Laccase Properties, Physiological Functions, and Evolution
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alternative Oxidase: a Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis During Abiotic and Biotic Stress in Plants
Int. J. Mol. Sci. 2013, 14, 6805-6847; doi:10.3390/ijms14046805 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis during Abiotic and Biotic Stress in Plants Greg C. Vanlerberghe Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C1A4, Canada; E-Mail: [email protected]; Tel.: +1-416-208-2742; Fax: +1-416-287-7676 Received: 16 February 2013; in revised form: 8 March 2013 / Accepted: 12 March 2013 / Published: 26 March 2013 Abstract: Alternative oxidase (AOX) is a non-energy conserving terminal oxidase in the plant mitochondrial electron transport chain. While respiratory carbon oxidation pathways, electron transport, and ATP turnover are tightly coupled processes, AOX provides a means to relax this coupling, thus providing a degree of metabolic homeostasis to carbon and energy metabolism. Beside their role in primary metabolism, plant mitochondria also act as “signaling organelles”, able to influence processes such as nuclear gene expression. AOX activity can control the level of potential mitochondrial signaling molecules such as superoxide, nitric oxide and important redox couples. In this way, AOX also provides a degree of signaling homeostasis to the organelle. Evidence suggests that AOX function in metabolic and signaling homeostasis is particularly important during stress. These include abiotic stresses such as low temperature, drought, and nutrient deficiency, as well as biotic stresses such as bacterial infection. This review provides an introduction to the genetic and biochemical control of AOX respiration, as well as providing generalized examples of how AOX activity can provide metabolic and signaling homeostasis. -
Catalase and Oxidase Test
CATALASE TEST Catalase is the enzyme that breaks hydrogen peroxide (H 2O2) into H 2O and O 2. Hydrogen peroxide is often used as a topical disinfectant in wounds, and the bubbling that is seen is due to the evolution of O 2 gas. H 2O2 is a potent oxidizing agent that can wreak havoc in a cell; because of this, any cell that uses O 2 or can live in the presence of O 2 must have a way to get rid of the peroxide. One of those ways is to make catalase. PROCEDURE a. Place a small amount of growth from your culture onto a clean microscope slide. If using colonies from a blood agar plate, be very careful not to scrape up any of the blood agar— blood cells are catalase positive and any contaminating agar could give a false positive. b. Add a few drops of H 2O2 onto the smear. If needed, mix with a toothpick. DO NOT use a metal loop or needle with H 2O2; it will give a false positive and degrade the metal. c. A positive result is the rapid evolution of O 2 as evidenced by bubbling. d. A negative result is no bubbles or only a few scattered bubbles. e. Dispose of your slide in the biohazard glass disposal container. Dispose of any toothpicks in the Pipet Keeper. OXIDASE TEST Basically, this is a test to see if an organism is an aerobe. It is a check for the presence of the electron transport chain that is the final phase of aerobic respiration. -
Separation and Partial Purification of Collagenolytic Protease
Biocatalysis and Agricultural Biotechnology 24 (2020) 101509 Contents lists available at ScienceDirect Biocatalysis and Agricultural Biotechnology journal homepage: http://www.elsevier.com/locate/bab Separation and partial purificationof collagenolytic protease from peacock bass (Cichla ocellaris) using different protocol: Precipitation and partitioning approaches Vagne de Melo Oliveira a, Marcia� Nieves Carneiro da Cunha a, Caio Rodrigo Dias de Assis b,f, Juanize Matias da Silva Batista a, Thiago Pajeú Nascimento a, Juliana Ferreira dos Santos c, Carolina de Albuquerque Lima d, Daniela de Araújo Viana Marques e, Ranilson de Souza Bezerra b, Ana Lúcia Figueiredo Porto a,* a Laboratorio� de Tecnologia de Produtos Bioativos, Departamento de Morfologia e Fisiologia Animal, DMFA, Universidade Federal Rural de Pernambuco, Av. Dom Manoel, de Medeiros, s/n, 52171-900, Recife, PE, Brazil b Laboratorio� de Enzimologia, Departamento de Bioquímica, Universidade Federal de Pernambuco, Cidade Universitaria,� 50670-420, Recife, PE, Brazil c Laboratorio� de Aquicultura e Biotecnologia, LABITEC, Unidade Acad^emica de Serra Talhada, Universidade Federal Rural de Pernambuco, Serra Talhada, PE, Brazil d Universidade de Pernambuco, UPE, Rua Capitao~ Pedro Rodrigues, 105, 55294-902, Garanhuns, PE, Brazil e Universidade de Pernambuco, UPE, Instituto de Ci^encias Biologicas� - ICB, Departmento de Parasitologia, Rua Arnobio� Marques, 310 - Santo Amaro, Recife, PE, 50100- 130, Brazil f Laboratorio� de Compostos Organicos^ em Ecossistemas Costeiros e Marinhos, OrganoMAR, Departamento de Oceanografia,Universidade Federal de Pernambuco, Cidade Universitaria,� 50670-420, Recife, PE, Brazil ARTICLE INFO ABSTRACT Keywords: This comparative study provides a useful protocol for the separation and partial purification of collagenolytic ATPS proteases obtained from peacock bass, by using precipitation and partitioning. -
Bacterial-Type Plant Ferroxidases Tune Local Phosphate Sensing in Root Development
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.19.436157; this version posted March 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Bacterial-type plant ferroxidases tune local phosphate sensing in root development Christin Naumann1, Marcus Heisters1,2, Wolfgang Brandt3, Philipp Janitza4, Carolin Alfs1, Nancy Tang1, Alicia Toto Nienguesso1,5, Joerg Ziegler1, Richard Imre6,7, Karl Mechtler6,7, Yasin Dagdas6, Wolfgang Hoehenwarter8, Gary Sawers9, Marcel Quint4, and Steffen Abel1,10,11 1Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany 2VEROVACCiNES GmbH, Halle (Saale), Germany 3Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany 4Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle- Wittenberg, Halle (Saale), Germany 5Department of Anatomy and Cell Biology, University Hospital Halle, Halle (Saale), Germany 6Gregor Mendel Institute of Molecular Plant Biology, Vienna, Austria 7Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria 9Institute of Biology/Microbiology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany 8Proteome Analytics, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany 10Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany 11Department of Plant Sciences, University of California, Davis, CA, USA 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.19.436157; this version posted March 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Fluctuating bioavailability of inorganic phosphate (Pi), often caused by complex Pi-metal interactions, guide root tip growth and root system architecture for maximizing the foraged soil volume. -
Characterization of Polyphenol Oxidase and Antioxidants from Pawpaw (Asimina Tribola) Fruit
University of Kentucky UKnowledge University of Kentucky Master's Theses Graduate School 2007 CHARACTERIZATION OF POLYPHENOL OXIDASE AND ANTIOXIDANTS FROM PAWPAW (ASIMINA TRIBOLA) FRUIT Caodi Fang University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Fang, Caodi, "CHARACTERIZATION OF POLYPHENOL OXIDASE AND ANTIOXIDANTS FROM PAWPAW (ASIMINA TRIBOLA) FRUIT" (2007). University of Kentucky Master's Theses. 477. https://uknowledge.uky.edu/gradschool_theses/477 This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF THESIS CHARACTERIZATION OF POLYPHENOL OXIDASE AND ANTIOXIDANTS FROM PAWPAW (ASIMINA TRIBOLA) FRUIT Crude polyphenol oxidase (PPO) was extracted from pawpaw (Asimina triloba) fruit. The enzyme exhibited a maximum activity at pH 6.5–7.0 and 5–20 °C, and had -1 a maximum catalysis rate (Vmax) of 0.1363 s and a reaction constant (Km) of 0.3266 M. It was almost completely inactivated when incubated at 80 °C for 10 min. Two isoforms of PPO (MW 28.2 and 38.3 kDa) were identified by Sephadex gel filtration chromatography and polyacrylamide gel electrophoresis. Both the concentration and the total activity of the two isoforms differed (P < 0.05) between seven genotypes of pawpaw tested. Thermal stability (92 °C, 1–5 min) and colorimetry (L* a* b*) analyses showed significant variations between genotypes. -
3. Methodology
3. METHODOLOGY The present study focused on the responses evoked by B. monnieri under conditions of oxidative stress. The plan of work and the methodology adopted are presented in this chapter. The work was carried out in four phases. In Phase I, different parts of B. monnieri , namely leaves, stolon and roots, were assessed for their antioxidant potential and free radical scavenging activity. The biomolecular protective effects and the apoptosis- modulating effects of the leaf extract in cell free and in vitro systems were studied in Phase II. Phase III involved assessing the antioxidant status in precision-cut liver slices exposed to oxidative stress and confirming the results in experimental animals. In the final phase of the study, phytochemical analysis of the active component in B. monnieri leaves was carried out. The layout of the study is presented below. PHASE I In this phase, the antioxidant status in different parts of B. monnieri was assessed. The leaves, stolon and roots of the plantlets were collected from the plants grown in pots in the University campus. They were washed thoroughly in running tap water in order to remove any dirt or soil particles adhered and blotted gently between folds of tissue paper to remove any water droplets. Both enzymic and non-enzymic antioxidants were analysed in all the three parts of the plant. ENZYMIC ANTIOXIDANTS The enzymic antioxidants analyzed in the parts of B. monnieri w ere superoxide dismutase, catalase, peroxidase, glutathione S-transferase and polyphenol oxidase. ASSAY OF SUPEROXIDE DISMUTASE (SOD) SOD was assayed according to the method of Kakkar et al. -
Geometric and Electronic Structure Differences Between the Type 3 Copper Sites of the Multicopper Oxidases and Hemocyanin/Tyrosinase
Geometric and electronic structure differences between the type 3 copper sites of the multicopper oxidases and hemocyanin/tyrosinase Jungjoo Yoon, Satoshi Fujii1, and Edward I. Solomon2 Department of Chemistry, Stanford University, Stanford, CA 94305-5080 Contributed by Edward I. Solomon, February 25, 2009 (sent for review January 31, 2009) The coupled binuclear ‘‘type 3’’ Cu sites are found in hemocyanin (Hc), tyrosinase (Tyr), and the multicopper oxidases (MCOs), such as laccase (Lc), and play vital roles in O2 respiration. Although all type 3 Cu sites share the same ground state features, those of Hc/Tyr have very different ligand-binding properties relative to those of the MCOs. In particular, the type 3 Cu site in the MCOs (LcT3)isa part of the trinuclear Cu cluster, and if the third (i.e., type 2) Cu is T3 removed, the Lc site does not react with O2. Density functional ؊1 theory calculations indicate that O2 binding in Hc is Ϸ9 kcal mol more favorable than for LcT3. The difference is mostly found in the Ϸ ؊1 total energy difference of the deoxy states ( 7 kcal mol ), where Fig. 1. O2 binding in the type 3 Cu sites of Hc/Tyr and MCOs. the stabilization of deoxy LcT3 derives from its long equilibrium Cu–Cu distance of Ϸ5.5–6.5 Å, relative to Ϸ4.2 Å in deoxy Hc/Tyr. The O2 binding in Hc is driven by the electrostatic destabilization Cu–Cu distance of Ϸ3.6 Å (Fig. 1A) (7, 8, 10). The side-on 2Ϫ of the deoxy Hc site, in which the two Cu(I) centers are kept close geometry promotes a large overlap between the O2 * and the together by the protein for facile 2-electron reduction of O2. -
Yeast Genome Gazetteer P35-65
gazetteer Metabolism 35 tRNA modification mitochondrial transport amino-acid metabolism other tRNA-transcription activities vesicular transport (Golgi network, etc.) nitrogen and sulphur metabolism mRNA synthesis peroxisomal transport nucleotide metabolism mRNA processing (splicing) vacuolar transport phosphate metabolism mRNA processing (5’-end, 3’-end processing extracellular transport carbohydrate metabolism and mRNA degradation) cellular import lipid, fatty-acid and sterol metabolism other mRNA-transcription activities other intracellular-transport activities biosynthesis of vitamins, cofactors and RNA transport prosthetic groups other transcription activities Cellular organization and biogenesis 54 ionic homeostasis organization and biogenesis of cell wall and Protein synthesis 48 plasma membrane Energy 40 ribosomal proteins organization and biogenesis of glycolysis translation (initiation,elongation and cytoskeleton gluconeogenesis termination) organization and biogenesis of endoplasmic pentose-phosphate pathway translational control reticulum and Golgi tricarboxylic-acid pathway tRNA synthetases organization and biogenesis of chromosome respiration other protein-synthesis activities structure fermentation mitochondrial organization and biogenesis metabolism of energy reserves (glycogen Protein destination 49 peroxisomal organization and biogenesis and trehalose) protein folding and stabilization endosomal organization and biogenesis other energy-generation activities protein targeting, sorting and translocation vacuolar and lysosomal -
Turning on Virulence: Mechanisms That Underpin the Morphologic Transition and Pathogenicity of Blastomyces
Virulence ISSN: 2150-5594 (Print) 2150-5608 (Online) Journal homepage: http://www.tandfonline.com/loi/kvir20 Turning on Virulence: Mechanisms that underpin the Morphologic Transition and Pathogenicity of Blastomyces Joseph A. McBride, Gregory M. Gauthier & Bruce S. Klein To cite this article: Joseph A. McBride, Gregory M. Gauthier & Bruce S. Klein (2018): Turning on Virulence: Mechanisms that underpin the Morphologic Transition and Pathogenicity of Blastomyces, Virulence, DOI: 10.1080/21505594.2018.1449506 To link to this article: https://doi.org/10.1080/21505594.2018.1449506 © 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group© Joseph A. McBride, Gregory M. Gauthier and Bruce S. Klein Accepted author version posted online: 13 Mar 2018. Submit your article to this journal Article views: 15 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=kvir20 Publisher: Taylor & Francis Journal: Virulence DOI: https://doi.org/10.1080/21505594.2018.1449506 Turning on Virulence: Mechanisms that underpin the Morphologic Transition and Pathogenicity of Blastomyces Joseph A. McBride, MDa,b,d, Gregory M. Gauthier, MDa,d, and Bruce S. Klein, MDa,b,c a Division of Infectious Disease, Department of Medicine, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA; b Division of Infectious Disease, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 1675 Highland Avenue, Madison, WI 53792, USA; c Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, 1550 Linden Drive, Madison, WI 53706, USA. -
Parallel Molecular Evolution of Catalases and Superoxide Dismutases—Focus on Thermophilic Fungal Genomes
antioxidants Article Parallel Molecular Evolution of Catalases and Superoxide Dismutases—Focus on Thermophilic Fungal Genomes Katarína Chovanová 1, Miroslav Böhmer 2 , Andrej Poljovka 1, Jaroslav Budiš 2, Jana Harichová 1, Tomáš Szemeš 2 and Marcel Zámocký 1,3,* 1 Laboratory for Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravska cesta 21, SK-84551 Bratislava, Slovakia; [email protected] (K.C.); [email protected] (A.P.); [email protected] (J.H.) 2 Department of Molecular Biology, Faculty of Nat. Sciences, Science Park of Comenius University, Comenius University, Ilkoviˇcova8, SK-84104 Bratislava, Slovakia; [email protected] (M.B.); [email protected] (J.B.); [email protected] (T.S.) 3 Department of Chemistry, Institute of Biochemistry, BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria * Correspondence: [email protected] Received: 24 September 2020; Accepted: 22 October 2020; Published: 27 October 2020 Abstract: Catalases (CAT) and superoxide dismutases (SOD) represent two main groups of enzymatic antioxidants that are present in almost all aerobic organisms and even in certain anaerobes. They are closely interconnected in the catabolism of reactive oxygen species because one product of SOD reaction (hydrogen peroxide) is the main substrate of CAT reaction finally leading to harmless products (i.e., molecular oxygen and water). It is therefore interesting to compare the molecular evolution of corresponding gene families. We have used a phylogenomic approach to elucidate the evolutionary relationships among these two main enzymatic antioxidants with a focus on the genomes of thermophilic fungi. Distinct gene families coding for CuZnSODs, FeMnSODs, and heme catalases are very abundant in thermophilic Ascomycota. -
Transcriptome Analysis of Differential Gene Expression in Dichomitus Squalens
bioRxiv preprint doi: https://doi.org/10.1101/359646; this version posted June 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Transcriptome analysis of differential gene expression in Dichomitus squalens 2 during interspecific mycelial interactions and the potential link with laccase 3 induction 4 Zixuan Zhong1, Nannan Li1, Binghui He, Yasuo Igarashi, Feng Luo* 5 6 Research Center of Bioenergy and Bioremediation, College of Resources and Environment, 7 Southwest University, Beibei, Chongqing 400715, People’s Republic of China 8 9 *corresponding author: Feng Luo (FL) [email protected] 10 11 1These authors contributed equally to the paper 12 13 ABSTRACT 14 Interspecific mycelial interactions between white rot fungi are always accompanied by increased 15 production of laccase. In this study, the potential of white rot fungi Dichomitus squalens for 16 enhancing laccase production during interaction with two other white rot fungi Trametes 17 versicolor or Pleurotus ostreatus was identified. To probe the mechanism of laccase induction and 18 the role of laccase played during the combative interaction, we analyzed the laccase induction 19 response to stressful conditions during fungal interaction related to the differential gene expression 20 profile. We further confirmed the expression patterns of 16 selected genes by qRT-PCR analysis. 21 We noted that many differential expression genes (DEGs) encoding proteins were involved in 22 xenobiotics detoxification and ROS generation or reduction, including aldo/keto reductase, 23 glutathione S-transferases, cytochrome P450 enzymes, alcohol oxidases and dehydrogenase, 24 manganese peroxidase and laccase. -
Thermophilic Fungi: Taxonomy and Biogeography
Journal of Agricultural Technology Thermophilic Fungi: Taxonomy and Biogeography Raj Kumar Salar1* and K.R. Aneja2 1Department of Biotechnology, Chaudhary Devi Lal University, Sirsa – 125 055, India 2Department of Microbiology, Kurukshetra University, Kurukshetra – 136 119, India Salar, R. K. and Aneja, K.R. (2007) Thermophilic Fungi: Taxonomy and Biogeography. Journal of Agricultural Technology 3(1): 77-107. A critical reappraisal of taxonomic status of known thermophilic fungi indicating their natural occurrence and methods of isolation and culture was undertaken. Altogether forty-two species of thermophilic fungi viz., five belonging to Zygomycetes, twenty-three to Ascomycetes and fourteen to Deuteromycetes (Anamorphic Fungi) are described. The taxa delt with are those most commonly cited in the literature of fundamental and applied work. Latest legal valid names for all the taxa have been used. A key for the identification of thermophilic fungi is given. Data on geographical distribution and habitat for each isolate is also provided. The specimens deposited at IMI bear IMI number/s. The document is a sound footing for future work of indentification and nomenclatural interests. To solve residual problems related to nomenclatural status, further taxonomic work is however needed. Key Words: Biodiversity, ecology, identification key, taxonomic description, status, thermophile Introduction Thermophilic fungi are a small assemblage in eukaryota that have a unique mechanism of growing at elevated temperature extending up to 60 to 62°C. During the last four decades many species of thermophilic fungi sporulating at 45oC have been reported. The species included in this account are only those which are thermophilic in the sense of Cooney and Emerson (1964).