Enzymes and N Cycling C0032
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterization of Prebiotics and Their Synergistic Activities with Lactobacillus Probiotics for Β-Glucuronidase Reduction
ESEARCH ARTICLE R ScienceAsia 45 (2019): 538–546 doi: 10.2306/scienceasia1513-1874.2019.45.538 Characterization of prebiotics and their synergistic activities with Lactobacillus probiotics for β-glucuronidase reduction a, a b a Achara Chaiongkarn ∗, Jirapa Dathong , Wipaporn Phatvej , Premsuda Saman , Chutima Kuanchaa, Lawan Chatanona, Somporn Moonmungmeea a Biodiversity Research Center, Thailand Institute of Scientific and Technological Research, Pathum Thani 12120 Thailand b Expert Center of Innovative Herbal Products, Thailand Institute of Scientific and Technological Research, Pathum Thani 12120 Thailand ∗Corresponding author, e-mail: [email protected] Received 1 Jun 2018 Accepted 28 Oct 2019 ABSTRACT: The role of synbiotics for enriching health and well-being in addition to suppressing disease is gaining interest. Synergistic activities of four candidate prebiotics as exopolysaccharides (EPSs) derived from Lactobacillus fer- mentum TISTR 2514 (EPS-TISTR 2514), Pediococcus acidilactici TISTR 2612 (EPS-TISTR 2612), manno-oligosaccharides and rice syrup-oligosaccharides were characterized and evaluated for decreasing the risk of colorectal cancer (CRC). Results revealed that one or more candidate prebiotics stimulated the growth of Lactobacillus casei DSM 20011, Lactobacillus plantarum DSM 2648, and Lactobacillus rhamnosus DSM 20021 by at least two orders of magnitude higher than positive control (using FOS as carbon source) within 24 h in vitro. Simulated gastrointestinal (pH 1) and α-amylase (pH 7) resistance were tested. Results showed more than 75% remaining after incubation at 37 °C after 6 h for all treatments except rice syrup. L. plantarum DSM 2648 + manno-oligosaccharides (Tr.1), L. plantarum DSM 2648 + EPS-TISTR 2612 (Tr.2), L. rhamnosus DSM 20021 + rice syrup-oligosaccharides (Tr.3), L. -
Cytochrome C Nitrite Reductase (Ccnir) Does Not Disproportionate Hydroxylamine to Ammonia and Nitrite, Despite a Strongly Favorable Driving Force
Marquette University e-Publications@Marquette Physics Faculty Research and Publications Physics, Department of 4-2014 Shewanella oneidensis Cytochrome c Nitrite Reductase (ccNiR) Does Not Disproportionate Hydroxylamine to Ammonia and Nitrite, Despite a Strongly Favorable Driving Force Matthew Youngblut University of Wisconsin - Milwaukee Daniel J. Pauly University of Wisconsin - Milwaukee Natalia Stein University of Wisconsin - Milwaukee Daniel Walters University of Wisconsin - Milwaukee John A. Conrad University of Wisconsin - Milwaukee See next page for additional authors Follow this and additional works at: https://epublications.marquette.edu/physics_fac Part of the Physics Commons Recommended Citation Youngblut, Matthew; Pauly, Daniel J.; Stein, Natalia; Walters, Daniel; Conrad, John A.; Moran, Graham R.; Bennett, Brian; and Pacheco, A. Andrew, "Shewanella oneidensis Cytochrome c Nitrite Reductase (ccNiR) Does Not Disproportionate Hydroxylamine to Ammonia and Nitrite, Despite a Strongly Favorable Driving Force" (2014). Physics Faculty Research and Publications. 7. https://epublications.marquette.edu/physics_fac/7 Authors Matthew Youngblut, Daniel J. Pauly, Natalia Stein, Daniel Walters, John A. Conrad, Graham R. Moran, Brian Bennett, and A. Andrew Pacheco This article is available at e-Publications@Marquette: https://epublications.marquette.edu/physics_fac/7 Marquette University e-Publications@Marquette Physics Faculty Research and Publications/College of Arts and Sciences This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The published version may be accessed by following the link in the citation below. Biochemistry, Vol. 53, No. 13 (8 April 2014): 2136–2144. DOI. This article is © American Chemical Society Publications and permission has been granted for this version to appear in e- Publications@Marquette. American Chemical Society Publications does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from American Chemical Society Publications. -
Isolated Co-Lipase Deficiency in Two Brothers
Gut: first published as 10.1136/gut.23.3.243 on 1 March 1982. Downloaded from Gut, 1982, 23, 243-246 Case reports Isolated co-lipase deficiency in two brothers H HILDEBRAND,* B BORGSTROM, A BEKASSY, C ERLANSON-ALBERTSSON, AND I HELIN From the Department ofPaediatrics and the Department ofPhysiological Chemistry, University ofLund, Sweden SUMMARY Two normally developed Assyrian brothers with isolated pancreatic co-lipase deficiency are described. They presented at the age of 5-6 years with loose stools. They had steatorrhoea, and analysis of exocrine pancreatic enzymes in the small intestine showed co-lipase deficiency, while amylase, chymotrypsin, trypsin, and lipase were normal. Intraduodenal infusion of purified co-lipase improved fat digestion measured by the triolein breath test. Their steatorrhoea diminished on treatment with enteric-coated pancreatic enzymes. The first indication for the existence of a co-factor for activities were assayed titrimetrically`5 using p-tosyl-l- pancreatic lipase was reported in 1963.1 In 1969 a arginine methyl ester (TAME) and N-acetyl-L-tyro- heat-stable co-factor was separated from lipase by gel- sine ethyl ester (ATEE), respectively, as substrates. filtration.2 Pure pancreatic lipase is inhibited by bile Lipase and co-lipase were measured titrimetrically salts in concentrations over their critical micellar con- using tributyrate as substrate.4 Total bile salt concen- centrations.3 The function of the co-factor, called co- trations and the ratio of glycine- to taurine-conjugated lipase, is to restore -
The Structure of Allophanate Hydrolase from Granulibacter Bethesdensis Provides Insights Into Substrate Specificity in the Amidase Signature Family
Marquette University e-Publications@Marquette Biological Sciences Faculty Research and Publications Biological Sciences, Department of 2013 The Structure of Allophanate Hydrolase from Granulibacter bethesdensis Provides Insights into Substrate Specificity in the Amidase Signature Family Yi Lin Marquette University, [email protected] Martin St. Maurice Marquette University, [email protected] Follow this and additional works at: https://epublications.marquette.edu/bio_fac Part of the Biochemistry, Biophysics, and Structural Biology Commons Recommended Citation Lin, Yi and St. Maurice, Martin, "The Structure of Allophanate Hydrolase from Granulibacter bethesdensis Provides Insights into Substrate Specificity in the Amidase Signature Family" (2013). Biological Sciences Faculty Research and Publications. 138. https://epublications.marquette.edu/bio_fac/138 Marquette University e-Publications@Marquette Biological Sciences Faculty Research and Publications/College of Arts and Sciences This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The published version may be accessed by following the link in the citation below. Biochemistry, Vol. 54, No. 4 (January 29, 2013): 690-700. DOI. This article is © American Chemical Society Publications and permission has been granted for this version to appear in e- Publications@Marquette. American Chemical Society Publications does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from American Chemical Society Publications. The Structure of Allophanate Hydrolase from Granulibacter bethesdensis Provides Insights into Substrate Specificity in the Amidase Signature Family Yi Lin Department of Biological Sciences, Marquette University, Milwaukee, WI Martin St. Maurice Department of Biological Sciences, Marquette University, Milwaukee, WI Abstract Allophanate hydrolase (AH) catalyzes the hydrolysis of allophanate, an intermediate in atrazine degradation and urea catabolism pathways, to NH3 and CO2. -
K113436 B. Purpose for Submi
510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY ONLY TEMPLATE A. 510(k) Number: k113436 B. Purpose for Submission: New device C. Measurand: Alkaline Phosphatase, Amylase, and Lactate Dehydrogenase D. Type of Test: Quantitative, enzymatic activity E. Applicant: Alfa Wassermann Diagnostic Technologies, LLC F. Proprietary and Established Names: ACE Alkaline Phosphatase Reagent Amylase Reagent ACE LDH-L Reagent G. Regulatory Information: Product Classification Regulation Section Panel Code CJE II 862.1050, Alkaline phosphatase 75-Chemistry or isoenzymes test system CIJ II 862.1070, Amylase test system 75-Chemistry CFJ II, exempt, meets 862.1440, Lactate 75-Chemistry limitations of dehydrogenase test system exemption. 21 CFR 862.9 (c) (4) and (9) H. Intended Use: 1. Intended use(s): See indications for use below. 2. Indication(s) for use: The ACE Alkaline Phosphatase Reagent is intended for the quantitative determination of alkaline phosphatase activity in serum using the ACE Axcel Clinical Chemistry System. Measurements of alkaline phosphatase are used in the diagnosis and treatment of liver, bone, parathyroid and intestinal diseases. This test is intended for use in clinical laboratories or physician office laboratories. For in vitro diagnostic use only. The ACE Amylase Reagent is intended for the quantitative determination α-amylase activity in serum using the ACE Axcel Clinical Chemistry System. Amylase measurements are used primarily for the diagnosis and treatment of pancreatitis (inflammation of the pancreas). This test is intended for use in clinical laboratories or physician office laboratories. For in vitro diagnostic use only. The ACE LDH-L Reagent is intended for the quantitative determination of lactate dehydrogenase activity in serum using the ACE Axcel Clinical Chemistry System. -
Extrapancreatic Sources of Lipase
Clinical Chemistry Byline David Parry, PhD, FCACB St. Boniface General Hospital James Dalton, PhD, FCACB Health Sciences Centre Extrapancreatic Sources of Lipase Reports now abound in the literature indicating that serum lipase is more specific and sensitive than amylase for detecting acute pancreatitis in patients presenting with acute abdominal pain (1-7). Amylase has been the mainstay biochemical test for the investigation of acute pancreatitis for many years, whereas lipase has not been widely used primarily because, until recently, reliable lipase assays were not suitable for rapid turnaround of results. Now, reliable and rapid lipase results are available at HSC, St. Boniface General Hospital, Seven Oaks General Hospital and Grace General Hospital. It is generally well appreciated that increases in serum amylase are seen not only in pancreatic disorders, but also in a number of non-pancreatic abdominal and non-abdominal diseases (1). With increased use of lipase, it has become increasingly recognized that lipase too can be elevated in clinical conditions that do not involve the pancreas. Even though the superiority of lipase over amylase for investigating acute pancreatitis has been shown repeatedly in recent literature (2-5), it is important to be aware that there are a number of clinical conditions that can give rise to elevated nonpancreatic lipase: 1) A recent study (2) has shown that some patients presenting with acute abdominal pain have elevations in serum lipase that are due to extrapancreatic disease processes. The sources of elevated lipase were attributed to a number of intra-abdominal anatomic locations other than the pancreas, including the biliary tract, esophagus, stomach, duodenum and small intestine. -
Generated by SRI International Pathway Tools Version 25.0, Authors S
Authors: Pallavi Subhraveti Ron Caspi Quang Ong Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000725805Cyc: Streptomyces xanthophaeus Cellular Overview Connections between pathways are omitted for legibility. -
Diagnostic Value of Serum Enzymes-A Review on Laboratory Investigations
Review Article ISSN 2250-0480 VOL 5/ ISSUE 4/OCT 2015 DIAGNOSTIC VALUE OF SERUM ENZYMES-A REVIEW ON LABORATORY INVESTIGATIONS. 1VIDYA SAGAR, M.SC., 2DR. VANDANA BERRY, MD AND DR.ROHIT J. CHAUDHARY, MD 1Vice Principal, Institute of Allied Health Sciences, Christian Medical College, Ludhiana 2Professor & Ex-Head of Microbiology Christian Medical College, Ludhiana 3Assistant Professor Department of Biochemistry Christian Medical College, Ludhiana ABSTRACT Enzymes are produced intracellularly, and released into the plasma and body fluids, where their activities can be measured by their abilities to accelerate the particular chemical reactions they catalyze. But different serum enzymes are raised when different tissues are damaged. So serum enzyme determination can be used both to detect cellular damage and to suggest its location in situ. Some of the biochemical markers such as alanine aminotransferase, aspartate aminotransferase, alkaline phasphatase, gamma glutamyl transferase, nucleotidase, ceruloplasmin, alpha fetoprotein, amylase, lipase, creatine phosphokinase and lactate dehydrogenase are mentioned to evaluate diseases of liver, pancreas, skeletal muscle, bone, etc. Such enzyme test may assist the physician in diagnosis and treatment. KEYWORDS: Liver Function tests, Serum Amylase, Lipase, CPK and LDH. INTRODUCTION mitochondrial AST is seen in extensive tissue necrosis during myocardial infarction and also in chronic Liver diseases like liver tissue degeneration DIAGNOSTIC SERUM ENZYME and necrosis². But lesser amounts are found in Enzymes are very helpful in the diagnosis of brain, pancreas and lung. Although GPT is plentiful cardiac, hepatic, pancreatic, muscular, skeltal and in the liver and occurs only in the small amount in malignant disorders. Serum for all enzyme tests the other tissues. -
The Noncanonical Pathway for in Vivo Nitric Oxide Generation: the Nitrate-Nitrite-Nitric Oxide Pathway
1521-0081/72/3/692–766$35.00 https://doi.org/10.1124/pr.120.019240 PHARMACOLOGICAL REVIEWS Pharmacol Rev 72:692–766, July 2020 Copyright © 2020 by The Author(s) This is an open access article distributed under the CC BY-NC Attribution 4.0 International license. ASSOCIATE EDITOR: CHRISTOPHER J. GARLAND The Noncanonical Pathway for In Vivo Nitric Oxide Generation: The Nitrate-Nitrite-Nitric Oxide Pathway V. Kapil, R. S. Khambata, D. A. Jones, K. Rathod, C. Primus, G. Massimo, J. M. Fukuto, and A. Ahluwalia William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, United Kingdom (V.K., R.S.K., D.A.J., K.R., C.P., G.M., A.A.) and Department of Chemistry, Sonoma State University, Rohnert Park, California (J.M.F.) Abstract ...................................................................................694 Significance Statement. ..................................................................694 I. Introduction . ..............................................................................694 A. Chemistry of ·NO and Its Metabolism to Nitrite and Nitrate . .........................695 II. Inorganic Nitrite and Nitrate . ............................................................697 A. Historical Uses of Inorganic Nitrite.....................................................697 B. Historical Uses of Inorganic Nitrate ....................................................698 III. Sources and Pharmacokinetics of Nitrate . ................................................698 -
Protein Disulfide Isomerase May Facilitate the Efflux
Redox Biology 1 (2013) 373–380 Contents lists available at SciVerse ScienceDirect Redox Biology journal homepage: www.elsevier.com/locate/redox Protein disulfide isomerase may facilitate the efflux of nitrite derived S-nitrosothiols from red blood cells$ Vasantha Madhuri Kallakunta a, Anny Slama-Schwok b, Bulent Mutus a,n a Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4 b INRA UR892, Domaine de Vilvert, 78352 Jouy-en-Josas, France article info abstract Article history: Protein disulfide isomerase (PDI) is an abundant protein primarily found in the endoplasmic reticulum Received 20 June 2013 and also secreted into the blood by a variety of vascular cells. The evidence obtained here, suggests that Received in revised form PDI could directly participate in the efflux of NO+ from red blood cells (RBC). PDI was detected both in 8 July 2013 RBC membranes and in the cytosol. PDI was S-nitrosylated when RBCs were exposed to nitrite under Accepted 9 July 2013 ∼50% oxygen saturation but not under ∼100% oxygen saturation. Furthermore, it was observed that hemoglobin (Hb) could promote PDI S-nitrosylation in the presence of ∼600 nM nitrite. In addition, three Keywords: lines of evidence were obtained for PDI–Hb interactions: (1) Hb co-immunoprecipitated with PDI; (2) Hb Nitrite reductase quenched the intrinsic PDI fluorescence in a saturable manner; and (3) Hb–Fe(II)–NO absorption S-nitrosohemoglobin spectrum decreased in a [PDI]-dependent manner. Finally, PDI was detected on the surface RBC under Hypoxic vasodilation ∼100% oxygen saturation and released as soluble under ∼50% oxygen saturation. -
Supplementary Information
Supplementary information (a) (b) Figure S1. Resistant (a) and sensitive (b) gene scores plotted against subsystems involved in cell regulation. The small circles represent the individual hits and the large circles represent the mean of each subsystem. Each individual score signifies the mean of 12 trials – three biological and four technical. The p-value was calculated as a two-tailed t-test and significance was determined using the Benjamini-Hochberg procedure; false discovery rate was selected to be 0.1. Plots constructed using Pathway Tools, Omics Dashboard. Figure S2. Connectivity map displaying the predicted functional associations between the silver-resistant gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S3. Connectivity map displaying the predicted functional associations between the silver-sensitive gene hits; disconnected gene hits not shown. The thicknesses of the lines indicate the degree of confidence prediction for the given interaction, based on fusion, co-occurrence, experimental and co-expression data. Figure produced using STRING (version 10.5) and a medium confidence score (approximate probability) of 0.4. Figure S4. Metabolic overview of the pathways in Escherichia coli. The pathways involved in silver-resistance are coloured according to respective normalized score. Each individual score represents the mean of 12 trials – three biological and four technical. Amino acid – upward pointing triangle, carbohydrate – square, proteins – diamond, purines – vertical ellipse, cofactor – downward pointing triangle, tRNA – tee, and other – circle. -
Supplementary Table S1. the Key Enzymes for Autotrophic Growth in C
Electronic Supplementary Material (ESI) for Metallomics. This journal is © The Royal Society of Chemistry 2015 Supplementary Table S1. The key enzymes for autotrophic growth in C. metallidurans Name Rmet-number Spec. Predicted Mass, (kDa) Determined Mass, (kDa) Activity HOS Rmet_1522 to Rmet_1525 28.7 65.2, 25.4, 23.4, 52.8 = 166.8 62.4±1.8, 26.4±1.3, 24.0±0.6, 54.1±2.5, =235±20a HOP Rmet_1297, Rmet_1298, 67.0 69.0 + 38.6 = 108 148±24a CAX Rmet_1500, Rmet_1501 2.82 8 * (13.6 + 52.5) = 529 475±36a PRK Rmet_1512 0.994 8 * 32.4 = 259 256±11a aMean value of masses determined by S300 size exclusion chromatography and sucrose gradient centrifugation. HOS, NAD-reducing soluble hydrogenase; HOP, membrane-bound hydrogenase; CAX, ribulose-bis-phosphate carboxylase/oxygenase; PRK, phosphoribulokinase. Specific activity in U/mg protein. Supplementary Table S2. Genes expressed differently in AE104 compared to CH34 wild typea Operon Region Name Gene Q D Description UP Op1321r Rmet_4594 zntA 1.72 2.88 Q1LEH0 Heavy metal translocating P -type ATPase Op1322f Rmet_4595 czcI2 2.03 2.92 Q1LEG9 Putative uncharacterized protein Op1322f Rmet_4596 czcC2 23.34 5.36 Q1LEG8 Outer membrane efflux protein Op1322f Rmet_4597 czcB2' 15.36 9.68 Q1LEG7 Secretion protein HlyD Op0075f Rmet_0260 - 2.31 2.48 Q1LRT0 Putative transmembrane protein Op0075f Rmet_0261 coxB 2.08 2.49 Q1LRS9 Cytochrome c oxidase subunit 2 Adjacent to CMGI-7 Op0335f Rmet_1171 tnpA 7.03 21.74 Q9F8S6 Transposase (Transposase, IS4 family) CMGI-2 Op0362r Rmet_1251 tnp 4.08 0.61 Q1LNY9 Putative uncharacterized