSOLQJLQDOOJHRJUDSKLFUHJLRQVDVRXUUHVXOWVLQGLFDWHWKHDFWXDOGLYHUVLW\RIAllodia WREH PXFKKLJKHUWKDQLQLWLDOO\H[SHFWHG$VKDYHEHHQGHPRQVWUDWHGQHZVSHFLHVDUHQRWRQO\OLNHO\WREHIRXQG LQSRRUO\VWXGLHGDUHDVEXWDOVRLQUHJLRQVFRQVLGHUHGUHODWLYHO\ZHOONQRZQVXFKDVWKH+RODUFWLFZLWK QXPHURXVV\PSDWULFVSHFLHV$UHYLVLRQRIWKHVSHFLHVLQBrachycamptaLVDOVRPXFKQHHGHGDQGFRXOG EULQJDERXWQHZFKDUDFWHUVWRVHSDUDWHEHWZHHQWKHWZRJHQHUDDQGHOXFLGDWHWKHLUHYROXWLRQDU\KLVWRU\ 

2XUNQRZOHGJHDERXWWKHELRORJ\DQGLPPDWXUHVWDJHVRI0\FHWRSKLOLGDHLVVWLOOKLJKO\UXGLPHQWDU\7KH GHYHORSPHQWRIPROHFXODULGHQWLILFDWLRQRIVSHFLHVWKURXJK'1$EDUFRGLQJDOORZVXVWRH[SORUHWKHODUYDH DQGWKHIXQJXVKRVWLQPRUHGHWDLOZLWKRXWWLPHFRQVXPLQJDQGVRPHWLPHVFKDOOHQJLQJUHDULQJDWWHPSWV%\ H[SORULQJWKHELRORJ\RIWKHODUYDHRIAllodiaDQGBrachycamptaLQPRUHGHWDLOSRVVLEOHV\QDSRPRUSKLHV IRUWKHWZRJHQHUDFRXOGEHIRXQGLQWKHSUHIHUHQFHRUWROHUDQFHRIVSHFLILFW\SHVRIIXQJL6XFKNQRZOHGJH FRXOGDOVRKHOSWRH[SODLQZK\WKHUHLVVXFKDFOHDUGLIIHUHQFHLQFRPPRQQHVVDQGPRUSKRORJLFDOGLYHUVLW\ EHWZHHQWKHWZRJHQHUD 



:HDUHVWLOOLQWKHLQLWLDOVWDJHRIXQGHUVWDQGLQJAllodiaDQGLQRUGHUWRH[SDQGRXULQVLJKWLQWRWRSLFVDV ELRJHRJUDSK\HYROXWLRQRIFKDUDFWHUVEHKDYLRXUELRORJ\HWFDQLQWLPDWHNQRZOHGJHRIWKHV\VWHPDWLFVLV QHHGHG7KLVWKHVLVUDLVHVWKHSRVVLELOLW\WKDWAllodia LWVHOIUHSUHVHQWVDQRSHQHQGHGWD[RQZKHUHDGGLWLRQDO IDXQLVWLFVWXGLHVLQWKHGLVWULEXWLRQDODUHDRIWKHJHQXVSRWHQWLDOO\FDQJHWXVFORVHUWRHVWLPDWLQJWKHWUXH GLYHUVLW\(YHQVRWKLVWKHVLVFRQWULEXWHVWRWKHNQRZOHGJHRIDGLYHUVHJHQXVRIIXQJXVJQDWVE\GHVFULELQJ VSHFLHVUHYLHZDQGUHYLVHWKHWD[RQRP\DQGPD\EHPRVWLPSRUWDQWO\E\SURYLGLQJNH\VDQGLOOXVWUDWLRQVWR IDFLOLWDWHIXWXUHLGHQWLILFDWLRQDQGGLVFRYHULHV







5HIHUHQFHV

$JQDUVVRQ,DQG.XQWQHU0  7D[RQRP\LQDFKDQJLQJZRUOGVHHNLQJVROXWLRQVIRUDVFLHQFHLQ FULVLVSystematic Biology  –KWWSVGRLRUJ

$OWVFKXO6)*LVK:0LOOHU:0\HUV(:DQG/LSPDQ'-  %DVLFORFDODOLJQPHQWVHDUFK WRROJournal of Molecular Biology  –

$QGHUVRQ$06WXU(DQG(NUHP7  0ROHFXODUDQGPRUSKRORJLFDOPHWKRGVUHYHDOFU\SWLF GLYHUVLW\DQGWKUHHQHZVSHFLHVRI1HDUFWLFMicropsectra 'LSWHUD&KLURQRPLGDH Freshwater Science  –KWWSVGRL 

%DQNHYLFK$1XUN6$QWLSRY'*XUHYLFK$$'YRUNLQ0.XOLNRY$6/HVLQ90  HWDO  63$GHVDQHZJHQRPHDVVHPEO\DOJRULWKPDQGLWVDSSOLFDWLRQVWRVLQJOHFHOOVHTXHQFLQJ Journal of computational biology  –KWWSVGRLRUJFPE

%HFKHY'  7KH]RRJHRJUDSKLFFODVVLILFDWLRQRIWKH3DODHDUFWLFJHQHUDRIIXQJXVJQDWV 'LSWHUD 6FLDURLGHDH[FOXGLQJ6FLDULGDH Studia dipterologica  –

%HFKHY'  :RUOGGLVWULEXWLRQRIWKHJHQHUDRIIXQJXVJQDWV 'LSWHUD6FLDURGHDH[FOXGLQJ 6FLDULGDH Studia Dipterologica  – 

%HQVRQ'$&ODUN..DUVFK0L]UDFKL,/LSPDQ'-2VWHOO-DQG6D\HUV(:  *HQ%DQN Nucleic Acids Research'–'KWWSVGRLRUJQDUJN[

%HUJVWHQ-%LOWRQ'7)XMLVDZD7(OOLRWW00RQDJKDQ07%DONH0+HQGULFK/HWDO   7KHHIIHFWRIJHRJUDSKLFDOVFDOHRIVDPSOLQJRQ'1$EDUFRGLQJSystematic Biology  – KWWSVGRLRUJV\VELRV\V

%LFNHO'  &KDSWHU7HQ:K\HilaraLVQRWDPXVLQJ7KHSUREOHPRIRSHQHQGHGWD[DDQGWKHOLPLWV RIWD[RQRPLFNQRZOHGJHIn Diptera Diversity: Status, Challenges and Tools'DQLHO%LFNHO 7KRPDV3DSHDQG5XGROI0HLHU (GV %ULOOS–  KWWSVGRLRUJHM,

%RUNHQW$%URZQ%9$GOHU3+$PRULP'6%DUEHU.%LFNHO'%RXFKHU6HWDO   5HPDUNDEOHIO\ 'LSWHUD GLYHUVLW\LQDSDWFKRI&RVWD5LFDQFORXGIRUHVW:K\LQYHQWRU\LVDYLWDO VFLHQFHZootaxa  –KWWSVGRLRUJ]RRWD[D 



%UXQHWWL(  ;,'LSWHUD,Q$QQDQGDOH1 (G =RRORJLFDOUHVXOWVRIWKH$ERUH[SHGLWLRQ– 9RO5HFRUGVRIWKH,QGLDQ0XVHXP&DOFXWWDSS–KWWSVGRLRUJEKOSDUW

Burdíková, N., Kærandsen, J., Lindemann, J. P., KaspĜák, D., Tóthová, A. and Ševþík J. (2019) Molecular SK\ORJHQ\RIWKH3DOHRJHQHIXQJXVJQDWWULEH([HFKLLQL 'LSWHUD0\FHWRSKLOLGDH UHYLVLWHG 0RQRSK\O\RIJHQHUDHVWDEOLVKHGDQGUDSLGUDGLDWLRQFRQILUPHGJournal of zoological systematics and evolutionary researchKWWSVGRLRUJM]V

%X[WRQ3$  %ULWLVK'LSWHUDDVVRFLDWHGZLWKIXQJL)OLHVRIDOOIDPLOLHVUHDUHGIURPDERXW VSHFLHVRIIXQJLEntomologist's monthly Magazine–

&DUDYDV-)ULHGULFK0  6KDNLQJWKH'LSWHUDWUHHRIOLIHSHUIRUPDQFHDQDO\VLVRIQXFOHDUDQG PLWRFKRQGULDOVHTXHQFHGDWDSDUWLWLRQVSystematic Entomology  – KWWSVGRLRUJM[

&KDQGOHU3-  1HZUHDULQJUHFRUGVRIIXQJXVJQDWV 'LSWHUD0\FHWRSKLOLGDHDQGDOOLHGIDPLOLHV  Dipterists Digest–

&RLVVDF(+ROOLQJVZRUWK30/DYHUJQH6DQG7DEHUOHW3  )URPEDUFRGHVWRJHQRPHV H[WHQGLQJWKHFRQFHSWRI'1$EDUFRGLQJMolecular Ecology   – KWWSVGRLRUJPHF

&ROOHVV'+  'LSWHUD0\FHWRSKLOLGDH–,QVHFWVRI0LFURQHVLD%HUQLFH3%LVKRS0XVHXP +RQROXOX  –

&XPPLQJ-0DQG:RRG0  $GXOWPRUSKRORJ\DQGWHUPLQRORJ\In Manual of Afrotropical Diptera. Vol. 1. Introductory chapters and keys to Diptera families.LUN6SULJJV$+DQG6LQFODLU %- (GV 6XULFDWD6RXWK$IULFDQ1DWLRQDO%LRGLYHUVLW\,QVWXLWXWH3UHWRULDSS– 

(GZDUGV):  %ULWLVK)XQJXVJQDWV 'LSWHUD0\FHWRSKLOLGDH ZLWKDUHYLVHGJHQHULFFODVVLILFDWLRQ RIWKHIDPLO\Transactions of the Royal Entomological Society of London  –  KWWSVGRLRUJMWE[

(GZDUGV):  'LSWHUD1HPDWRFHUDIURPWKH)HGHUDWHG0DOD\6WDWHV0XVHXPJournal of the Federated Malay States Museum–

(NUHP76WXU(DQG+HEHUW3'1  )HPDOHVGRFRXQW'RFXPHQWLQJ&KLURQRPLGDH 'LSWHUD  VSHFLHVGLYHUVLW\XVLQJ'1$EDUFRGLQJOrganisms Diversity and Evolution– KWWSVGRLRUJV\



(YHQKXLV1/  7KHLQVHFWDQGVSLGHUFROOHFWLRQVRIWKHZRUOGZHEVLWH$YDLODEOHDW KWWSKEVELVKRSPXVHXPRUJFRGHQV>RFW@

*DJQp5-$K\SRWKHVLVIRUWKHGLVWULEXWLRQRI+RODUFWLFJURXSVRIIXQJXVJQDWV 'LSWHUD 0\FHWRSKLOLGDH Journal of the New York Entomological Society 

*RGIUD\+&-  &KDOOHQJHVIRUWD[RQRP\Nature–

*UDQGHMHDQHWDO  5DSLGUHFRYHU\RIQXFOHDUDQGPLWRFKRQGULDOJHQHVE\JHQRPHVNLPPLQJIURP 1RUWKHUQ+HPLVSKHUHIUHVKZDWHUFUD\ILVKZoologica scripta  – KWWSVGRL]VF

+DDUWR$6WnKOV*  :KHQPW'1$&2,LVPLVOHDGLQJFRQJUXHQWVLJQDORI,76PROHFXODUPDUNHU DQGPRUSKRORJ\IRU1RUWK(XURSHDQMelanostoma6FKLQHU 'LSWHUD6\USKLGDH ZooKeys –KWWSVGRLRUJ]RRNH\V

+DKQ&%DFKPDQQ/DQG&KHYUHX[%  5HFRQVWUXFWLQJPLWRFKRQGULDOJHQRPHVGLUHFWO\IURP JHQRPLFQH[WJHQHUDWLRQVHTXHQFLQJUHDGV–DEDLWLQJDQGLWHUDWLYHPDSSLQJDSSURDFKNucleic Acids Research  HKWWSVGRLRUJQDUJNW

+HEHUW3'15DWQDVLQJKDP6=DNKDURY(97HOIHU$&/HYHVTXH%HDXGLQ90LOWRQ0$ 3HGHUVHQ6HWDO  &RXQWLQJDQLPDOVSHFLHVZLWK'1$EDUFRGHV&DQDGLDQLQVHFWV Philosophical Transactions of the Royan Society B   KWWSVUR\DOVRFLHW\SXEOLVKLQJRUJGRLSGIUVWE

+HEHUW3'1&\ZLQVND$%DOO6/DQGGH:DDUG-5  %LRORJLFDOLGHQWLILFDWLRQVWKURXJK'1$ EDUFRGHVProceedings of the Royal Society Biological Sciences, Series B   – KWWSVGRLRUJUVSE

+XHPHU3+HEHUW3'10XWDQHQ0:LHVHU&:LHVPDLU%+DXVPDQQ$

+XHPHU30XWDQHQ06HIF.0+HEHUW3'1  7HVWLQJ'1$EDUFRGHSHUIRUPDQFHLQ VSHFLHVRI(XURSHDQ/HSLGRSWHUDODUJHJHRJUDSKLFGLVWDQFHVKDYHVPDOOJHQHWLFLPSDFWV. PLOS ONE  KWWSVGRLRUJMRXUQDOSRQH



-DNRYOHY-  3DOHDUFWLF'LSWHUDDVVRFLDWHGZLWKIXQJLDQGP\[RP\FHWHV.DUHOLDQ5HVHDUFK&HQWHU 5XVVLDQ$FDGHP\RI6FLHQFHV)RUHVW5HVHDUFK,QVWLWXWH3HWUR]DYRGVNSS ,Q5XVVLDQ 

-DNRYOHY-  )XQJXVJQDWV 'LSWHUD6FLDURLGHD DVVRFLDWHGZLWKGHDGZRRGDQGZRRGJURZLQJIXQJL QHZUHDULQJGDWDIURP)LQODQGDQG5XVVLDQ.DUHOLDDQGJHQHUDODQDO\VLVRINQRZQODUYDO PLFURKDELWDWVLQ(XURSHEntomologica Fennica–

-DNRYOHY-  )XQJDOKRVWVRIP\FHWRSKLOLGV 'LSWHUD6FLDURLGHDH[FOXGLQJ6FLDULGDH DUHYLHZ Mycology   –KWWSG[GRLRUJ

-RKDQQVHQ2$  'LSWHUDIDP0\FHWRSKLOLGDHIn Genera Insectorum:LWVPDQ3 (G %UX[HOOHV –

-UJHQVWHLQ6.XULQD2 3}OGPDD.  7KH0\FHWRSKLODUXILFROOLV0HLJHQ 'LSWHUD 0\FHWRSKLOLGDH JURXSLQ(XURSHHOXFLGDWLQJVSHFLHVGHOLPLWDWLRQZLWK&2,DQG,76VHTXHQFH GDWDZooKeys–KWWSVGRLRUJ]RRNH\V

.M UDQGVHQ-  5HYLHZRIIXQJXVJQDWVRIWKHJHQXVTarnania7XRPLNRVNLZLWKDSK\ORJHQ\RIWKH 5\PRVLDVOJHQXVJURXS 'LSWHUD0\FHWRSKLOLGDH  Systematics and Evolution  – KWWSVGRLRUJ

.M UDQGVHQ-  7ZRQHZVSHFLHVRIAllodiaVXEJHQXVBrachycampta:LQQHUW]IURP1RUZD\DQG 6ZHGHQ 'LSWHUD0\FHWRSKLOLGDH Entomologica Fennica  –

.M UDQGVHQ-  7KHJHQXVPseudexechia 7XRPLNRVNLUHFKDUDFWHUL]HGZLWKDUHYLHZRI(XURSHDQ VSHFLHV 'LSWHUD0\FHWRSKLOLGDH Zootaxa –

.XULQD2®XQDS(DQG3}OGPDD.  7ZRQHZNeuratelia5RQGDQL 'LSWHUD0\FHWRSKLOLGDH  VSHFLHVIURP:HVWHUQ3DODHDUFWLFDFDVHRIOLPLWHGFRQJUXHQFHEHWZHHQPRUSKRORJ\DQG'1$ VHTXHQFHGDWDZooKeys–KWWSVGRLRUJ]RRNH\V

/LQ;6WXU(DQG(NUHP7  ([SORULQJJHQHWLFGLYHUJHQFHLQD6SHFLHV5LFK,QVHFWJHQXVXVLQJ '1$%DUFRGHVPLOS ONE  HKWWSVGRLRUJMRXUQDOSRQH

/LQDUG%$UULEDV3$QG~MDU&&UDPSWRQ3ODWW$DQG9RJOHU$3  /HVVRQVIURPJHQRPH VNLPPLQJRIDUWKURSRGǦSUHVHUYLQJHWKDQROMolecular Ecology Resources   –  KWWSVGRLRUJ



0DOp3-*%DUGRQ/%HVQDUG*&RLVVDF('HOVXF)(QJHO-/KXLOOLHU(HWDO  *HQRPH VNLPPLQJE\VKRWJXQVHTXHQFLQJKHOSVUHVROYHWKHSK\ORJHQ\RIDSDQWURSLFDOWUHHIDPLO\ Molecular Ecology Resources– KWWSVGRLRUJ

0DWLOH/  &DWDORJXHSURYLVRLUHGHV'LSWqUHV0\FHWRSKLOLGDHGHOD)DXQHGH)UDQFHBulletin du Muséum National D’Historie Naturelle   – 

0DWLOH/  'LSWHUHV0\FHWRSKLOLGDHGHO $UFKLSHOGHV&RPRUHVMemoires du Museum National d'Histoire Naturelle Serie A Zoologie–

0F$OSLQH-)  0RUKRORJ\DQGWHUPLQRORJ\–DGXOWVIn Manual of Nearctic Diptera. Vol. 1. 0F$OSLQH-)3HWHUVRQ%96KHZHOO*(7HVNH\+-9RFNKHURWK-5DQG:RRG'0 (GV &DQDGDGHSDUWPHQWRI$JULFXOWXUH5HVHDUFK%UDQFK0RQRJUDSK2WWDZDSS– 

0RULQpUH-%DONH0'RF]NDO'*HLJHU0)+DUGXODN/$+DV]SUXQDU*+DXVPDQQ$HWDO  $'1$EDUFRGHOLEUDU\IRU*HUPDQIOLHVDQGPLGJHV ,QVHFWD'LSWHUD DQGLWV LPSOLFDWLRQVIRUPHWDEDUFRGLQJǦEDVHGELRPRQLWRULQJMolecular Ecology Resources  – KWWSVRQOLQHOLEUDU\ZLOH\FRPGRLHSGI 

3DSDGRSRXORX$7DEHUOHW3DQG=LQJHU/  0HWDJHQRPHVNLPPLQJIRUSK\ORJHQHWLFFRPPXQLW\ HFRORJ\DQHZHUDLQELRGLYHUVLW\UHVHDUFKMolecular Ecology– KWWSVGRLRUJPHF 

3DSH7%ODJRGHURY9DQG0RVWRYVNL0  2UGHU'LSWHUD/LQQDHXVIn biodiversity: An outline of higher-level classification and survey of taxonomic richness=KDQJ=4 (G  ZootaxaSS– 

3ODVVPDQQ(  'LH)XQJLYRULGHQGHV1DWXUVFKXW]SDUNHV+RKHU9RJHOVEHUJ (LQ%HLWUDJ]XU%LRORJLH gNRORJLHXQG7DNVRQRPLHGHU)XQJLYRULGHQVRZLH]XU.HQQWQLVGHU/DUYHQ 7KqVH*LHVVHQS 

3RKMRLVPlNL/2.DKDQSll-DQG0XWDQHQ0  '1$%DUFRGHVIRUWKH1RUWKHUQ(XURSHDQ 7DFKLQLG)OLHV 'LSWHUD7DFKLQLGDH PLOS ONE  H KWWSVGRLRUJMRXUQDOSRQH

5DWQDVLQJKDP6DQG+HEHUW3'1  %2/'7KH%DUFRGHRI/LIH'DWD6\VWHP KWWSZZZEDUFRGLQJOLIHRUJ Molecular ecology Notes  – KWWSVGRLRUJM[



5DWQDVLQJKDP6+HEHUW3'1  $'1$%DVHG5HJLVWU\IRU$OO$QLPDO6SHFLHV7KH%DUFRGH ,QGH[1XPEHU %,1 6\VWHPPLOS ONE  H KWWSVGRLRUJMRXUQDOSRQH

5HQ=+DUULV$-'LNRZ5%0D(=KRQJ<DQG:HQ-  $QRWKHUORRNDWWKHSK\ORJHQHWLF UHODWLRQVKLSVDQGLQWHUFRQWLQHQWDOELRJHRJUDSK\RIHDVWHUQ$VLDQ–1RUWK$PHULFDQ5KXVJDOO DSKLGV +HPLSWHUD$SKLGLGDH(ULRVRPDWLQDH (YLGHQFHIURPPLWRJHQRPHVHTXHQFHVYLDJHQRPH VNLPPLQJMolecular Phylogenetics and Evolution– KWWSVGRLRUJM\PSHY

5LFKWHU66FKZDU])+HULQJ/%|JJHPDQQ0DQG%OHLGRUQ&  7KH8WLOLW\RI*HQRPH 6NLPPLQJIRU3K\ORJHQRPLF$QDO\VHVDV'HPRQVWUDWHGIRU*O\FHULG5HODWLRQVKLSV $QQHOLGD *O\FHULGDH Genome Biology and Evolution  – KWWSVGRLRUJJEHHYY

5LQGDO(DQG6¡OL*((  3K\ORJHQ\RIWKHVXEIDPLO\0\FHWRSKLOLQDH 'LSWHUD0\FHWRSKLOLGDH  Zootaxa–KWWSVGRLRUJ]RRWD[D

5LQGDO(6¡OL*((.M UDQGVHQ-DQG%DFKPDQQ/  0ROHFXODUSK\ORJHQ\RIWKHIXQJXVJQDW WULEH([HFKLLQL 0\FHWRSKLOLGDH'LSWHUD Zoologica Scripta  –

5LQGDO56¡OL*((DQG%DFKPDQQ/  2QWKHV\VWHPDWLFVRIWKHIXQJXVJQDWVXEIDPLO\ 0\FHWRSKLOLQDH 'LSWHUD DFRPELQHGPRUSKRORJLFDODQGPROHFXODUDSSURDFKJournal of Zoological Systematics and Evolutionary Research   – KWWSVGRLRUJM[

5LYHUD-DQG&XUULH'&  ,GHQWLILFDWLRQRI1HDUFWLFEODFNIOLHVXVLQJ'1$EDUFRGHV 'LSWHUD 6LPXOLLGDH Molecular Ecology Resources V –

6HQLRU:KLWH5$  1HZ&H\ORQ'LSWHUD 3DUW,, Spolia Zeylanica  – KWWSVGRLRUJEKOSDUW

Ševþík, J. (2006) Diptera associated with fungi in the Czech and Slovak Republics. Slezské zemské museum Opava $ VXSSO–  

Ševþík, J. and Kjærandsen, J. (2012) BrachyradiaDQHZJHQXVRIWKHWULEH([HFKLLQL 'LSWHUD 0\FHWRSKLOLGDH IURPWKH2ULHQWDODQG$XVWUDODVLDQUHJLRQVThe Raffles Bulletin of Zoology   –



Ševþík, J., Kasprák, D., Mantiþ, M., Fitzgerald, S., Ševþíková, T., Tóthová A. & Jaschhof, M. (2016) 0ROHFXODUSK\ORJHQ\RIWKHPHJDGLYHUVHLQVHFWLQIUDRUGHU%LELRQRPRUSKDVHQVXODWR 'LSWHUD  PeerJHKWWSVGRLRUJSHHUM

6PLWK'5  7KHSDVWSUHVHQWDQGIXWXUHRIPLWRFKRQGULDOJHQRPLFVKDYHZHVHTXHQFHGHQRXJK PW'1$V"Briefings in Functional Genomics  –KWWSVGRLRUJEIJSHOY

6¡OL*((9RFNHURWK-5DQG0DWLOH/  )DPLOLHVRI6FLDURLGHD In Contribution to a Manual of Palaearctic Diptera$SSHQGL[3DSS/DQG'DUYDV% (GV 6FLHQFH+HUDOG%XGDSHVWSS– 

6¡OL*((  7KHDGXOWPRUSKRORJ\RI0\FHWRSKLOLGDH VVWU ZLWKDWHQWDWLYHSK\ORJHQ\RIWKH IDPLO\ 'LSWHUD6FLDURLGHD Entomologica Scandinavica Supplement–

6WUDXE6&3DUNV0:HLWHPLHU.)LVKEHLQ0&URQQ5&DQG/LVWRQ$  1DYLJDWLQJWKHWLS RIWKHJHQRPLFLFHEHUJQH[WǦJHQHUDWLRQVHTXHQFLQJIRUSODQWV\VWHPDWLFVAmerican Journal of Botany–KWWSVGRLRUJDME

7XRPLNRVNL5  *HQHULFWD[RQRP\RIWKH([HFKLLQL 'LSWHUD0\FHWRSKLOLGDH Suomen Hyonteistieteellinen Aikakauskirja –

:KHHOHU4'5DYHQ3+DQG:LOVRQ(2  7D[RQRP\,PSHGLPHQWRU([SHGLHQW"Science   KWWSVGRLRUJVFLHQFH

:LQQHUW]-  %HLWUDJ]XHLQHUPRQRJUDSKLHGHUSLO]PFNHQ%UDXPOOHU:LHQSS KWWSVGRLRUJEKOWLWOH

:X+=KHQJ/< ;X+&  )LUVWUHFRUGRI$OORGLD:LQQHUW] 'LSWHUD0\FHWRSKLOLGDH LQ &KLQDZLWKGHVFULSWLRQVRIVHYHQQHZVSHFLHVActa Zootaxonomica Sinica  –

=DLW]HY$  $UHYLHZRI+RODUFWLFVSHFLHVRIWKHVXEJHQXV$OORGLDVVWU 'LSWHUD0\FHWRSKLOLGDH  Zoologicheskii Zhurnal–

=DLW]HY$  $UHYLHZRIVSHFLHVRIWKHVXEJHQXV%UDFK\FDPSWD 'LSWHUD0\FHWRSKLOLGDH RIWKH +RODUFWLFIDXQDZoologicheskii Zhurnal–

=DLW]HY$  )XQJXVJQDWV 'LSWHUD6FLDURLGHD RIWKHIDXQDRI5XVVLDDQGDGMDFHQWUHJLRQV3DUW,, Dipterological Research–



‘NODQG%  0\FHWRSKLOLGDH 'LSWHUD DQLQVHFWJURXSYXOQHUDEOHWRIRUHVWU\SUDFWLFHV"$FRPSDULVRQ RIFOHDUFXWPDQDJHGDQGVHPLQDWXUDOVSUXFHIRUHVWVLQVRXWKHUQ1RUZD\Biodiversity and Conservation – 

‘NODQG%  8QORJJHG)RUHVWV,PSRUWDQWVLWHVIRUSUHVHUYLQJWKHGLYHUVLW\RI0\FHWRSKLOLGV 'LSWHUD 6FLDURLGHD Biological Conservation–  

‘NODQG%  1HZ5HDULQJUHFRUGVRIIRUHVWGZHOOLQJ'LSWHUDAn international journal of dipterological research  – 

‘NODQG%*|WPDUN)1RUGpQ%)UDQF1.XULQD2DQG3ROHYRL$  5HJLRQDOGLYHUVLW\RI P\FHWRSKLOLGV 'LSWHUD6FLDURLGHD LQ6FDQGLQDYLDQRDNGRPLQDWHGIRUHVWVBiological Conservation– 



3DSHUV,,9







Zootaxa 4407 (3): 301–320 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4407.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:9241C33E-D224-4ECC-829E-F9D9290BC7B5 Six new species of Afrotropical Allodia (Diptera: Mycetophilidae): DNA barcodes indicate recent diversification with a single origin

TRUDE MAGNUSSEN1, JOSTEIN KJÆRANDSEN2, ARILD JOHNSEN1 & GEIR E. E. SØLI1 1Natural History Museum, University of Oslo. P.O. Box 1172 Blindern, NO-0318 Oslo. E-mail: [email protected] 2Tromsø University Museum, The Arctic University of Norway. P.O. Box 6050 Langnes, NO-9037 Tromsø.

Abstract

Only one species of the genus Allodia has been previously recorded from the Afrotropical region, Allodia (Brachycampta) flavorufa Matile, 1978. Six new species are described here, all representing the nominotypical subgenus, Allodia s.s. The new species are described from material collected in different mountainous areas in south and east Africa; A. jaschhofi sp. nov., A. karkloofensis sp. nov., A. drakensbergensis sp. nov., A. nyeriensis sp. nov., A. mazumbaiensis sp. nov. and A. keurbosensis sp. nov. The species are morphologically very similar, and can only be separated based on minor differences in wing venation and characters of the male terminalia. The genetic differences between the species in the DNA barcode region (CO1), however, support delimitation. The origin and distribution of these Afrotropical taxa, in relation to each other and to their Holarctic relatives, is discussed.

Key words: Fungus gnats, , Africa, CO1, mountains

Introduction

Very little is known about dipteran diversity in the Afrotropical region, and estimates suggest that as much as 2/3 of the species are yet to be described (Kirk-Spriggs & Stuckenberg 2009). One family, the Mycetophilidae (true fungus gnats) is considered to be one of the most poorly known families of Diptera from the region (Kirk-Spriggs & Stuckenberg 2009). In the Afrotropical region the subfamily is considered to be relatively rare in lowland habitats, but more common in mountainous areas (Matile 1980). The fungus gnat fauna in high altitude forests of the region is more similar to that in the Holarctic regions, where the subfamily has its greatest diversity (Matile 1980). The subfamily consists of two tribes: Exechiini and Mycetophilini. The genus Allodia Winnertz, 1863 belonging to the tribe Exechiini, is split into two subgenera, Allodia s.s. and Brachycampta Winnertz, 1863 (Tuomikoski 1966). The greatest species diversity is found in the Holarctic region, but the genus is considered to be sub-cosmopolitan by Bechev (1999). As for most other genera in the tribe the complete distributions of most species are uncertain. Zaitzev (1983; 1984) revised the Holarctic species of Allodia s.s. and Brachycampta, separately, and presented keys to all species. The separation of the two subgenera is based on morphological differences i.e. discal bristles, wing venation and abdominal color markings (Zaitzev 2003). The outline of the male terminalia in the two subgenera is also notably different. In addition to the species included in the revisions by Zaitzev (1983; 1984) the genus contains several names which may represent synonyms and invalid species. As such, the subgenus Allodia includes 41 extant species; 8 species have a Holarctic distribution, 9 are Nearctic, and 20 are Palaearctic (including 6 species described from China by Wu, Zheng & Xu (2003)). Further, two species are described from India and Ceylon (Brunetti 1912; Senior-White 1922), one from Malaysia (Edwards 1928) and one from the Palau Island, Micronesia (Colless 1966). The other subgenus Brachycampta, includes 41 extant species, of which 8 are considered Holarctic, 7 Nearctic, 25 Palaearctic and one Afrotropical. As indicated above, only one species of Allodia has been formally described from the Afrotropical region, A. (Brachycampta) flavorufa Matile, 1978 from the Comoros. We have not examined specimens of this species, but the description is well illustrated and based on the morphology of the male terminalia, it obviously belongs to

Accepted by C. Borkent: 21 Feb. 2018; published: 11 Apr. 2018 301 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 Allodia. It is, however, not similar to any of the species described herein. According to Søli (2017), four additional Exechiini genera are known from the Afrotropical region; Brevicornu, Exechia, Pseudexechia and . The mitochondrial molecular marker cytochrome c oxidase subunit I (CO1) was chosen in this study. CO1 is the standard DNA barcode region for (Hebert et al. 2003), and has previously been successful in separating closely related species in Mycetophilidae (e.g. Ševčík et al. 2016; Jürgenstein et al. 2015). Material from the Afrotropical region is often scarce and many taxa are undescribed. In this study, the subgenus Allodia is recorded for the first time from the region, and six new species are described. We were able to sequence CO1 from four of the species, which, together with differences in morphology, forms the basis for separating the different species of Afrotropical Allodia.

Materials and methods

The study is based on material kept in the Natural History Museum, University of Oslo, Oslo, Norway (NHMO), Tromsø University Museum, Tromsø, Norway (TMU) and in the National Museum, Bloemfontein, South Africa (BMSA). The material consists of seven males and three females, all stored in ethanol, except for one specimen preserved in glycerol and one pinned specimen. The specimens were collected in Tanzania, Kenya and South Africa between 1990 and 2009. The outgroup taxa were selected based on available CO1 sequences in the Barcode of life database (BOLD), we included 12 sequences, representing six species of Allodia from the Holarctic (Appendix 1). Slide preparation. All specimens were dissected in ethanol and glycerol. The terminalia were heated in lactic acid to remove soft tissue, and then transferred to glycerol. Temporary slide mounts were prepared by using glycerol as a medium. The temporary slides were studied and photographed using Zeiss Axio imager M2, fitted with the camera Axiocam 506 color. The drawings were made by the use of pictures and microscope in Adobe Illustrator. After being studied, the terminalia was permanently preserved on glycerol in microvials, and stored together with the pinned specimens. Terminology. The general terminology follows Søli (1997). For the terminalia, the terminology is primarily in accordance with Kjærandsen (2006; 2009); deviations are listed under the results section. DNA extraction, amplification and sequencing. DNA was extracted from one leg of each of the 10 individuals using the Tissue DNA Spin Protocol of E.Z.N.A® Tissue DNA Kit. One leg from each individual was minced using micro beads in TL 200 µL TL Buffer and incubated at 55?C, the lysis proceeded overnight. We followed steps 4 - 24 of the protocol. The last elution steps (24–27) were done once with 100 µL Elution Buffer incubated at 60 ?C for 10 min to obtain higher DNA concentration. All DNA extracts were deposited and stored at -80?C in the DNA bank at the Natural History Museum, University of Oslo (see Table 1). The DNA concentration was measured with Qubit 2.0 Fluorometer (Invitrogen). The amount of DNA extract in the PCR reaction was adjusted to the quantified DNA concentration because of low concentrations of DNA (< 0.117 ng/µL) in the samples. The final concentration was set to 0.5 ng DNA. The Folmer primers LCO1490 (forward) and HCO2198 (reverse) were used to amplify a fragment of 658 base pairs (bp) from the CO1 at the 5’ end (Folmer et al. 1994). The PCR setup for a total reaction volume of ~25 µL included; 12.3 µL dH2O, 2.5 µL Buffer, 0.75 MgCl2, 0.75 µL dNTP, 0.75 µL of each primer, 0.5 µL DMSO, 0.1 µL Platinum® Taq polymerase (Invitrogen) and 0.5 ng DNA. The PCR was set up with the following protocol: Initial denaturation at 94°C for 1 min, followed by 40 cycles of denaturation at 94°C for 30 sec, synthesis at 51°C for 30 sec and elongation at 72°C for 1 min, with a final elongation step at 72°C for 7 min. To control, check for product and length of CO1 sequences, gel electrophoresis was performed. The PCR products for two of the samples, representing two hypothesized species, did not show on the gel. Therefore, we continued with 8 samples for sequencing. The sequencing was performed in the DNA laboratory, at the Natural History Museum, University of Oslo; the PCR products were purified with ExoSAP-IT (Stratagene), cleaned through ethanol precipitation and sequenced using BigDye 3.1 on an ABI Prism 3130 Genetic Analyzer (Applied Biosystems). Sequence editing. Sequences were edited and assembled using CodonCode Aligner version 4.2.7 (CodonCode Corporation, USA). The sequences were aligned using the MUSCLE algorithm (Edgar 2004) together with 12 sequences, representing six outgroup taxa, retrieved from BOLD (see Appendix 1). The Neighbor joining (NJ;

302 · Zootaxa 4407 (3) © 2018 Magnolia Press MAGNUSSEN ET AL. Saitou & Nei 1987) analysis was computed using the p-distance method (Nei & Kumar 2000), with bootstrap test using 1000 replicates (Felsenstein 1985). The p-distance method was selected based on the results of Sivathsan and Meier (2011), and Collins et al. (2012), as the Kimura-2-parameter model gave qualitatively the same result. Additionally, the interspecific p-distances (between group distances) were calculated. The alignment, calculation of p-distances and NJ analysis was done in MEGA version 7 (Kumar et al. 2016). The sequences have been uploaded to Genbank, with accession numbers KY370970–KY370977.

TABLE 1. Specimen information. The collection number, species names, locality in short, sex, accession number in the DNA bank (The Natural History Museum, University of Oslo), the measured DNA concentration (Qubit 2.0 Fluorometer (Invitrogen)) in DNA extract and Genbank accession number are given. Abbreviations: TMU = Tromsø University Museum; NHMO = Natural History Museum, University of Oslo; BMSA = National Museum Bloemfontein, South Africa. Collection number Species Locality Sex Acc. DNA Acc. number concentration number DNA (ng/ µL) Genbank extract TSZD-JKJ-101654 A. jaschhofi South Africa, KwaZulu- MNHMO-0.073 KY370977 (TMU) Natal, Central DAR-9365 Drakensberg TSZD-JKJ-101655 A. jaschhofi South Africa, KwaZulu- FNHMO-0.072 KY370976 (TMU) Natal, Central DAR-9366 Drakensberg TSZD-JKJ-101653 A. karkloofensis South Africa, KwaZulu- MNHMO-0.064 N/A (TMU) Natal, Howik district DAR-9367 TSZD-JKJ-104243 A. drakensbergensis South Africa, KwaZulu- MNHMO-0.083 KY370975 (TMU) Natal, Northern DAR-9368 Drakensberg TSZD-JKJ-104239 A. nyeriensis Kenya, Nyeri, Mount MNHMO-0.089 KY370974 (TMU) Kenya National Park DAR-9369 TSZD-JKJ-104240 A. nyeriensis Kenya, Nyeri, Mount MNHMO-0.065 KY370973 (TMU) Kenya National Park DAR-9370 TSZD-JKJ-104241 A. nyeriensis Kenya, Nyeri, Mount FNHMO-0.117 KY370972 (TMU) Kenya National Park DAR-9371 TSZD-JKJ-104242 A. nyeriensis Kenya, Nyeri, Mount FNHMO-0.104 KY370971 (TMU) Kenya National Park DAR-9372 251659 A. mazumbaiensis Tanzania, Tanga region, MNHMO-n.a. (<0.05) N/A (NHMO) West Usambara mts. DAR-9373 Allodia01/loanBMSA A. keurbosenis South Africa, Western MNHMO-0.077 KY370970 (BMSA) Cape, Keurbos forest DAR-9374

Results

The terminalia of Afrotropical Allodia

The male terminalia consists of tergite 9, cerci, proctiger, gonocoxites and gonostyli. Tergite 9 is divided; each part with two strong apical bristles of different length. The epiproct is usually strongly or entirely reduced, or the two cerci, shaped as two narrow lobes, represent a composite structure, including the epiproct. Two lobes below the cerci are here termed the pseudocerci, in accordance with the interpretation in Tarnania (Kjærandsen 2006) and Pseudexechia (Kjærandsen 2009). The hypoproct is present as a weakly sclerotized, bare, triangular plate, ventral of the pseudocerci. The aedeagal complex is indistinct, connected to a pair of sclerotized, slender apodemes, extending laterally (Fig. 1F). The two gonocoxites are weakly connected ventrally. The hypandrial lobe (following Kjærandsen (2006; 2007; 2009)), is present ventrally between the gonocoxites, forming an elongate structure,

SIX NEW SPECIES OF AFROTROPICAL ALLODIA Zootaxa 4407 (3) © 2018 Magnolia Press · 303 whose shape varies between the species (Fig. 1F). The gonostylus consists of three lobes; here termed dorsal, median and ventral lobe respectively (Fig. 1G), all seemingly articulating basally or sub-basally. The dorsal lobe is most prominent and well sclerotized, and is laterally flattened with a membranous area at the apex, and varies in size and outline between the species. The median lobe is ~rectangular, with posterodorsal corner distinctly tapered. The ventral lobe is long and narrow and slightly club-shaped with apical setae, and is only slightly shorter than the median lobe. In addition to these three lobes, the gonostylus contains a compound basal portion, representing the posterior part of the membranous internal branch. This portion is partly divided in most species, with several short setae (Fig. 1E). A small rounded sclerite is present just anterior to the gonostylus, fused or articulating with the dorsal edge of the gonocoxite. This sclerite is illustrated in Sasakawa & Ishizaki (2003) for A. laccariae, but is not discussed. The female terminalia consist of hypogynal valves with labia, cerci and gonapophyses (Fig. 2). The hypogynal valves are located apically of sternite 8 and seemingly form the bilobed end of sternite 8, each valve with several long setae and one especially long one at the apex. Between the hypogynal valves are the labia, forming a membranous, pointed lobe. The cerci are two-segmented; first segment dorsally fused, with several strong setae; second segment ovoid to round. The gonapophyses are fused into a lobe-like structure with several setae at the apex. Important characters. The male genitalia hold most of the characters that can be used to separate the species. Of most importance are the membranous area of the dorsal lobe, the shape and chaetotaxy of the median and ventral lobe, and the chaetotaxy and outline of the basal part of the gonostylus.

The species

Allodia nyeriensis Magnussensp. nov. (Figs 1, 2)

Diagnostic characters. A. nyeriensis can best be separated from the other species described here based on the following combination of characters: Rm is almost twice as long as the stem of posterior fork; the dorsal lobe of the gonostylus have a small inconspicuous area at apex, as in A. mazumbaiensis, A. drakensbergensis and A. keurbosensis; the median lobe is similar to A. keurbosensis, but with more setae on the ventral margin and a well- defined heel-shaped posteroventral corner of the lobe (Fig. 10); the basal part of the gonostylus is different from all the other species (Fig. 1G). The shape of the female hypogynal valves (Fig. 2) differs from A. jaschhofi (Fig. 8). Type material. Holotype ♂. Kenya, Nyeri, Mount Kenya National Park, Base camp at Naro Moru River Lodge (0.17027°S, 37.21500°E, 3050 masl), sweep net, bamboo forest. 18–19 Aug. 2008. TSZD-JKJ-104239. Leg. J. Kjærandsen. (TMU). Paratypes 1 ♂, 2 ♀, data as for holotype. (TMU). Measurements. Male (n = 2): Body length 3.04–3.91 mm; wing length 2.91–3.26 mm. Female (n = 2): Body length 4.00–4.35 mm; wing length 3.33 mm Coloration. Head and clypeus brown. Mouthparts and palpomeres whitish yellow. Antennae brown, with scape, pedicel and basal half of first flagellomere whitish yellow. Scutum brown, with yellow lateral margin. Lateral sclerites brown. Wings clear without markings. Halteres whitishyellow. Legs whitish yellow. Abdomen brown, tergites 2–4, 2–5 in females, with lateral area yellow, broadening towards posterior margin. Terminalia yellow. Head. Two ocelli, near eye margin. Head covered with fine trichia, except for row of 5 short bristles near eye margin, above ocellus. Antennae in males about twice as long as thorax, in females slightly longer than thorax (1.13 mm/1.09 mm, respectively). Scape and pedicel with several setae on distal third. Flagellomeres cylindrical, densely covered with fine trichia. First flagellomere twice as long as scape.

304 · Zootaxa 4407 (3) © 2018 Magnolia Press MAGNUSSEN ET AL. FIGURE 1. The male terminalia of A. nyeriensis. A, Dorsal view; B, Lateral view; C, Ventral view; D, Gonostylus from inner side; E, Hypandrial lobe; F, Dorsal structures; G, Basal part of gonostylus. Abbreviations: ap = apodeme, b par = basal part, cerc = cerci, d lb = dorsal lobe, gc = gonocoxite, hyp = hypoproct, hyp lb = hypandrial lobe, i br = internal branch, m lb = median lobe, ps cerc = pseudocerci, tg 9 = tergite 9. Scale bar = 1µm.

SIX NEW SPECIES OF AFROTROPICAL ALLODIA Zootaxa 4407 (3) © 2018 Magnolia Press · 305 FIGURE 2. The female terminalia of A. nyeriensis. A, Lateral view; B, Dorsal view; C, Hypogynium, ventral view. Abbreviations: ce = cerci, g ap = gonapophysis, hyp v = hypogynal valves, lab = labia, st = sternite, tg = tergite. Scale bar = 1µm.

Thorax. Antepronotum with 5–6 strong setae. Scutum covered with uniform small, pale setae, with strong lateral prealar and postalar setae, more numerous close to wing base. Discal bristles absent. Scutellum with 2 strong bristles. Laterotergite with 2 long and 3 shorter setae. Other lateral sclerites bare. Legs. All tibiae with short setae arranged in rows. Mid tibia with 5–7 anterodorsal and 25–28 posterodorsal bristles, on distal 3/4 of segment. Hind tibia with 5–7 anterodorsal and 8 posterodorsal bristles. Wings. Sc short, ending in R, rm almost twice as long as stem of posterior fork, base of anterior fork slightly before base of posterior fork. R1 with setae on distal 2/3 and R5 with setae on distal 3/4. Male terminalia (Fig. 1). Tergite 9 medially divided, each part rounded, covered with minute trichia, with one strong apical bristle, two short and three longer setae. Cerci covered with fine trichia, with longer setae apically; pseudocerci with several long setae medially and apically (Fig. 1F). Dorsal lobe of gonostylus oblong, apex rounded with small, roundish, pouch-like membranous structure internally; outer surface with numerous strong setae. Median lobe with heel-shaped posteroventral corner; 9 strong and 4 shorter setae on posterior margin, plus 4 minute setae on interior surface; one long seta on ventral edge, with short distance from ventral margin (about 1/6 of total distance). Ventral lobe elongated, slightly arched, with 5–6 setae apically. Basal part of gonostylus with ventral semi-circular structure, bearing about 8 short setae, and second small pointed dorsal structure with one short seta (Fig. 1G). Hypandrial lobe heavily sclerotized, slender, protruding inwards at apex (Fig. 1E). Female terminalia (Fig. 2). Tergite 8 elongated. Cerci two-segmented; first segment oblong, arcuate, fused at basis; second segment oblong, narrower than first segment, with several long setae. Gonapophyses fused, membranous, tongue-shaped with small setae around edge. Hypogynal valves elongated, triangular shaped, pointed towards apex; one long seta on tip; labia membranous. Etymology. Named after the region of the type locality. Remarks. The specimens have become pale after years of storage in ethanol. The measurements were made on ethanol preserved specimens. Wing length for females was measured on one specimen only.

306 · Zootaxa 4407 (3) © 2018 Magnolia Press MAGNUSSEN ET AL. Allodia mazumbaiensis Magnussen sp. nov. (Fig. 3)

Diagnostic characters. A. mazumbaiensis can best be separated from the other species described here, based on the following combination of characters: Rm as long as stem of the posterior fork; the dorsal lobe of the gonostylus have a small inconspicuous area at apex, as in A. nyeriensis, A. drakensbergensis and A. keurbosensis; the median lobe is narrower than in the other species, with fewer setae on the ventral margin and one especially long and pronounced on the dorsal tip (Fig. 10); basal part of gonostylus differs from all the other species (Fig. 3C).

FIGURE 3. The male terminalia of A. mazumbaiensis. A, left: dorsal view, right: ventral view; B, Gonostylus from inner side; C, Basal part of gonostylus. Scale bar = 1µm.

Type material. Holotype ♂. Tanzania: Tanga region, West Usambara mountains, Mazumbai, 1500 masl. Malaise trap, loc. O., ZBM’s Tanzania expedition. 29 Sep. –3 Des. 1990. Leg. G. Søli. (NHMO). Measurements. Male: Body length 4.44 mm; wing length 3.33 mm. Coloration. Head and clypeus brown. Mouthparts and palpomeres whitish yellow. Antennae brown, with scape, pedicel and first half of first flagellomere whitish yellow. Scutum brown, with yellow lateral margin. Antepronotum whitish, lateral sclerites otherwise brown. Wings clear without markings. Halteres whitish yellow. Legs whitish, with brown basal area ventral on femur. Abdomen brown, tergites 2–4 with lateral area whitish yellow. Terminalia yellow. Head. Two ocelli, located close to eye margin. Head covered with fine trichia, except for row of 5 short bristles near eye margin, above ocellus. Antennae about twice as long as thorax. Scape and pedicel with several setae on distal third. Flagellomeres cylindrical, densely clothed with fine trichia. First flagellomere twice as long as scape. Thorax. Antepronotum with 5 strong setae. Scutum covered with uniform small, pale setae, with strong lateral prealar and postalar setae. Discal bristles absent. Scutellum with 2 strong bristles. Laterotergite with 2 long and 4 minute setae. Other lateral sclerites bare. Legs. Fore-, mid and hind tibia with short setae arranged in rows. Mid tibia with 14 anterodorsal and 26 posterodorsal bristles, on distal 3/4 of segment. Hind tibia with 8 anterodorsal and 9 posterodorsal bristles.

SIX NEW SPECIES OF AFROTROPICAL ALLODIA Zootaxa 4407 (3) © 2018 Magnolia Press · 307 Wings. Sc short, ending in R, length of rm equal to stem of posterior fork, base of anterior fork slightly before base of posterior fork. R1 and R5 with setae. Male terminalia (Fig. 3). Tergite 9 medially divided, each part rounded, covered with minute trichia, with two strong apical bristles and three long setae. Cerci clothed with fine trichia, with longer setae apically; pseudocerci with several long setae (Fig. 3A). Dorsal lobe of gonostylus oblong, apex rounded with small, inconspicuous, membranous area internally; outer surface with numerous strong setae. Median lobe slender, ventral side straight; with 4 strong and 4 thin setae on posterior margin, apical seta especially prominent; 2-3 small setae on lobe surface; one long seta on ventral side, located with approximately equal distance from tip and basis of lobe. Ventral lobe slender, slightly arched, with 5-6 setae apically. Basal part of gonostylus with two structures of equal size, both bulbous with 5-6 setae (Fig. 3C). Hypandrial lobe complex, elongated, curved inwards (Fig. 3A) Etymology. Named after the type locality. Remarks. The specimen has become pale after years of storage in glycerol. Measurements were made on specimen in ethanol.

Allodia drakensbergensis Magnussen sp. nov. (Fig. 4)

Diagnostic characters. A. drakensbergensis can best be separated from the other species described here, based on the following combination of characters: Rm about 1.5 times as long as stem of the posterior fork; the dorsal lobe of gonostylus is similar to A. nyeriensis, A. mazumbaiensis and A. keurbosensis; the median lobe most similar to A. keurbosensis, but with fewer setae on the ventral margin and the shape of ventral lobe differs from A. keurbosensis (Fig. 10); the basal part of the gonostylus is different from all the other species (Fig. 4C). Type material. Holotype ♂. South Africa: Northern Drakensberg, KwaZulu-Natal, Royal Natal National Park, Gudu forest (28.6691°S, 28.9188°E, 1630–1730 masl), sweep net, old-growth indigenous forest. 29 Nov. 2005. TSZD-JKJ-104243. Leg. M. Jaschhof. (TMU). Measurements. Male: body length 4.44 mm; wing length 3.33 mm. Coloration. Head and clypeus brown. Mouthparts and palpomeres whitish yellow. Antennae brown, with scape, pedicel and first half of first flagellomere whitish yellow. Scutum brown. Lateral sclerites brown. Wings clear without markings. Halteres whitish at basis, brown on club. Legs whitish. Abdomen brown. Terminalia yellowish brown. Head. Two ocelli, located close to eye margin. Head covered with fine trichia, except for row of about 7 short bristles near eye margin, above ocellus. Antennae just over twice as long as thorax. Scape and pedicel with several setae on distal third. Flagellomeres cylindrical, densely clothed with fine trichia. First flagellomere twice as long as scape. Thorax. Antepronotum with 5 strong setae. Scutum covered with uniform small, pale setae, with strong lateral prealar and postalar setae. Discal bristles absent. Scutellum without strong bristles. Laterotergite with 3 long and 3 minute setae. Other lateral sclerites bare. Legs. Fore-, mid and hind tibia with short setae arranged in rows. Mid tibia with 14 anterodorsal and 26 posterodorsal bristles on distal 3/4 of segment. Hind tibia with 8 anterodorsal and 9 posterodorsal bristles. Wings. Sc short, ending in R, rm 1.5 times as long as stem of posterior fork, base of anterior fork slightly before base of posterior fork. R1 and R5 with setae, absent at basis of veins. Male terminalia (Fig. 4). Tergite 9 medially divided, each part rounded, covered by minute trichia, with one strong bristle, two shorter bristles and three setae. Cerci clothed with fine trichia, with long setae apically and some medially, pseudocerci with several long setae medially and apically. Dorsal lobe of gonostylus oblong, apex rounded with small, round membranous area internally; outer surface with several strong setae. Median lobe with slightly curved posteroventral corner; 7 strong and 2 shorter setae on posterior margin, one seta on interior surface; one long seta on ventral side, about one third of total distance from posterior side. Ventral lobe distinctly club- shaped, with 8 setae apically. Basal part of gonostylus with two bulbous structures of equal size, dorsal structure with 5 long setae, ventral structure with about 8 stout setae (Fig. 4C). Hypandrial lobe elongated, with strong sclerotized lateral apodemes (Fig. 4A). Etymology. Named after the type locality.

308 · Zootaxa 4407 (3) © 2018 Magnolia Press MAGNUSSEN ET AL. Remarks. The specimen has become pale after years of storage in ethanol. Measurements were made on specimen in ethanol.

FIGURE 4. The male terminalia of A. drakensbergensis. A, left: dorsal view, right: ventral view; B, Gonostylus from inner side; C, Basal part of gonostylus. Scale bar = 1µm.

Allodia keurbosensis Magnussen sp. nov. (Figs 5, 6)

Diagnostic characters. A. keurbosensis can best be separated from the other species described here, based on the following combination of characters: Rm almost twice as long as stem of the posterior fork; the dorsal lobe of gonostylus is similar to A. nyeriensis, A. mazumbaiensis and A. drakensbergensis; the median lobe is most similar to A. drakensbergensis, but with more setae on the ventral margin (Fig. 10); the shape of the ventral lobe is different to that of A. drakensbergensis (Fig. 4B); the basal part of gonostylus different from all the other species (Fig. 6C). Type material. Holotype ♂. South Africa: Eastern Cape, Keurbos forest (33.9072°S, 23.7285°E, 500 masl), malaise trap, indigenous montane forest. 28–30 Mar. 2009. Leg. A.H. Kirk-Spriggs; S. Otto. (BMSA). Measurements. Male: Body length 3.91 mm; wing length 3.23 mm. Coloration. Head and clypeus brown. Mouthparts and palpomeres yellow. Antennae brown, with scape, pedicel and first half of first flagellomere yellow. Scutum brown. Antepronotum whitish anteriorly, lateral sclerites otherwise brown. Halteres whitish. Legs whitish. Wings clear without markings. Abdomen brown, with small yellow triangular area on tergites 3 and 4. Terminalia yellow. Head. Two ocelli, located close to eye margin. Head covered with fine trichia, except for row of about 8 short bristles near eye margin, above ocellus. Antennae about twice as long as thorax. Scape and pedicel with several setae on distal third. Flagellomeres cylindrical, densely clothed with fine trichia. First flagellomere twice as long as scape.

SIX NEW SPECIES OF AFROTROPICAL ALLODIA Zootaxa 4407 (3) © 2018 Magnolia Press · 309 FIGURE 5. Habitus Allodia keurbosensis sp. nov. Holotype. Photo: Karsten Sund, Natural History Museum, University of Oslo.

Thorax. Antepronotum with 4 strong setae. Scutum covered with uniform small, pale setae, with strong lateral prealar and postalar setae. Discal bristles absent. Scutellum with 3 strong bristles. Laterotergite with 3 long setae. Other lateral sclerites bare. Legs. Fore-, mid and hind tibiae with short setae arranged in rows. Mid tibia with 4 anterodorsal and 20 posterodorsal bristles, on distal 3/4 of segment. Hind tibia with 6 anterodorsal and 6 posterodorsal bristles. Wings. Sc short, ending in R, rm almost twice as long as stem of posterior fork, base of anterior fork just opposite base of posterior fork. R1 and R5 setae, absent at basis of veins. Male terminalia (Fig. 6). Tergite 9 medially divided, each part rounded, covered with minute trichia, with two strong bristles and three long setae. Cerci clothed with fine trichia, with some long setae apically; pseudocerci with several long setae randomly medially and apically. Dorsal lobe of gonostylus oblong, apex rounded with small, pouch-like membranous area internally, outer surface with numerous strong setae. Median lobe with straight ventral side, with row of 7 strong setae on posterior margin; 10 shorter present on posterior margin and on lobe surface; three setae on ventral side, two close to posteroventral corner, one about one third of the total distance from posterior edge. Ventral lobe slightly club-shaped with 6-7 setae apically, plus one on posterior edge. Basal

310 · Zootaxa 4407 (3) © 2018 Magnolia Press MAGNUSSEN ET AL. part of gonostylus with two bulbous structures of equal size, each with 4 short setae. Hypandrial lobe elongated, pointed inwards, with strong sclerotized apodemes (Fig. 6A). Etymology. Named after the type locality Remarks. Measurements were made on pinned specimen.

FIGURE 6. The male terminalia of A. keurbosensis. A, left: dorsal view, right: ventral view; B, Gonostylus from inner side; C, Basal part of gonostylus. Scale bar = 1µm.

Allodia jaschhofi Magnussen sp. nov. (Figs 7, 8)

Diagnostic characters. A. jaschhofi can best be separated from the other species described here, based on the following combination of characters: Length of rm equal to length stem of the posterior fork; the dorsal lobe of gonostylus is similar to A. karkloofensis, which both have a large membranous area on the internal apex of the lobe (Fig. 10); the median lobe is not distinctly separable from the other species; the basal part of the gonostylus is similar to that of A. karkloofensis, but with a small pointed structure present, which is absent in A. karkloofensis (Fig. 9). The female (Fig. 8) can be separated from A. nyeriensis on shape of hypogynal valves (Fig. 2). Type material. Holotype ♂. South Africa: Central Drakensberg, Cathedral Peak Nature Reserve, Rainbow Gorge (28.9516°S, 29.2183°E, 1500 masl), sweep-net, old growth indigenous forest. 04 Des. 2005. TSZD-JKJ- 101654. Leg. M. Jaschhof. (TMU). Paratype 1 ♀, data as for holotype. (TMU). Measurements. Male: Body length 3.10 mm; wing length 2.6 mm. Female: Body length 3.65 mm; wing length 2.78 mm. Coloration. Head and clypeus brown. Mouthparts and palpomeres whitish yellow. Antennae brown, with scape, pedicel and first half of first flagellomere whitish yellow. Scutum brown. Lateral sclerites brown. Wings clear without markings. Halteres whitish. Legs whitish. Abdomen brown. Terminalia whitish yellow. Head. Two ocelli, located close to the eye margin. Head covered with fine trichia, except for row of about 5 short setae near eye margin, above ocellus. Antennae in male about twice as long as thorax, in female slightly longer than thorax (1.22 mm/0.74 mm, respectively). Scape and pedicel with several setae on distal third. Flagellomeres cylindrical, densely clothed with fine trichia. First flagellomere twice as long as scape.

SIX NEW SPECIES OF AFROTROPICAL ALLODIA Zootaxa 4407 (3) © 2018 Magnolia Press · 311 Thorax. Antepronotum with 5 strong setae. Scutum covered with uniform small, pale setae, with strong lateral prealar and postalar setae. Discal bristles absent. Scutellum with 2 strong bristles. Laterotergite with 6 long setae. Other lateral sclerites bare. Legs. Fore-, mid and hind tibiae with short setae arranged in rows. Mid tibia with 8 anterodorsal and 25 posterodorsal bristles, on distal 3/4 of segment. Hind tibia with 7 anterodorsal and 8 posterodorsal bristles. Wings. Sc short, ending in R, length of rm equal to length of stem of posterior fork, base of anterior fork distinctly before base of posterior fork. R1 and R5 with setae, absent at basis of veins. Male terminalia (Fig. 7). Tergite 9 medially divided, each part rounded, covered with minute trichia, with two strong bristles and four small setae. Cerci clothed with fine trichia, with long setae apically; pseudocerci with several long setae medially and apically. Dorsal lobe of gonostylus oblong, apex prominently rounded, with large, round membranous area internally; outer surface with numerous strong setae. Median lobe with slightly curved ventral side, but without heel-shaped posteroventral corner; 8 strong and 3 shorter setae on posterior margin; two small setae on dorsal edge; one long seta on posterior edge, with long distance from ventral margin (less than half of the total distance from basis). Ventral lobe slightly club-shaped, with 5 long and three short setae at apex. Basal part of gonostylus with three structures; dorsal structure small and pointed with 1-2 small setae, middle structure round with one long seta and ventral structure large, rounded with several short setae (Fig. 7C).

FIGURE 7. The male terminalia of A. jaschhofi. A, left: dorsal view, right: ventral view; B, Gonostylus from inner side; C, Basal part of gonostylus. Scale bar = 1µm.

Female terminalia (Fig. 8). Tergite 8 short. Cerci two-segmented; first segment oblong, slightly arcuate, fused at basis; second segment egg-shaped, narrower than first segment, with several long setae (Figs 8A, 8B). Gonapophyses fused, membranous, tongue-shaped with small setae around edge. Hypogynal valves elongated, triangular shaped, blunt, slightly curved towards apex; one long seta on tip; labia membranous (Fig. 8C). Etymology. Named after the collector. Remarks. The specimen has become pale after years of storage in ethanol. Measurements were made on specimen in ethanol.

312 · Zootaxa 4407 (3) © 2018 Magnolia Press MAGNUSSEN ET AL. FIGURE 8. The female terminalia of A. jaschhofi. A, Lateral view; B, Dorsal view; C, Hypogynium, ventral view. Scale bar = 1µm.

Allodia karkloofensis Magnussen sp. nov. (Fig. 9)

Diagnostic characters. A. karkloofensis can best be separated from the other species described here based on the following combination of characters: Length of rm is equal to the stem of posterior fork; the dorsal lobe of gonostylus is similar to A. jaschhofi, which both have a large membranous area on the internal apex of the lobe; the shape of the median lobe is distinct, having a very rounded posteroventral corner, with one seta at the distal part of the ventral edge (Fig. 10); the basal part of the gonostylus (Fig. 9C) is similar to that of A. jaschhofi (Fig. 7C), but without a small pointed structure. Type material. Holotype ♂. South Africa: KwaZulu-Natal national park, Howik district, Karkloof Range, Geekies Farm (29.1600°S, 030.2100°E), malaise trap. 29 Feb. – 09 Mar. 2000. TSZD-JKJ-101653. Leg. W. Brakemeyer. (TMU). Measurements. Male: Body length 4.35 mm; wing length 3.04 mm. Coloration. Head and clypeus brown. Mouthparts and palpomeres whitish yellow. Antennae brown, with scape, pedicel and first half of first flagellomere whitish yellow. Scutum brown. Lateral sclerites brown. Wings clear without markings. Halteres whitish. Legs whitish. Abdomen brown, with slightly paler area close to lateral edge of tergites. Terminalia whitish yellow. Head. Two ocelli, located close to the eye margin. Head covered with fine trichia, except for row of about 8 short setae near eye margin, above ocellus. Antennae about twice as long as thorax. Scape and pedicel with several setae on distal third. Flagellomeres cylindrical, densely clothed with fine trichia. First flagellomere twice as long as scape. Thorax. Antepronotum with 5 strong setae. Scutum covered with uniform small, pale setae, with strong lateral prealar and postalar setae. Discal bristles absent. Scutellum with 2 strong bristles. Laterotergite with 4 long setae and three shorter. Other lateral sclerites bare. Legs. Fore-, mid and hind tibiae with short setae arranged in rows. Mid tibia with 9 anterodorsal and 30 posterodorsal bristles, on distal 3/4 of segment. Hind tibia with 8 anterodorsal and 8 posterodorsal bristles.

SIX NEW SPECIES OF AFROTROPICAL ALLODIA Zootaxa 4407 (3) © 2018 Magnolia Press · 313 FIGURE 9. The male terminalia of A. karkloofensis. A: left: dorsal view, right: ventral view, B: Gonostylus from inner side, C: Basal part of gonostylus. Scale bar = 1µm.

Wings. Sc short, ending in R, length of rm equal to length of stem of posterior fork, base of anterior fork slightly before base of posterior fork. R1 and R5 with tapering setae. Terminalia male (Fig. 9). Tergite 9 medially divided, each part rounded, covered with minute trichia, with two strong bristles and 8 small setae. Cerci clothed with fine trichia, with long setae apically; pseudocerci with several long setae medially and apically. Dorsal lobe of gonostylus oblong, apex prominently rounded, with large, round membranous area internally; outer surface with numerous strong setae. Median lobe with indistinct posteroventral corner, with 7 strong and 4 shorter setae on posterior margin; one small setae on surface of lobe; two long setae on ventral edge, one at basis, and one just before posteroventral corner. Ventral lobe slightly club-shaped, with about nine long setae at apex. Basal part of gonostylus with one large round structure, covered with many stout setae. Hypandrial lobe blunt, weakly sclerotized at apex (Fig. 9A). Etymology. Named after the type locality. Remarks. Measurements were made on specimen in ethanol.

TABLE 2. Between group mean distance. Interspecific p-distances for CO1 calculated in Mega 7. Distances between Afrotropical species highlighted in bold. Species 123456789 1 A. embla 2 A. lugens 0.095 3 A. ornaticollis 0.105 0.088 4 A. pyxidiiformis 0.107 0.102 0.106 5 A. truncata 0.119 0.106 0.119 0.123 6 A. tuomikoskii 0.106 0.109 0.098 0.103 0.130 7 A. keurbosensis 0.106 0.102 0.134 0.123 0.136 0.130 8 A. nyeriensis 0.113 0.113 0.121 0.126 0.128 0.125 0.098 9 A. drakensbergensis 0.110 0.109 0.141 0.135 0.133 0.141 0.056 0.110 10 A. jaschhofi 0.109 0.103 0.115 0.124 0.127 0.115 0.100 0.078 0.102

314 · Zootaxa 4407 (3) © 2018 Magnolia Press MAGNUSSEN ET AL. FIGURE 10. Variation between Afrotropical Allodia, gonostylus from inner side. A, A. nyeriensis; B, A. mazumbaiensis; C, A. drakensbergensis; D, A. keurbosensis; E, A. jaschhofi; F, A. karkloofensis. Scale bar = 1µm.

SIX NEW SPECIES OF AFROTROPICAL ALLODIA Zootaxa 4407 (3) © 2018 Magnolia Press · 315 CO1 sequence data. Full length, bidirectional sequences of the CO1 barcode region were successfully obtained for four of the six new species, A. nyeriensis, A. jaschhofi, A. keurbosensis and A. drakensbergensis. We were unable to obtain CO1 sequences from the two remaining new species; A. karkloofensis and A. mazumbaiensis. Interspecific p-distances among the Afrotropical species ranged between 5.6% and 11% (Table 2). The genetic distance between the Afrotropical species and the six outgroup taxa ranged between 10.2% and 14.1%. All the Afrotropical species grouped together with respect to the outgroup taxa.

FIGURE 11. Identification tree. Neighbor-Joining analysis involving 20 CO1 sequences. Evolutionary distances were calculated using the p-distance model. Abbreviations: M = male, F = female. Sequences retrieved from BOLD (Ratasingham & Hebert 2007) are labelled with Process ID (see Appendix 1). See methods for details.

Discussion

Traditionally, due to intraspecific stability, genital characters have been used to separate species in the genus Allodia, as for Mycetophilidae in general (Søli 1997; Zaitzev 2003). In the subgenus Brachycampta, the composition and structure of the male genitalia is highly diverse, compared to what is observed in Allodia s.s. The male genitalia of Allodia s.s. all have a similar morphology, with clear stability in the structures. This is also the case in the present study, where small but consistent variations in the outline and chaetotaxy of the male genitalia have been found between the newly described species. In the keys to the Holarctic species of Allodia (Zaitzev 1983; 1984), detailed illustrations showing the outline of the dorsal, medial and ventral lobe are given and used as the primary source for the identification of species in both subgenera. For Palaearctic Allodia, the characters found in the male terminalia are distinctive and considered to be substantial between species (Zaitzev 1983; 2003). However, cases exist where the differences are more subtle: the characters used by Kurina (1997) to separate A.

316 · Zootaxa 4407 (3) © 2018 Magnolia Press MAGNUSSEN ET AL. zaitzevi Kurina, 1997 and A. pyxidiiformis Zaitzev, 1983 are similar to those used in the present study to separate between Afrotropical species. Based on the Palaearctic fauna of Allodia available for comparison, the male terminalia of the Afrotropical species most closely resembles those of A. lugens Wiedemann, 1817. This widely distributed species has the same shape of the median and ventral lobe, but a more elongate and tapered dorsal lobe. Interestingly, the outline of the apex of the dorsal lobe in the Afrotropical species is quite complex and unlike that observed in any other known species, and may represent a synapomorphy for the Afrotropical species group. The female terminalia are generally considered to have smaller interspecific differences, compared to the male terminalia (e.g. McAlpine 1981). The two females described here, still have clear differences in characters of the hypogynium. The descriptions of the new species are based on a limited number of individuals, with those of A. karkloofensis, A. drakensbergensis, A. mazumbaiensis and A. keurbosensis all being based on only one specimen. This is not optimal, but material from the region is scarce, and the group seems to be rare, which complicates the study of Allodia in this region. This means that the variation within each of these species is unknown, as well as their distribution. As more material becomes available, this will allow for a more detailed account of these variables. The problem of rarity and singletons is common in taxonomy in general, and especially in tropical areas (see Lim et al. 2012). Complete CO1 sequences were obtained for A. nyeriensis, A. jaschhofi, A. keurbosensis and A. drakensbergensis. The genetic difference between members of the different species ranged from 5.6% to 10.1%, which supports the morphological species delimitation. Our species delimitation based on genetic distances is in accordance with what is seen in other closely related species of Mycetophilidae (Jürgenstein et al. 2015; Kurina et al. 2015). Due to small sample size of A. jaschhofi, A. keurbosensis and A. drakensbergensis, and that all individuals of A. nyeriensis were collected at the same time at the same locality, the intraspecific distances could not be calculated. The smallest genetic distance, found between A. drakensbergensis and A. keurbosensis (5.6%), is also reflected in their morphological similarity and geographical proximity. We were unable to obtain sequences from A. karkloofensis and A. mazumbaiensis, probably due to low DNA concentration. Age, storage medium and/or collecting procedure, are possible factors that can explain the negative result of the DNA extraction of the holotypes. Despite the deficiency of sequence data for A. karkloofensis and A. mazumbaiensis, we consider the morphological differences to be adequate to delimit these two species. The diagnostic morphological characters in these two species differ to the same degree as between the Afrotropical species also delimited with CO1 sequence data. The Afrotropical region is vast and homogeneous, but also contains several centres of endemism, with species restricted to a certain habitat or area (Kingdon 1990). Large and frequent shifts in climate during the Pleistocene have led to isolated populations restricted to forested areas in different mountainous regions. Such shifts can in turn lead to speciation, which is suggested to have happened in several insect taxa (see for example Lachaise & Chassagnard 2001; Fattorini 2007). The tribe Exechiini is considered to be a relatively young group of fungus gnats, which has gone through an extensive and rapid radiation (Rindal et al. 2007). All of the studied species are collected in high altitude forests, ranging from 500 to 3050 masl. A rough estimate of the age of the species can be made by applying the method of Brower (1994), with a constant mutation rate of 2.3% per million years. This gives age estimates for the species described here ranging from 2.3 to 4.7 million years. The estimated age coincides with the highly variable environment caused by climate fluctuations in the region during the Pleistocene (for an overview, see e.g. Fjeldså and Lovett (1997) and references therein). This suggests that the Allodia species described here can be traced back to a single evolutionary origin, and that the recent isolation of populations has led to speciation in allopatry. We hope that this contribution to our understanding of the diversity and distribution of Allodia will initiate further studies of fungus gnats in this highly diverse and interesting biological region.

Acknowledgements

We are grateful to Dr. Ashley H. Kirk-Spriggs (the National Museum Bloemfontein, South Africa) for providing valuable material. A special thank you to the reviewers: Peter Chandler and anonymous for valuable comments on the manuscript. The project was funded by the Natural History Museum, University of Oslo, Norway.

SIX NEW SPECIES OF AFROTROPICAL ALLODIA Zootaxa 4407 (3) © 2018 Magnolia Press · 317 References

Bechev, D. (1999) The zoogeographic classification of the Palaearctic genera of fungus gnats (Diptera: Sciaroidea, excluding Sciaridae). Studia dipterologica, 6 (2), 321–326. Brower, A.V. (1994) Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proceedings of the National Academy of Sciences of the United States of America, 91 (14), 6491–6495. Brunetti, E. (1912) XI. Diptera. In: Annandale, N. (Ed.), Zoological results of the Abor expedition 1911–12. Vol. 8. Records of the Indian Museum, Calcutta, pp.149–190. https://doi.org/10.5962/bhl.part.1186 Colless, D.H. (1966) Diptera: Mycetophilidae. In: of Micronesia. 12 (6). Bernice P. Bishop Museum, Honolulu, pp. 637–667. Collins, R.A., Boykin, L.M., Cruickshank, R.H. & Armstrong, K.F. (2012) Barcoding's next top model: an evaluation of nucleotide substitution models for specimen identification. Ecology and Evolution, 3 (3), 457–465. https://doi.org/10.1111/j.2041-210x.2011.00176.x Edgar, R.C. (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5 (1), 113. https://doi.org/10.1186/1471-2105-5-113 Edwards, F.W. (1928) Diptera Nematocera from the Federated Malay States Museum. Journal of the Federated Malay States Museum, 14, 1–139. Fattorini, S. (2007) Historical relationships of African mountains based on cladistic analysis of distributions and endemism of flightless insects. African Entomology, 15 (2), 340–355. https://doi.org/10.4001/1021-3589-15.2.340 Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39 (4), 783–791. https://doi.org/10.2307/2408678 Fjeldså, J. & Lovett, J.C. (1997) Geographical patterns of old and young species in African forest biota: the significance of specific montane areas as evolutionary centres. Biodiversity and Conservation, 6 (3), 325–346. https://doi.org/10.1023/a:1018356506390 Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3 (5), 294–299. Hebert, P.D.N., Cywinska, A., Ball, S.L. & deWaard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society Biological Sciences, Series B, 270 (1512), 313–321. https://doi.org/10.1098/rspb.2002.2218 Jürgenstein, S., Kurina, O. & Põldmaa, K. (2015) The ruficollis Meigen (Diptera, Mycetophilidae) group in Europe: elucidating species delimitation with COI and ITS2 sequence data. ZooKeys, 508, 15–51. https://doi.org/10.3897/zookeys.508.9814 Kingdon, J. (1990) Island Africa:The Evolution of Africa's Rare Animals and Plants. Collins, London, 278 pp. Kirk-Spriggs, A.H. & Stuckenberg, B.R. (2009) Afrotropical Diptera – Rich savannas, poor rainforests. In: Bickel, D.J., Pape, T. & Meier, R. (Eds.), Diptera Diversity: Status, Challenges and Tools. Brill Academic Publishers, Leiden, pp. 155–196. https://doi.org/10.1163/ej.9789004148970.i-459.31 Kjærandsen, J. (2006) Review of fungus gnats of the genus Tarnania Tuomikoski, with a phylogeny of the Rymosia s.l. genus group (Diptera: Mycetophilidae). Insect Systematics and Evolution, 37 (2), 121–148. https://doi.org/10.1163/187631206788831146 Kjærandsen, J. (2007) Two new species of Allodia subgenus Brachycampta Winnertz from Norway and Sweden (Diptera: Mycetophilidae). Entomologica Fennica, 18 (1), 1723. Kjærandsen, J. (2009) The genus Pseudexechia Tuomikoski re-characterized, with a review of European species (Diptera: Mycetophilidae). Zootaxa, 2056, 1–45. Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33 (7), 1870–1874. https://doi.org/10.1093/molbev/msw054 Kurina, O. (1997) A new species of fungus gnats of the genus Allodia Winnertz, 1863 (Diptera, Mycetophilidae) from Estonia. Studia dipterologica, 4 (2), 275–279. Kurina, O., Õunap, E. & Põldmaa, K. (2015) Two new Neuratelia Rondani (Diptera, Mycetophilidae) species from Western Palaearctic: a case of limited congruence between morphology and DNA sequence data. ZooKeys, 496, 105–129. https://doi.org/10.3897/zookeys.496.9315 Lachaise, D. & Chassagnard, M. (2001) Seven new montane species of Drosophila in the Eastern Arc mountains and Mt Kilimanjaro in Tanzania attesting to past connections between eastern and western African mountains (Diptera: Drosophilidae). European Journal of Entomology, 98 (3), 351–366. https://doi.org/10.14411/eje.2001.056 Lim, G., Balke, M., & Meier, R. (2012) Determining species boundaries in a world full of rarity: Singletons, species

318 · Zootaxa 4407 (3) © 2018 Magnolia Press MAGNUSSEN ET AL. delimitation methods. Systematic Biology, 61 (1), 165–169. https://doi.org/10.1093/sysbio/syr030 Matile, L. (1978) Dipteres Mycetophilidae de l'Archipel des Comores. Memoires du Museum National d'Histoire Naturelle Serie A Zoologie, 109, 247–306. Matile, L. (1980) 15. Family Mycetophilidae. In: Crosskey, R.W. (Ed.), Catalogue of the Diptera of the Afrotropical region. British Museum, London, pp. 217–230. McAlpine, J.F. (1981) Morhology and terminology – adults. In: McAlpine, J.F., Peterson, B.V., Shewell, G.E., Teskey, H.J., Vockheroth, J.R. & Wood, D.M. (Eds.), Manual of Nearctic Diptera. Vol. 1. Canada department of Agriculture Research Branch Monograph, Ottawa, pp. 89–124. Nei, M. & Kumar, S. (2000) Molecular Evolution and Phylogenetics. Oxford University Press, New York, 328 pp. Rindal, E., Søli, G.E.E., Kjærandsen, J. & Bachmann, L. (2007) Molecular phylogeny of the fungus gnat tribe Exechiini (Mycetophilidae, Diptera). Zoologica Scripta, 36 (4), 327–335. https://doi.org/10.1111/j.1463-6409.2007.00285.x Saitou, N. & Nei, M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4 (4), 406–425. Sasakawa, M. & Ishizaki, H. (2003) Fungus gnats of the genera , Allodia and Cordyla in Japan (Diptera: Mycetophilidae). Entomological Science, 6 (2), 97–109. https://doi.org/10.1046/j.1343-8786.2003.00013.x Senior-White, R.A. (1922) New Ceylon Diptera (Part II). Spolia Zeylanica 12 (45), 195–206. https://doi.org/10.5962/bhl.part.12654 Ševčík, J., Kaspřák, D., & Rulik, B. (2016) A new species of Docosia Winnertz from Central Europe, with DNA barcoding based on four gene markers (Diptera, Mycetophilidae). ZooKeys, 549, 127–143. https://doi.org/10.3897/zookeys.549.6925 Sivathsan, A. & Meier, R. (2011) On the inappropriate use of Kimura-2-parameter (K2P) divergences in the DNA-barcoding literature. Cladistics, 28 (2), 190–194. https://doi.org/10.1111/j.1096-0031.2011.00370.x Søli, G.E.E. (1997) The adult morphology of Mycetophilidae (s. str.), with a tentative phylogeny of the family (Diptera, Sciaroidea). Entomologica Scandinavica Supplement, 50, 5–55. Søli, G. (2017) Mycetophilidae (Fungus gnats). In: Kirk-Spriggs, A.H. & Sinclair, B.J. (Eds.), Manual of Afrotropical Diptera. Vol. 2. Nematocerous Diptera and lower Brachycera. Suricata 5. South African National Biodiversity Instuitute, Pretoria, pp. 533–555. Tuomikoski, R. (1966) Generic taxonomy of the Exechiini (Diptera, Mycetophilidae). Suomen Hyonteistieteellinen Aikakauskirja, 32, 159–194. Winnertz, J. (1863) Beitrag zu einer monographie der pilzmücken. Braumüller, Wien, 332 pp. https://doi.org/10.5962/bhl.title.9961 Wu, H., Zheng, L.Y. & Xu, H.C. (2003) First record of Allodia Winnertz (Diptera, Mycetophilidae) in China with descriptions of seven new species. Acta Zootaxonomica Sinica, 28 (2), 349–355. Zaitzev, A. (1983) A review of Holarctic species of the subgenus Allodia s. str. (Diptera, Mycetophilidae). Zoologicheskii Zhurnal, 62, 1915–1920. Zaitzev, A. (1984) A review of species of the subgenus Brachycampta (Diptera, Mycetophilidae) of the Holarctic fauna. Zoologicheskii Zhurnal, 63 (10), 1504–1515. Zaitzev, A. (2003) Fungus gnats (Diptera, Sciaroidea) of the fauna of Russia and adjacent regions. Part II. Dipterological Research, 14, 77–386.

SIX NEW SPECIES OF AFROTROPICAL ALLODIA Zootaxa 4407 (3) © 2018 Magnolia Press · 319 APPENDIX 1. Outgroup taxa and specimens retrieved from BOLD. Species Process ID Specimen information Allodia (Allodia) embla MYCFI099-11 Norway, Finnmark, Sør-Varanger, Samentijohka ved Sameti Hackman, 1971 (69.4011N, 29.7192E). 19 Jun. 2010. Leg. Finnmarksprosjektet/G. Søli. (NHMO) A. (A.) embla MYCFI100-11 Norway, Finnmark, Sør-Varanger, Samentijohka ved Sameti (69.4011N, 29.7192E). 19 Jun. 2010. Leg. Finnmarksprosjektet/G. Søli. (NHMO) A. (A.) lugens NOMYC475-13 Norway, Oslo, Østmarka, Skullerud (59.862N, 10.842E). 12 Jun. Wiedemann, 1817 2013. Leg. G. Søli. (NHMO) A.(A.) lugens NOMYC328-12 Norway, Oslo, Østmarka, Rundtjern (59.904N, 10.87E). 22 May 2010. Leg. G. Søli. (NHMO) A. (A.) truncata NOMYC181-12 Norway, Oslo, Østmarka, Rundtjern (59.904N, 10.87E). 22 May Edwards, 1921 2010. Leg. G. Søli. (NHMO) A. (A.) truncata NOMYC187-12 Norway, Oslo, Østmarka, Rundtjern (59.904N, 10.87E). 22 May 2010. Leg. G. Søli. (NHMO) A. (A.) pyxidiiformis MYCFI108-11 Norway, Finnmark, Alta, Gargia (69.8053N, 23.4894E). 26 Jun. 2010. Zaitzev, 1983 Leg. Finnmarksprosjektet. (NHMO) A. (A.) pyxidiiformis MYCFI081-11 Norway, Finnmark, Alta, Gargia (69.8053N, 23.4894E). 10 Jul. 2010. Leg. Finnmarksprosjektet. (NHMO) A. (A.) ornaticollis NOMYC407-13 Norway, Oslo, Østmarka, Lutdalen (59.897N, 10.836E). 18 Jul. 2012. Meigen, 1818 Leg. G. Søli. (NHMO) A. (A.) ornaticollis NOMYC392-13 Norway, Oslo, Østensjø, Bogerudmyra (59.879N, 10.836E). 19 May 2012. Leg. G. Søli. (NHMO) A. (A.) tuomikoskii MYCFI116-11 Norway, Finnmark, Alta Gåppa river (70.0279N, 23.3948E). 13 Jun. Hackman, 1971 2010. Leg. Finnmarksprosjektet/G. Søli. (NHMO) A. (A.) tuomikoskii MYCFI064-11 Norway, Finnmark, Alta, Gargia (69.8053N, 23.4894E). 10 Jul. 2010. Leg. Finnmarksprosjektet. (NHMO)

320 · Zootaxa 4407 (3) © 2018 Magnolia Press MAGNUSSEN ET AL. 

A peer-reviewed open-access journal ZooKeys 820: 119–138Allodia (2019) Winnertz from the Himalayas, with nine species new to science... 119 doi: 10.3897/zookeys.820.31618 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research

Allodia Winnertz from the Himalayas, with nine species new to science (Diptera, Mycetophilidae)

Trude Magnussen1, Geir E. E. Søli1, Jostein Kjærandsen2

1 Natural History Museum, University of Oslo, PO Box 1172, Blindern, NO-0318 Oslo, Norway 2 Tromsø University Museum, The Arctic University of Norway, PO Box 6050 Langnes, NO-9037 Tromsø, Norway

Corresponding author: Trude Magnussen ([email protected])

Academic editor: V. Blagoderov | Received 13 November 2018 | Accepted 9 January 2019 | Published 29 January 2019

http://zoobank.org/AE3263C7-DFAC-440B-BFBC-24D9B620C16A

Citation: Magnussen T, Søli GEE, Kjærandsen J (2019) Allodia Winnertz from the Himalayas, with nine species new to science (Diptera, Mycetophilidae). ZooKeys 820: 119–138. https://doi.org/10.3897/zookeys.820.31618

Abstract An extensive collection of fungus gnats from Nepal and Bhutan, deposited at Kyushu University Museum in Japan, has been examined and revealed nine species of Allodia Winnertz, 1864 new to science: Allodia caligata Magnussen, sp. n., A. dibolia Magnussen, sp. n., A. shimai Magnussen, sp. n., A. spathulata Mag- nussen, sp. n., A. horologia Magnussen, sp. n., A. himalayensis Magnussen, sp. n., A. nepalensis Magnus- sen, sp. n., A. thudamensis Magnussen, sp. n., and A. scalprata Magnussen, sp. n. All specimens were col- lected at high altitudes in the central and eastern Himalayas. The species all belong to the subgenus Allodia s. str. and constitute the first records of the genusAllodia in Nepal and Bhutan. Brevicornu nigrofasciatum (Brunetti, 1912) comb. n., originally described from northern India, is transferred from Allodia based on the original description. A key for the identification of the new species is provided.

Keywords Bhutan, Exechiini, fungus gnats, key, mountains, Mycetophilinae, Nepal

Introduction

The Himalayas form a mountain range separating the plains of the Indian subcon- tinent from the Tibetan Plateau, and spread across the five countries Nepal, India, Bhutan, China, and Pakistan. It constitutes the border between the Palaearctic and the

Copyright Trude Magnussen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 120 Trude Magnussen et al. / ZooKeys 820: 119–138 (2019)

Oriental biogeographical regions, or can also be regarded as a part of, or bordering, the Sino-Japanese realm as defined in Holt et al. (2013). The Himalayas are consid- ered a hotspot for biodiversity and the fauna constitutes a rich mixture of taxa from surrounding biogeographical regions, in addition to a large portion of endemics (e.g., Alfred et al. 2001, Huang et al. 2008, Konstantinov et al. 2009). The fungus gnat fauna (Mycetophilidae) of the Himalayas is not properly ac- counted for, but the few previous studies from the region reveal a remarkable diversity with numerous species with an isolated and unique systematic position (e.g., Väisänen 1996, 2013a, b). Ten genera in the subfamily Mycetophilinae have been recorded with 31 identified species (see Table 1). As the subfamily is richly represented in both Alpine and Arctic habitats elsewhere (e.g., Kjærandsen et al. 2007), we consider this a very low number, primarily reflecting the need for further surveys. The genus Allodia Winnertz, 1864 is one of 20 genera in the tribe Exechiini (Ševčík and Kjærandsen 2012), and is further split into two morphologically distinct sub-genera; Allodia s. str. and Brachycampta Winnertz, 1864. The two subgenera are best separated based on the outline of the male genitalia but differ also in the ar- rangement of the discal bristles, in the wing venation and in the abdominal colour markings (Zaitzev 2003). The genus, as presently known, reveals a predominantly Holarctic distribution, with most of the 88 described species originating from the Palaearctic (e.g., Zaitzev 2003) and the Nearctic (e.g., Zaitzev 1983) regions. Bechev (1999), however, characterised Allodia as sub-cosmopolitan as some species have been described from the Afrotropical (Matile 1978), Oriental (Brunetti 1912, Edwards 1928, Senior-White 1922), and Oceanian regions (Colless 1966). Furthermore, Magnussen et al. (2018) described additional six new species of Allodia s. str. from the Afrotropical region. As part of a study dealing with the systematics of the genus Allodia, we have ex- amined a collection of Allodia s. str. from Nepal and Bhutan, which forms the basis of the present work.

Materials and methods During a short-term visit to Japan in 2011 one of the authors (JK) was given the opportunity to go through and sort out a substantial collection of Exechiini from a large collection of fungus gnats at the Kyushu University Museum. The material was collected in Japan and several other Asian countries. This material had been pinned, sorted to genera, and is still retained at Tromsø University Museum as a long-term loan. One substantial part of the material was collected during the Kyushu University scientific expedition to the Nepal Himalaya in 1971 and 1972. Additional material was collected by U Emoto in east Nepal in 1981. The majority, however, originates from the private collection of T Saigusa, including materials from his collecting trip to Bhutan in 1993. All primary types and most of the materials will be returned and deposited at Kyushu University Museum, Japan (KUEC), while some paratypes will be kept and deposited at Tromsø University Museum, Norway (TMU). Allodia Winnertz from the Himalayas, with nine species new to science... 121

Table 1. List of Mycetophilinae species recorded from the Himalayas. In cases where there are several localities within the region only the type locality is listed.

Species Locality Reference Anatella Winnertz, 1862 One unidentified species Nepal, Dhorpar Kharka Kallweit and Martens 1995 Brevicornu Marshall, 1896 B. mathei Kallweit, 1995 Nepal, Dhorpar Kharka Kallweit and Martens 1995 B. nigrofasciatum (Brunetti, 1912), comb. n. India, Shimla and Dehradun Brunetti 1912 Exechia Winnertz, 1864 E. dizona Edwards, 1924 Nepal, Taplejung Kallweit and Martens 1995 E. pararepandata Kallweit, 1995 Nepal, Dhorpar Kharka Kallweit and Martens 1995 E. basilinea Brunetti, 1912 India, Kurseong Brunetti 1912 E. semifumata (Brunetti, 1912) India, Darjiling Brunetti 1912 Winnertz, 1864 E. cinctiventris (Brunetti, 1912) India, Simla Brunetti 1912 E. griseolateralis (Brunetti, 1912) India, Darjeeling Brunetti 1912 Macrobrachius Dziedzicki, 1889 M. longicosta Brunetti, 1912† India, Kurseong Brunetti 1912 Mycetophila Meigen, 1803 One unidentified species of theruficollis group‡ India, Darjeeling and Shimla Brunetti 1912 M. curvilinea Brunetti, 1912 India, Darjiling Brunetti 1912 M. franzi Plassmann, 1977 Nepal, Jumla Plassmann 1977 M. fungorum (De Geer, 1776) Nepal, Walungchung Gola Kallweit and Martens 1995 M. irregularis Kallweit, 1995 Nepal, Dhorpar Kharka Kallweit and Martens 1995 M. magnicauda Strobl, 1995 Nepal, Omje Khola Kallweit and Martens 1995 M. extincta Loew, 1869 Nepal, Omje Khola Kallweit and Martens 1995 M. ocellus Walker, 1848 Nepal, Omje Khola Kallweit and Martens 1995 M. quadrifasciata Brunetti, 1912 India, Shimla Brunetti 1912 M. ruficollis (Zetterstedt, 1852) Nepal, Taplejung Kallweit and Martens 1995 M. suffusa Brunetti, 1912 India, Shimla Brunetti 1912 M. taplejungensis Kallweit, 1995 Nepal, Dhorpar Kharka Kallweit and Martens 1995 Phronia Winnertz, 1864 P. arisaema Kallweit, 1995 Nepal, Dhorpar Kharka Kallweit and Martens 1995 P. bicuspidalis Kallweit, 1995 Nepal, Dhorpar Kharka Kallweit and Martens 1995 Pseudexechia Tuomikoski, 1966 P. macrocantha Kallweit, 1995 Nepal, Dhorpar Kharka Kallweit and Martens 1995 Pseudobrachypeza Tuomikoski, 1966 P. floralis Kallweit, 1995 Nepal, Nepal-Himalaya Kallweit and Martens 1995 Rymosia Winnertz, 1864 R. albolateralis Brunetti, 1912 India, Naini Tal Brunetti 1912 Winnertz, 1864 T. contenta Gagné, 1981 Nepal Gagné1981 T. fidelis Gagné, 1981 Nepal Gagné1981 T. flebilis Gagné, 1981 Nepal Gagné1981 T. sobria Gagné, 1981 Nepal Gagné1981 T. superba Gagné, 1981§ Nepal Gagné1981 T. genitalis (Brunetti, 1912)| India, Darjiling Brunetti 1912 Winnertz, 1864 One unidentified species Nepal, Dhorpar Kharka Kallweit and Martens 1995 † Edwards (1924) indicated that this could actually be a species of Exechia s. l., but the prolonged costa would not be in accordance with any known Exechia, rather conforming with Brachyradia Ševčík & Kjærandsen, 2012. ‡ as M. binotata Brunetti, 1912 preocc. Colless and Liepa (1973) used the name M. lineola, which applied to all species of the M. ruficollis group. This species should therefore be regarded as an unidentified species in theM. ruficollis group. § Junior primary homonym. | as Rhymosia. 122 Trude Magnussen et al. / ZooKeys 820: 119–138 (2019)

The Allodia material studied here consists of 39 males and 89 females, all pinned. These specimens were collected from various localities in Nepal and Bhutan between 1971 and 1993, at altitudes ranging from 1900 to 4000 metres above sea level. As few, if any, reliable species specific characters were found except those in the male genitalia, no further attempts were made to associate the sexes, and females are omitted from the study. The clearest differences between the male specimens were found in the outline of the gonostylus. Consequently the gonostylus has been figured, from the inner side, for straightforward comparison of the species. The specimens were examined under light microscope. The terminalia of the males were removed, and subsequently macerated in warm lactic acid. Dissections and temporary slides were made in glycerine. The slides were studied with a Zeiss Axio imager M2, and photographed with the camera ‘Axiocam 506 color' fitted to the microscope. Based on pho- tographs, drawings were made in Adobe Illustrator. The terminalia were afterwards trans- ferred to glycerine in microvials and stored together with the associated pinned specimens. The general terminology is mainly in accordance with Søli (1997). The terminol- ogy used to describe and name the different structures of the male terminalia is shown in Figs 1B, C, and 2A, and described in detail in Magnussen et al. (2018).

Key to the Allodia species of Nepal and Bhutan The key is restricted to males, as only males could be satisfactory separated by mor- phological characters. The terminology used in the description of the male genitalia is explained in Figs 1B, C, and 2A.

1 Internal part of gonostylus with caudally projecting process (Fig. A) ...... 2 – Internal part of gonostylus without caudally projecting process (Fig. 3A) ...... 6 2 Median lobe of gonostylus with more than four setae apically (Fig. 2A) ...... 3 – Median lobe of gonostylus with four setae apically (Fig. 2C) ...... A. shimai 3 Basal part of gonostylus sessile with more than six setae ...... 4 – Basal part of gonostylus projected with less than six setae ...... 5 4 Dorsal lobe of gonostylus sharply pointed apically (Fig. 2B) ...... A. dibolia – Dorsal lobe of gonostylus smoothly rounded apically (Fig. 2A) ...... A. caligata 5 Basal part of gonostylus less than half the length of median lobe (Fig. 2E) ...... A. horologia – Basal part of gonostylus half the length of median lobe (Fig. 2D) .... A. spathulata 6 Dorsal lobe of gonostylus truncated apically (e. g. 3D) ...... 7 – Dorsal lobe of gonostylus rounded apically (Fig. 3B) ...... A. nepalensis 7 Dorsal lobe of gonostylus with dorsal hook apically (e. g. Fig. 3C) ...... 8 – Dorsal lobe of gonostylus with rounded dorsal corner apically (Fig. 3D) ...... A. scalprata 8 Basal part of gonostylus projected (Fig. 3A) ...... A. himalayensis – Basal part of gonostylus sessile, merged with internal part (Fig. 3C) ...... A. thudamensis Allodia Winnertz from the Himalayas, with nine species new to science... 123

Taxonomy Allodia caligata Magnussen, sp. n. http://zoobank.org/E7B31A33-3A4A-4169-AC3A-CACE152A9FD6 Figs 1, 2A

Diagnosis. The dorsal lobe of the gonostylus is distinctly boot-shaped, and together with the slightly bifurcated shape of the median lobe, A. caligata can be separated from other described Allodia species. Moreover, the species is small (< 2.7 mm) and has a distinctive colouration of scutum, overall dark, but with yellow humeri (Fig. 1). Type locality. NEPAL: Province no. 1 (Kosi Zone), Terhathum District, Basanta- pur, 2300 m a.s.l. Type specimens. Holotype: male. 3 printed labels: (E. NEPAL) Basantapur (2300 m) 27°06'N, 87°23'E-27°08'N, 87°26'E / May 6, 1972 J. Emoto leg. Kyushu Univ. Col. / TSZD-JKJ-104928 (KUEC; pinned with genitalia in separate microvial). Para- types: NEPAL: Same data as for holotype, TSZD-JKJ-104939, male (KUEC), TSZD- JKJ-104940, male (KUEC); NEPAL: Gandaki Pradesh, Myagdi District, Dobang Kharka, 28°36'N, 083°24'E, 2400 m a.s.l., Malaise trap, 14-15 Oct 1971, leg. A. Nakanishi, TSZD-JKJ-104930, male (TMU); 14 Oct 1971, leg. A. Nakanishi, TSZD- JKJ-104931, male (KUEC); 20 Oct 1971, Leg. A. Nakanishi, TSZD-JKJ-104932, male (KUEC), TSZD-JKJ-104933, male (KUEC); 23 Oct 1971, Leg. A. Nakanishi, TSZD-JKJ-104934, male (KUEC); Malaise trap, 24-28 Oct 1971, Leg. A. Nakani- shi, TSZD-JKJ-104935, male (KUEC), TSZD-JKJ-104936, male (KUEC); 28 Oct 1971, Leg. A. Nakanishi, TSZD-JKJ-104937, male (KUEC); 30 Oct 1971, Leg. A. Nakanishi, TSZD-JKJ-104938, male (KUEC); NEPAL: Sankhuwasabha District, Topke Gola along trail to Thurukba, 27°38'N, 087°35'E, 2600–3700 m a.s.l, 12 Jun 1972, Leg. H. Shima, TSZD-JKJ-104941, male (KUEC); 9 Jul 1972, Leg. P. Norbu, TSZD-JKJ-104942, male (KUEC); BHUTAN: Thimpu District, East of Dochhu La, 27°29'16”N, 089°45'44”E, 2800 m a.s.l, 2 Aug 1993, Leg. T. Saigusa, TSZD- JKJ-104929, male (TMU). Description. Body length 2.2–2.7 mm; wing length 2.4–2.7 mm. Colouration. Head and clypeus brown. Mouthparts and palpomeres yellow. Antennae brown, with scape, pedicel, and first half of first flagellomere whitish yellow. Scutum brown, with humeri yellow. Antepronotum yellow, other lateral sclerites brown. Wings clear without markings. Halteres whitish yellow. Legs whitish yellow. Abdomen brown, tergites II-IV with lateral area yellow, larger towards posterior margin, in some specimens only barely visible. Terminalia yellow. Head. Three ocelli, median ocellus smaller than laterals; lat- eral ocelli touching eye margin. Head covered with fine trichia. Antennae almost twice as long as thorax. Scape and pedicel with several setae on distal third. Flagellomeres cylindrical, densely clothed with fine trichia. First flagellomere twice as long as pedicel. Thorax. Antepronotum with four strong setae. Scutum covered with uniform small, pale setae; strong prealar and postalar setae. Discal bristles absent. Scutellum with two strong bristles. Laterotergite with few shorter setae. Other lateral sclerites bare. Legs. All tibiae with short setae arranged in rows. Mid tibia with six long anterodorsal and 124 Trude Magnussen et al. / ZooKeys 820: 119–138 (2019)

Figure 1. Allodia caligata sp. n. A habitus B genital capsule, ventral view C genital capsule, dorsal view. Abbreviations: b par = basal part, d lb = dorsal lobe, hyp lb = hypandrial lobe, int par = internal part, m lb = median lobe, tg = tergite. on distal 3/4 of segment numerous short posterodorsal bristles present. Hind tibia with eight anterodorsal and six posterodorsal bristles. Wings. Sc short, ending in R. Length of rm equal to stem of posterior fork. Base of anterior fork clearly before base of posterior fork. R1 with distal setae, R5 without. Male terminalia. Tergite IX medially divided, each part rounded, covered with minute trichia, with one strong apical bristle and several small setae. Hypandrial lobe heavily sclerotised and elongated. Gonostylus with dorsal lobe boot-shaped, outer surface with numerous strong setae, denser towards basis. Median lobe with strong setae along posterior border, medially with shallow incision, posterodorsal part pointed, posteroventral part more rounded; ventral border with one long seta situated medially. Ventral lobe elongated, club-shaped, with four strong setae at apex. Basal part of gonostylus blunt, with several short setae along edge. Internal part of gonostylus with long, caudally projecting process. Etymology. From Latin, caligatus, booted. Named after the shape of the dorsal lobe of the gonostylus. Remarks. The boot-shaped dorsal lobe and the bifurcated median lobe of the gonostylus make A. caligata very distinct. It cannot be confused with, any of the other species described here, or to other Allodia species already described or recorded from the Palaearctic. Allodia Winnertz from the Himalayas, with nine species new to science... 125

Figure 2. Gonostyli from inner side. A Allodia caligata B Allodia dibolia C Allodia shimai D Allodia spathu- lata E Allodia horologia. Abbreviations: b par = basal part, d lb = dorsal lobe, int par = internal part, m lb = median lobe, v lb = ventral lobe. Red arrow indicates the caudally projecting process of the internal lobe. 126 Trude Magnussen et al. / ZooKeys 820: 119–138 (2019)

Allodia dibolia Magnussen, sp. n. http://zoobank.org/E3993CB8-1D0D-4A7F-A91A-B4F9625502DC Fig. 2B

Diagnosis. The dorsal lobe of the gonostylus is tapering towards apex, and the median lobe is distinctly flattened and broad. Additionally, the basal lobe of the gonostylus is large, flat with many thick, short setae. All studied specimens ofA. dibolia are small (< 2.7 mm), compared to other species described from the Himalayan range. The specimens are all fairly uniform in their colouration patterns, but some are darker than others. Type locality. NEPAL: Province no. 1 (Kosi Zone), Terhathum District, Basanta- pur, 2300 m a.s.l. Type specimens. Holotype: male. 3 printed labels: (E. NEPAL) Basantapur (2300 m) 27°06'N, 87°23'E---27°08'N, 87°26'E / May 6, 1972 J. Emoto leg. Kyushu Univ. Col. / TSZD-JKJ-104944 (KUEC; pinned with genitalia in separate microvial). Para- types: NEPAL: Province no. 1 (Kosi Zone), Terhathum District, Basantapur, 27°06'N, 087°23'E, 2300 m a.s.l, 29 Apr 1972, Leg. H. Shima, TSZD-JKJ-104946, male (KUEC), TSZD-JKJ-104947, male (TMU); 9 May 1972, Leg. H. Shima, TSZD- JKJ-104948, male (KUEC); NEPAL: Bhojpur District, Chiaksila, 27°26'N, 086°57'E, 2730 m a.s.l, 16 Jul 1981, Leg. J. Emoto, TSZD-JKJ-104949, male (KUEC); NE- PAL: Sankhuwasabha District, Salpa La, 27°27'N, 086°55'E, 3000–3050 m a.s.l, 29 Jul 1981, Leg. J. Emoto, TSZD-JKJ-104950, male (KUEC); NEPAL: Province no. 3 (Nepalmandal, Bagmati), Nuwakot District, Sheopuri Lekh (= Siwapuri), Shivpuri Nagarjun NP, 27°48'N, 085°22'E, 2460 m a.s.l, 28 May 1981, Leg. J. Emoto, TSZD- JKJ-104951, male (KUEC); NEPAL: Province no. 3 (Sagarmatha Zone), Solukhum- bu District, Junbesi Khola, 27°36'N, 086°33'E, 3400–3500 m a.s.l, 12 Aug 1981, Leg. J. Emoto, TSZD-JKJ-104952, male (KUEC); BHUTAN: Paro District, Jilay La, 27°22'11”N, 089°20'47”E, 3800 m a.s.l, 19 Aug 1993, Leg. T. Saigusa, TSZD- JKJ-104945, male (TMU). Description. Body length 2.2–2.7 mm; wing length 2.2–2.8 mm. Colouration. Head and clypeus dark brown. Mouthparts, including palpomeres yellow. Antennae brown, with scape, pedicel, and base of first flagellomere yellow. Scutum brown, with narrow yellow lateral area, from humerus towards wing base. Antepronotum yellow, other lateral sclerites brown. Wings clear without markings. Halteres yellow. Legs yel- low. Abdomen brown, tergites II-IV with whitish yellow area, larger towards posterior margin. Terminalia yellow. Head. Three ocelli present, median ocellus smaller than laterals, lateral ocelli touching eye margin. Head covered with fine trichia, except for few setae near eye margin. Antennae approx. twice as long as thorax. Scape and pedicel with several setae on distal third. Flagellomeres cylindrical, densely clothed with fine trichia. First flagellomere almost twice as long as pedicel.Thorax. Antepronotum with four strong setae. Scutum covered with uniform small, pale setae; strong prealar and postalar setae. Discal bristles absent. Scutellum with two strong bristles. Laterotergite with three short setae. Other lateral sclerites bare. Legs. All tibiae with short setae ar- Allodia Winnertz from the Himalayas, with nine species new to science... 127 ranged in rows. Mid tibia with four long anterodorsal and ca. 20 short posterodorsal bristles. Hind tibia with eight anterodorsal and five posterodorsal bristles.Wings. Sc short, ending in R. Length of rm equal to stem of posterior fork. Base of anterior fork well before base of posterior fork. R1 with setae, R5 without setae. Male terminalia. Tergite IX medially divided, each part rounded covered with minute trichia, with one strong apical bristle. Hypandrial lobe heavily sclerotised, elongated and pointed in- wards. Gonostylus with dorsal lobe apically tapering; outer surface with several strong setae, in particular near basis. Median lobe flat and broad, larger than dorsal lobe, but more weakly sclerotised; with mixture of short and long setae along posterior edge, some setae on inner surface of lobe apically. Ventral lobe short, club-shaped; with three strong setae apically. Basal part large, with straight edge, lined with strong setae. Inter- nal part with long, caudally projecting process. Etymology. From Greek, dibolia, a two-edged lance, referring to the shape of the dorsal lobe of the gonostylus, which is spear-like. Remarks. Allodia dibolia is very distinct, and the gonostylus clearly separates it from other species of the genus. Superficially the terminalia can resemble those ofA. lugens (Wiedemann, 1817), with a distinctly pointed dorsal lobe of the gonostylus. Allodia dibolia, however, the inner lobe of the gonostylus possess a projecting process, which is lacking in A. lugens. The medial lobe is large and broad, not pointed, with many setae, not only along the edge.

Allodia shimai Magnussen, sp. n. http://zoobank.org/64F2EC2B-EA9F-46AD-989B-187C7A964D98 Fig. 2C

Diagnosis. The dorsal lobe of the gonostylus is heavily sclerotised, dark and with nu- merous strong setae. The median lobe is distinctly square-shaped with four strong bristles at the edge. Allodia shimai is a dark species. Type locality. NEPAL: Province no. 1 (Kosi Zone), Sankhuwasabha District, Thudam, 3500–3800 m a.s.l. Type specimens. Holotype: male. 3 printed labels: (E. NEPAL) Thudam (3500- 3800m) 27°45'N, 87°31'E---27°46'N, 87°33'E / June 27, 1972 H. Shima leg. Kyushu Univ. Col. / TSZD-JKJ-104961. (KUEC, pinned with genitalia in separate micro- vial). Paratypes: NEPAL: Same data as for holotype except 24 Jun 1972, TSZD- JKJ-104963, male (KUEC); Tanga La, 27°40'N, 087°36'E, 4000–4600 m a.s.l, 6 Jul 1972, Leg. H. Shima, TSZD-JKJ-104962, male (TMU). Description. Body length 2.5–4.4 mm; wing length 2.7–3.9 mm. Colouration. Head and clypeus dark brown. Mouthparts and palpomeres dark yellow. Antennae brown, with scape, pedicel and basis of first flagellomere yellow. Scutum dark brown. Lateral sclerites dark brown, except for yellow antepronotum. Wings clear without markings. Halteres whitish yellow. Legs yellow. Abdomen dark brown. Terminalia yellow. Head. Three ocelli present, median ocellus smaller than laterals, lateral ocelli 128 Trude Magnussen et al. / ZooKeys 820: 119–138 (2019) touching eye margin. Head covered with fine trichia, making a silvery appearance, several larger setae in row above eye margin. Antennae approx. twice as long as thorax. Scape with several setae dorsally, pedicel with several setae on distal third. Flagellomeres cylindrical, densely clothed with fine trichia. First flagellomere almost twice as long as scape. Thorax.Antepronotum with two long and two shorter setae. Scutum covered with uniform small, pale setae; strong prealar and postalar setae. Few medioposte- rior discal bristles present. Scutellum with two strong bristles. Laterotergite with four strong setae. Other lateral sclerites bare. Legs. All tibiae with short setae arranged in rows. Mid tibia with five long anterodorsal and numerous short posterodorsal bristles. Hind tibia with seven anterodorsal and four posterodorsal bristles. Wings. Sc short, ending in R. Length of rm more than double the length of stem of posterior fork. Base of anterior fork opposite base of posterior fork. R1 with setae, R5 without. Male ter- minalia. Tergite IX medially divided, each part rounded, covered with minute trichia, with one strong apical bristle several small setae. Hypandrial lobe heavily sclerotised and elongated. Gonostylus with dorsal lobe prominent, broad, evenly sloping towards slightly prolonged posteroventral corner; outer surface with numerous setae, denser towards basis. Median lobe of gonostylus short, almost squared, with four strong setae along posterior margin and one smaller seta on ventral edge. Ventral lobe of gonosty- lus club-shaped, pointing ventrally, with some setae apically. Basal part of gonostylus rounded, with many pronounced, thick, short setae. Internal part of gonostylus with long, caudally projecting process. Etymology. Named after Hiroshi Shima, the collector of the type specimens. Remarks. The dorsal lobe of the gonostylus is somewhat similar toA. scalprata, but much more prominent and larger. Additionally, in A. shimai the internal part of the gonostylus possess a caudally projecting process, which is lacking in A. scalprata, and the median lobe is prominently sclerotised and unlike that in other Allodia species.

Allodia spathulata Magnussen, sp. n. http://zoobank.org/CA4DC3CE-03D0-4C7E-8D8B-6A31CED055FA Fig. 2D

Diagnosis. The dorsal lobe of the gonostylus is rather narrow and spatula-shaped, and the basal part of the gonostylus has a very distinct, elongate protuberance. This outline of the gonostylus makes this species distinct. Allodia spathulata is a small species (2.2 mm). Type locality. NEPAL: Gandaki Pradesh, Myagdi District, Dobang Kharka, 2400 m a.s.l. Type specimens. Holotype: male. 2 printed labels: (NEPAL) Dobang Kharka, 2400m 083°24'E. 28°36'N. Malaise trap. Oct. 26–27. 1971. A. Nakanishi / TSZD- JKJ-104964 (KUEC, pinned with genitalia in separate microvial). Paratype: NE- PAL: Province no. 1 (Kosi Zone), Sankhuwasabha District, NE of Thudam, 27°47'N, 087°36'E, 4000 m a.s.l, 30 Jun 1972, Leg. H. Shima, TSZD-JKJ-104965, male (TMU). Description. Body length 2.2 mm; wing length 2.3 mm. Colouration. Head and clypeus brown. Mouthparts and palpomeres yellow. Antennae brown, with scape, Allodia Winnertz from the Himalayas, with nine species new to science... 129 pedicel, and basal half of first flagellomere yellow. Scutum light brown, with broad yellow lateral area, from humerus towards wing base. Lateral sclerites light brown, except for yellow antepronotum. Wings clear without markings. Halteres whitish yel- low. Legs light yellow. Abdomen brown, with tergites II-IV with lateral yellow area, broadening towards posterior margin. Terminalia yellow. Head. Three ocelli present, median ocellus smaller than laterals, lateral ocelli touching eye margin. Head covered with fine trichia, except for four thin setae near eye margin. Antennae approx. twice as long as thorax. Scape and pedicel with several setae on distal third. Flagellomeres cylindrical, densely clothed with fine trichia. First flagellomere almost twice as long as pedicel. Thorax.Antepronotum with four strong setae. Scutum covered with uniform small, pale setae; strong prealar and postalar setae. Discal bristles absent. Scutellum with two strong bristles. Laterotergite with five minute setae. Other lateral sclerites bare. Legs. All tibiae with short setae arranged in rows. Mid tibia with six long antero- dorsal and numerous short posterodorsal bristles. Hind tibia with five anterodorsal and four posterodorsal bristles. Wings. Sc short, ending in R. Length of rm slightly shorter than stem of posterior fork. Base of anterior fork opposite base of posterior fork. R1 with setae, R5 without. Male terminalia. Tergite IX medially divided, each part rounded, covered with minute tricha, with one strong apical bristle and several small setae. Hypandrial lobe elongated. Gonostylus with dorsal lobe spatula-shaped, with several setae on outer surface; posterior border slightly concave. Median lobe broad, sub-quadrate with several long setae along posterior border, distinctly pointed posterodorsally. Ventral lobe of gonostylus elongated, club-shaped, with four setae api- cally. Basal part of gonostylus with distinct elongated protuberance, about half the length of median lobe; with four setae apically. Internal part of gonostylus with long, caudally projecting spike. Etymology. From Latin spathulatus, spatula-like, referring to outline of the dorsal lobe of the gonostylus. Remarks. Only two specimens of this species are present in the material and the terminalia were fragile and difficult to dissect. Several setae of the gonostylus were therefore lost in the dissection, but their bases are depicted (Fig. 2D). The species is superficially similar to A. zaitzevi Kurina, 1997 and A. pyxidiiformis Zaitzev, 1983, but the dorsal lobe of the gonostylus is much more flattened, forming a distinct spatula- shape with pronounced edges. Compared to other Himalayan species, it most closely resembles A. horologia, but this species has a less pronounced protuberance in the basal part of the gonostylus, and the dorsal lobe is broader and more heavily sclerotised.

Allodia horologia Magnussen, sp. n. http://zoobank.org/F249E52B-FB6C-4A47-A48C-2D52E05CD08B Fig. 2E

Diagnosis. The dorsal lobe of the gonostylus has a distinct hourglass-shape. The out- line of the median lobe, with a pointed posterodorsal tip and a rounded posteroventral corner, makes it different from that in other species described here. 130 Trude Magnussen et al. / ZooKeys 820: 119–138 (2019)

Type locality. NEPAL: Province no. 1 (Kosi Zone), Sankhuwasabha District, Topke Gola to Thurukba, 2600–3700 m a.s.l. Type specimen. Holotype: male. 3 printed labels: (E. NEPAL) Topke Gola (3700 m) 27°38'N, 087°35'E--- Thurukba (3700 m) 27°38'N, 087°35'E / July 9, 1972 Pem- ba Norbu leg. Kyushu Univ. Col. / TSZD-JKJ-104943 (KUEC, pinned with genitalia in separate microvial). Description. Body length ca. 3 mm; wing length 2.7 mm. Colouration. Head and clypeus brown. Mouthparts brown, palpomeres yellow. Antennae brown, with scape and pedicel, and basal half of first flagellomere yellow. Scutum brown, with yel- low lateral area, from humerus towards wing base. Antepronotum yellow, other lateral sclerites brown. Wings clear, without markings. Halteres yellow. Legs yellow. Abdo- men dark brown. Terminalia dark yellow. Head. Three ocelli present, median ocellus smaller than laterals, lateral ocelli touching eye margin. Head covered with fine trichia. Antennae approx. twice as long as thorax. Scape and pedicel with multiple dorsal setae. Flagellomeres cylindrical, densely clothed with fine trichia. First flagellomere twice as long as pedicel. Thorax. Antepronotum with four setae. Scutum covered with uniform, small, pale setae; strong prealar and postalar setae. Discal bristles absent. Scutellum with two strong bristles. Laterotergite with few short setae. Other lateral sclerites bare. Legs. All tibiae with short setae arranged in rows. Mid tibia with six long anterodorsal and 15 short posterodorsal bristles. Hind tibia with six long anterodorsal and six long posterodorsal bristles. Wings. Sc short, ending in R. Length of rm equal to stem of posterior fork. R1 with setae, R5 without setae. Male terminalia. Tergite IX medially divided, each part rounded, covered with minute trichia, two strong apical bristles. Hypandrial lobe heavily sclerotised and elongated. Gonostylus with dorsal lobe heavily sclerotised, flattened and hourglass-shaped with multiple outer setae near basis of lobe. Median lobe of gonostylus distinctly pointed posterodorsally, and with rounded pos- teroventral part; dorsal edge slightly sigmoid; several long setae on posterior margin, two short setae on internal surface of lobe. Ventral lobe club-shaped, with four long setae sub-apically. Basal part of gonostylus with projecting protuberance with several long setae apically. Internal part of gonostylus with long, caudally projecting process. Etymology. From Latin horologium, timepiece, i.e. a device to show progress of time; here referring to the outline of the dorsal lobe of the gonostylus having the shape of a hourglass. Remarks. Allodia horologia is morphologically similar to A. spathulata, but can be separated based on the shape of the median lobe, see further remarks under A. spathulata.

Allodia himalayensis Magnussen, sp. n. http://zoobank.org/2A765559-DB82-45AC-97B9-3CAFFFDE94E4 Fig. 3A

Diagnosis. The narrow, elongated dorsal lobe of the gonostylus, together with the triangular-shaped median lobe makes this species separate from other described Allodia Winnertz from the Himalayas, with nine species new to science... 131

Figure 3. Gonostyli from inner side. A Allodia himalayensis B Allodia nepalensis C Allodia thudamensis D Allodia scalprata. Red arrow indicates the absence of a caudally projecting process of the internal lobe. 132 Trude Magnussen et al. / ZooKeys 820: 119–138 (2019)

Allodia species. In addition, the basal part of the gonostylus is thick and slightly elongated. Type locality. NEPAL: Province no. 1 (Sagarmatha Zone), Solukhumbu District, Tragdobuk, 2950–3180 m a.s.l. Type specimens. Holotype: male. 2 printed labels: (E. NEPAL) Tragdobuk (2950–3180m) 15. viii. 1981 J. Emoto leg. / TSZD-JKJ-104953 (KUEC, pinned with genitalia in separate microvial). Paratypes: NEPAL: Same data as for holotype, TSZD-JKJ-104956, male (TMU); NEPAL: Province no. 1 (Kosi Zone), Sankhuwasa- bha District, Salpa La, 27°27'N, 086°55'E, 3000–3200 m a.s.l, 23 Jul 1981, Leg. J. Emoto, TSZD-JKJ-104954, male (KUEC), TSZD-JKJ-104955, male (KUEC); NE- PAL: Province no. 3 (Sagarmatha Zone), Junbesi Khola, 27°36'N, 086°33'E, 3400– 3500 m a.s.l, 12 Aug 1981, Leg. J. Emoto, TSZD-JKJ-104957, male (KUEC). Description. Body length 3–3.3 mm; wing length 2.6–3.0 mm. Colouration. Head and clypeus brown. Mouthparts and palpomeres yellow. Antennae brown, with scape, pedicel and basal half of first flagellomere yellow. Scutum brown, with broad yellow lateral area, from humerus towards wing base. Lateral sclerites brown. Wings clear without markings. Halteres yellow. Legs yellow. Abdomen brown, tergites II-IV with yellow lateral area, larger towards posterior margin. Terminalia yellow. Head. Three ocelli present, median ocellus smaller than laterals, lateral ocelli touching eye margin. Head covered with fine trichia, except for longer setae near eye margin and between eyes. Antennae almost twice as long as thorax. Scape and pedicel with several setae on distal third. Flagellomeres cylindrical, densely clothed with fine trichia. First flagellomere approx. twice as long as pedicel.Thorax . Antepronotum with five long setae. Scutum covered with uniform small, pale setae; strong prealar and postalar setae. Discal bristles absent. Scutellum with two strong bristles. Lateral sclerites bare. Legs. All tibiae with short setae arranged in rows. Mid tibia with four long anterodorsal and 23 short posterodorsal bristles. Hind tibia with five strong anterodorsal and six strong posterodorsal bristles. Wings. Sc short, ending in R. Length of rm almost twice as long as length of posterior fork. Base of anterior fork before base of posterior fork. R1 and R5 with setae. Male terminalia. Tergite IX medially divided, each part rounded, covered with minute trichia, one short and one long apical bristle. Hypandrial lobe heavily sclerotised and elongated. Gonostylus with dorsal lobe straight, long and slen- der, posteriorly blunt, pointed posterodorsally; outer surface with multiple long setae. Median lobe sub-triangular, posterior margin slightly serrated with several long and few shorter setae, distinctly prolonged porsterodorsally; ventral margin with one long seta. Ventral lobe of gonostylus nearly club-shaped, with several long setae apically. Basal part of gonostylus large, rounded, with broad protuberance bearing numerous short setae distally. Internal part of gonostylus without projecting process. Etymology. Named after the Himalayan mountain region of the type locality. Remarks. Allodia himalayensis is superficially similar to A. thudamensis, but the dorsal lobe of the gonostylus is much more elongated, and narrower, than in A. himalayensis. There is also a certain similarity to A. ornaticollis (Meigen, 1818), but A. ornaticollis has a projecting spike from the internal part of the gonostylus, which is absent in A. himalayensis. Allodia Winnertz from the Himalayas, with nine species new to science... 133

Allodia nepalensis Magnussen, sp. n. http://zoobank.org/61117AC7-B15B-4B23-BD73-8937D5957EBC Fig. 3B

Diagnosis. The dorsal lobe of the gonostylus is posteroventrally rounded, with an api- cal, membranous pouch-like structure. The median lobe is narrow, with several long setae, also on the surface of the lobe. In combination these characters make this species distinct, compared to other Allodia species. Type locality. NEPAL: Province no. 1 (Kosi Zone), Sankhuwasabha District, Thudam, 3500–3800 m a.s.l. Type specimen. Holotype: male. 3 printed labels: (E. NEPAL) Thudam (3500– 3800m) 27°45'N, 87°31'E---27°46'N, 87°33'E / June 24, 1972 H. Shima leg. Ky- ushu Univ. Col. / TSZD-JKJ-104958 (KUEC, pinned, with genitalia in separate microvial). Description. Body length ca. 3 mm; wing length 3.24 mm. Colouration. Head and clypeus dark brown. Mouthparts and palpomeres brown. Antennae brown, with pedicel yellow. Scutum brown. Lateral sclerites brown. Wings clear without markings. Halteres whitish yellow. Legs yellow. Abdomen brown. Terminalia yellow. Head. Three ocelli present, median ocellus smaller than laterals, lateral ocelli touch- ing eye margin. Head covered with fine trichia, several longer setae above eye margin. Antennae ca. 1.5 times longer than thorax. Scape and pedicel with several small se- tae dorsally. Flagellomeres cylindrical, densely clothed with fine trichia. First flagel- lomere almost twice as long as pedicel. Thorax.Antepronotum with four long setae. Scutum covered with small, pale setae; few, strong prealar and postalar setae. Discal bristles absent. Scutellum with two strong bristles. Laterotergite with two strong and four small setae. Other sclerites bare. Legs. All tibiae with short setae arranged in rows. Mid tibia with five and approximately 15 short posterodorsal bristles. Hind tibia with seven anterodorsal and five posterodorsal bristles.Wings. Sc short, ending in R. Length of rm twice as long as length of stem of posterior fork. Base of anterior fork opposite base of posterior fork. R1 and R5 with setae. Male terminalia. Tergite IX medially divided, each part rounded, covered with minute trichia, with one long and one short apical bristle. Hypandrial lobe sclerotzed and elongated. Gonostylus with dorsal lobe elongated, posteriorly rounded with small upturned hook; outer surface of lobe with numerous long setae, membranous pouch-like structure present apically. Median lobe rather narrow, broadening towards apex; several long setae on posterior edge, short setae also present on internal surface of lobe apically; ventral lobe of gonostylus nearly club-shaped, with one ventral seta, and several posterior setae. Basal part of gonostylus rounded, with numerous short setae. Internal part of gonostylus without projecting process. Etymology. From Nepal, and Latin ending –ensis, belonging to Nepal. Remarks. Superficially the male terminalia resemble those ofA. himalayensis, but the dorsal lobe of the gonostylus possesses a membranous, pouch-like structure api- cally, which is lacking in A. himalayensis. 134 Trude Magnussen et al. / ZooKeys 820: 119–138 (2019)

Allodia thudamensis Magnussen, sp. n. http://zoobank.org/BC9A90B5-97F1-420F-9468-9E63CCFBA772 Fig. 3C

Diagnosis. The broad and short dorsal lobe of the gonostylus, possessing a slight hook posterodorsally makes this species distinct. In addition, the median lobe of the gono- stylus has six long setae along the posterior edge. Type locality. NEPAL: Province no. 1 (Kosi Zone), Sankhuwasabha District, Thudam, 3500–3800 m a.s.l. Type specimens. Holotype: male. 3 printed labels: (E. NEPAL) Thudam (3500–3800 m) 27°45'N, 87°31'E---27°46'N, 87°33'E / June 24, 1972 H. Shima leg. Kyushu Univ. Col. / TSZD-JKJ-104966, male (KUEC, pinned with genitalia in separate microvial). Description. Body length ca. 3.4 mm; wing length 3.3 mm. Colouration. Head and clypeus dark brown. Mouthparts and palpomeres yellow. Antennae brown, with scape, pedicel, and basis of first flagellomere yellow. Scutum brown. Antepronotum yellow. Other lateral sclerites brown. Wings clear without markings. Halteres whitish. Legs yellow. Abdo- men brown. Terminalia yellow. Head. Three ocelli present, median ocellus smaller than laterals; lateral ocelli touching eye margin. Head covered with fine trichia. Antennae over twice as long as thorax. Scape and pedicel with small setae on distal third. Flagellomeres cy- lindrical, densely clothed with fine trichia. First flagellomere twice as long as pedicel. Tho- rax. Antepronotum with five strong setae. Scutum covered with uniform small, pale setae. A few posterior discal bristles present. Scutellum with two strong bristles and few smaller setae. Laterotergite with five setae. Other lateral sclerites brown.Legs. All tibiae with short setae arranged in rows. Mid tibia with four anterodorsal and 13 posterodorsal setae. Hind tibia with four anterodorsal and seven posterodorsal setae. Wings. Sc short, ending in R. Length of rm slightly longer than stem of posterior fork. Base of anterior fork opposite base of posterior fork. R1 with and R5 without setae. Male terminalia. Tergite IX medially divided, each part rounded, covered with minute trichia, with one long and one short api- cal bristle. Hypandrial lobe heavily sclerotzed and elongated. Gonostylus with dorsal lobe broad, short with flattened apex, with posterodorsal hook; outer surface with numerous long setae. Median lobe of gonostylus sub-triangular with broad, pointed posterodorsal corner; posterior margin with six strong setae, one small seta on surface of lobe. Ventral lobe of gonostylus club-shaped; with five apical setae. Basal part of gonostylus small, rounded; with multiple short setae. Internal part of gonostylus without projecting process. Etymology. From Thudam, the type locality, and Latin ending -ensis, belonging to Thudam. Remarks. Allodia thudamensis resembles two Holarctic species, viz. A. embla Hack- man, 1971 and A. anglofennica Edwards, 1921. It can be separated from both these species by the combination of having a subrectangular outline of the dorsal lobe, as opposed to a more sinusoid, skewed shape found in A. embla. A pointed posterodorsal corner of the medial lobe, as opposed to angular cut corner in A. anglofennica. Addi- tionally, A. embla has numerous setae along the posterior edge of the median lobe of gonostylus, while only six strong setae are present in A. thudamensis. The median lobe of the gonostylus is differently shaped inA. thudamensis and A. anglofennica. Allodia Winnertz from the Himalayas, with nine species new to science... 135

Allodia scalprata Magnussen, sp. n. http://zoobank.org/CBA17A0A-9B0F-449F-B80D-F668737AECDB Fig. 3D Diagnosis. The dorsal lobe of the gonostylus is short, but broad, with clear-cut cor- ners. The median lobe is slender, without a prominent posterodorsal tip. The basal part of the gonostylus is distinct and prominently bud-shape, with several strong setae apically. Type locality. NEPAL: Province no. 1 (Kosi Zone), Sankhuwasabha District, Sal- pa La, 2900–3000 m a.s.l. Type specimens. Holotype: male. 2 printed labels: (E. NEPAL) Salpa La (2900~3000m) 29.vii.1981 J. Emoto / TSZD-JKJ-104959 (KUEC, pinned, with genitalia in separate mi- crovial). Paratype: NEPAL: Same data as for holotype, TSZD-JKJ-104960, male (TMU). Description. Body length 3.0–3.4 mm; wing length 3.0–3.3 mm. Colouration. Head and clypeus brown. Mouthparts and palpomeres yellow. Antennae brown, with scape, pedicel and basal half of first flagellomere yellow. Scutum brown, with yellow lateral area, from humerus towards wing base. Antepronotum yellow. Other lateral sclerites brown. Wings clear without markings. Halteres whitish. Legs yellow. Abdo- men brown. Terminalia yellow. Head. Three ocelli present, median ocellus smaller than laterals; lateral ocelli touching eye margin. Head covered with fine trichia. Antennae approx twice as long as thorax. Scape and pedicel with several setae at apex. Flagel- lomeres cylindrical, densely clothed with fine trichia. First flagellomere twice as long as pedicel. Thorax. Antepronotum with six strong setae. Scutum covered with uniform small, pale setae; strong prealar and postalar setae. Few posterior discal bristles present. Scutellum with two strong bristles, and several short setae. Laterotergite with five setae. Other lateral sclerites bare. Legs. All tibiae with short setae arranged in rows. Mid tibia with five long anterodorsal and numerous short posterodorsal setae. Hind tibia with seven long anterodorsal and seven long posterodorsal setae. Wings. Sc short, ending in R. Length of rm approx. twice as long as stem of posterior fork. Base of anterior fork just before base of posterior fork. Male terminalia. Tergite IX medially divided, each part rounded, covered with minute trichia, one short and one long apical bristle. Hypandrial lobe heavily sclerotised and elongated. Gonostylus with short dorsal lobe, with blunt posterodorsal corner and sharp, edgy posteroventral corner; multiple long setae on outer surface of lobe. Median lobe oblong and narrow, posterodorsal tip not prominent; with five long and three shorter setae on posterior edge. Ventral lobe nearly club-shaped, broad, apically with five small and one long setae. Basal part of gonostylus prominent, rounded, with slightly constricted basis, with several strong, but short setae apically. Internal branch of gonostylus without projecting process. Etymology. From Latin scalprum, a knife or chisel, referring to the clean edge of the dorsal lobe of the gonostylus. Remarks. Allodia scalprata is morphologically similar to A. shimai, and also to A. nepalensis. The dorsal lobe of the gonostylus is similar to A. shimai, but shorter and not so prominent. Additionally, A. shimai possesses a projecting process of the internal part of the gonostylus, which is lacking in A. scalprata. Allodia scalprata can also super- ficially resemble A. nepalensis, due to the short and broad dorsal lobe of the gonostylus, but the dorsal corner is differently shaped in the two species. 136 Trude Magnussen et al. / ZooKeys 820: 119–138 (2019)

Discussion The descriptions of the new species here presented are all founded on male holotypes, and considered as distinct species with good diagnostic characters in the outline of the male genitalia. They have been thoroughly compared to other known species of Allodia in the Holarctic and Oriental region, and found not to be conspecific to any of these. For the majority of species, including all species with a Holarctic distribu- tion, this assumption is, above all, based on the distinct differences in the outline of the male genitalia. Three species of Allodia are listed in “Catalog of the Diptera in the Oriental re- gion” (Colless & Liepa 1973) A. micans Edwards, 1928 from Malaysia, A. nigrofasciata Brunetti, 1912 from northern India, and A. varicornis (Senior-White, 1922) from Sri Lanka. The description ofA. micans and A. varicornis were both based on females, but we exclude the possibility that they could be conspecific with any of the new species as we find it improbable that their distribution will include the Himalayas. Moreover, details in the original descriptions of the two species, like the colouration of the abdo- men, make it likely that the two belong to the subgenus Brachycampta. According to the known distribution, Allodia nigrofasciata is a more likely can- didate to be found in the Himalayas. Brunetti (1912) based his description on type specimens from Shimla in the Himachal Pradesh district, but a female was also re- corded from Mundali, Dehradun, in the Uttarakand district. We have not studied type material of this species as Brunetti's type material is today at best considered inaccessible (see e.g., Väisänen 1996). Edwards (1924) was given the opportunity to re-examine material of ca. 50 species described by Brunetti from India, but regret- tably, A. nigrofasciata was not among those. After thoroughly reviewing the descrip- tion of this species, we find it justified to transfer this species to the genus Brevicornu Marshall, 1896. The new combination,Brevicornu nigrofasciatum (Brunetti, 1912) comb. n., is based on the original description, including a line drawing of the wing. The illustrated wing venation with a rather sessile posterior fork, the description of small thoracic bristles intermingled among soft pale hairs, indicates Brevicornu as a more appropriate genus. Additionally, in the description of the male terminalia Bru- netti (1912: 108) states that “the large basal joint of each clasper terminating in two narrow flexible finger-like appendages, and between the claspers a pair of branched black hook-like organs”, which is a very strong indication that the species belongs to the genus Brevicornu Marshall, 1896 sensu Tuomikoski (1966). One should note, however, that at the time of Brunetti's work, Brevicornu was considered to be conge- neric with Allodia s. l. (cf. Johannsen 1909). More recently, Wu et al. (2003) have described seven Allodia species from the Oriental region. The material is collected in the provinces Zheijiang, Guangxi, and Guizhou in SE China, which are geographically distant from the Himalayas. The de- scriptions are accompanied by adequate line drawings, and we have studied the de- scriptions thoroughly. Despite questioning the affiliation to genera for some of the species, we definitely conclude that none of the seven species described by Wu et al. (2003) are conspecific with the species described here. Allodia Winnertz from the Himalayas, with nine species new to science... 137

This study has demonstrated a high species diversity in material consisting of a relatively small number of specimens. In the studied material no described species were found, which also indicates a high uniqueness of taxa in the area. This clearly empha- sises the fact that the fauna of fungus gnats in the Himalayas still undoubtedly covers many undescribed and unrecorded species, and that more studies are needed to reveal the full extent of the diversity in this area.

Acknowledgements We are very grateful to Nobuko Tuno, Toyohei Saigusa, and Hiroshi Shima who hosted J Kjærandsen during a two-month research visit to Japan in 2011, funded by the Japan Society for the Promotion of Science (JSPS). Toyohei Saigusa offered a generous loan of Japanese and Asian Exechiini specimens from his private collection. Hiroshi Shima assisted during the visit to and loan of Exechiini specimens deposited at Kyushu University Museum. A special thank you to the reviewers Peter Kerr, Peter Chandler, Olavi Kurina, and Jan Ševčík for their valuable comments on the manu- script. The project was funded by the Natural History Museum, University of Oslo, Norway, and by Tromsø University Museum, UiT, The Arctic University of Norway.

References

Alfred JRB, Chakraborty S, Das AK (2001) Mountains: Eastern Himalaya. In: Alfred JRB, Das AK, Sanyal AK (Eds) Ecosystems of India. Zoological Survey of India, Kolkata, 1–33. Bechev D (1999) The zoogeographic classification of the Palaearctic genera of fungus gnats (Diptera: Sciaroidea, excluding Sciaridae). Studia dipterologica 6(2): 321–326. Brunetti E (1912) XI. Diptera. In: Annandale N (Ed.) Zoological results of the Abor expe- dition 1911–12, vol 8. Records of the Indian Museum, Calcutta, 149–190. https://doi. org/10.5962/bhl.part.1186 Colless DH (1966) Diptera: Mycetophilidae – Insects of Micronesia. Bernice P Bishop Mu- seum, Honolulu 12(6): 637–667. Colless DH, Liepa Z (1973) Mycetophilidae. In: Delfinado MD, Hardy DE (Eds) A Catalog of Diptera of the Oriental Region, vol 1. The University Press of Hawaii, Honolulu, 444–463. Edwards FW (1924) Notes on the types of Diptera Nematocera (Mycetophilidae and Tipuli- dae) described by Mr. E. Brunetti. Records of the Indian Museum 26: 291–307. Edwards FW (1928) Diptera Nematocera from the Federated Malay States Museum. Journal of the Federated Malay States Museum 14: 1–139. Gagné RJ (1981) A monograph of Trichonta with a model for the distribution of Holarctic Myce- tophilidae (Diptera). Technical Bulletin of the U.S. Department of Agriculture 1638: 1–64. Holt BG, Lessard JP, Borregaard MK, Fritz SA, Araújo MB, Dimitrov D, Fabre PH, Gra- ham CH, Graves GR, Jønsson KA, Nogués-Bravo D, Wang Z, Whittaker RJ, Fjeldså J, Rahbek C (2013) An Update of Wallace's Zoogeographic Regions of the World. Science 339(6115): 74–78 https://doi.org/10.1126/science.1228282 138 Trude Magnussen et al. / ZooKeys 820: 119–138 (2019)

Huang XL, Lei FM, Qiao GX (2008) Areas of endemism and patterns of diversity for aphids of the Qinghai-Tibetan Plateau and the Himalayas. Journal of Biogeography 35: 230–240. https://doi/epdf/10.1111/j.1365-2699.2007.01776.x Johannsen OA (1909) Diptera, fam. Mycetophilidae. In: Witsman P (Ed.) Genera Insectorum, Bruxelles 93, 1–141. Kallweit U, Martens J (1995) Pilzmücken aus Blutenstanden von Aronstabgewachsen (Ar- aceae) des Nepal-Himalaya (Insecta: Diptera: Keroplatidae, Mycetophilidae). Faunistische Abhandlungen, Dresden 56: 233–258. Kjærandsen J, Hedmark K, Kurina O, Polevoi A, Økland B, Götmark F (2007) Annotated check- list of fungus gnats from Sweden (Diptera: Bolitophilidae, Diadocidiidae, Ditomyiidae, Ker- oplatidae and Mycetophilidae). Insect Systematics and Evolution Supplements 65: 1–128. Konstantinov AS, Korotyaev BA, Volkovitsh MG (2009) Insect biodiversity in the Palearctic region. In: Foottit RG, Adler PH (Eds) Insect Biodiversity, Science and Society. 107–162. Magnussen T, Kjærandsen J, Johnsen A, Søli GEE (2018) Six new species of Afrotropical Allo- dia (Diptera: Mycetophilidae): DNA barcodes indicate recent diversification with a single origin. Zootaxa 4407(3): 301–320. https://doi.org/10.11646/zootaxa.4407.3.1 Matile L (1978) Diptères Mycetophilidae de l'Archipel des Comores. Mémoires du Museum national d'Histoire naturelle, Sèrie A, Zoologie 109: 247–306. Plassmann E (1977) Zwei neue Mycetophiliden aus Nepal (Diptera: Mycetophilidae). Senck- enbergiana biologica 58: 55–56. Senior-White RA (1922) New Ceylon Diptera (Part II). Spolia Zeylanica 12(45): 195–206. https://doi.org/10.5962/bhl.part.12654 Ševčík J, Kjærandsen J (2012) Brachyradia, a new genus of the tribe Exechiini (Diptera: My- cetophilidae) from the Oriental and Australasian regions. The Raffles Bulletin of Zoology 60(1): 117–127. Søli GEE (1997) The adult morphology of Mycetophilidae (s. str.), with a tentative phylogeny of the family (Diptera, Sciaroidea). Entomologica Scandinavica Supplement 50: 5–55. Tuomikoski R (1966) Generic taxonomy of the Exechiini (Diptera, Mycetophilidae). Annales Entomologici Fennici 32: 159–194. Väisänen R (1996) New Mycomya species from the Himalayas (Diptera, Mycetophilidae): 1. Subgenus Mycomya s. str. Entomologica Fennica 7: 99–132. Väisänen R (2013a) New Mycomya species from the Himalayas (Diptera, Mycetophilidae): 2. Subgenera Calomycomya, Cymomya, Neomycomya and Pavomya subg. n. Zootaxa 3666(3): 301–318. http://dx.doi.org/10.11646/zootaxa.3666.3.1 Väisänen R (2013b) New Mycomya species from the Himalayas (Diptera, Mycetophilidae): 3. Subgenera Cesamya and Mycomyopsis. Zootaxa 3737(2): 129–153. http://dx.doi. org/10.11646/zootaxa.3737.2.3 Wu H, Zheng LY, Xu HC (2003) First record of Allodia Winnertz (Diptera, Mycetophilidae) in China with descriptions of seven new species. Acta Zootaxonomica Sinica 28(2): 349–355. Zaitzev A (1983) A review of Holarctic species of the subgenus Allodia s. str. (Diptera, Mycet- ophilidae). Zoologicheskii Zhurnal 62: 1915–1920. Zaitzev A (2003) Fungus gnats (Diptera, Sciaroidea) of the fauna of Russia and adjacent re- gions. Part II. Dipterological Research 14: 77–386.