Review Article Tidal Dwarf Galaxies and Missing Baryons

Total Page:16

File Type:pdf, Size:1020Kb

Review Article Tidal Dwarf Galaxies and Missing Baryons Hindawi Publishing Corporation Advances in Astronomy Volume 2010, Article ID 735284, 7 pages doi:10.1155/2010/735284 Review Article Tidal Dwarf Galaxies and Missing Baryons Frederic Bournaud CEA Saclay, DSM/IRFU/SAP, F 91191 Gif-Sur-Yvette Cedex, France Correspondence should be addressed to Frederic Bournaud, [email protected] Received 23 June 2009; Accepted 4 August 2009 Academic Editor: Elias Brinks Copyright © 2010 Frederic Bournaud. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Tidal dwarf galaxies form during the interaction, collision, or merger of massive spiral galaxies. They can resemble “normal” dwarf galaxies in terms of mass, size, and become dwarf satellites orbiting around their massive progenitor. They nevertheless keep some signatures from their origin, making them interesting targets for cosmological studies. In particular, they should be free from dark matter from a spheroidal halo. Flat rotation curves and high dynamical masses may then indicate the presence of an unseen component, and constrain the properties of the “missing baryons,” known to exist but not directly observed. The number of dwarf galaxies in the Universe is another cosmological problem for which it is important to ascertain if tidal dwarf galaxies formed frequently at high redshift, when the merger rate was high, and many of them survived until today. In this paper, “dark matter” is used to refer to the nonbaryonic matter, mostly located in large dark halos, that is, CDM in the standard paradigm, and “missing baryons” or “dark baryons” is used to refer to the baryons known to exist but hardly observed at redshift zero, and are a baryonic dark component that is additional to “dark matter”. 1. Introduction: The Formation of under the effect of tidal forces exerted by the other interacting Tidal Dwarf Galaxies galaxy, as the name suggests, but in fact for a large part by gravitational torques as the name does not suggest. The Tidal dwarf galaxy (TDG) is, per definition, a massive, perturbing galaxy exerts nonradial forces in the disturbed gravitationally bound object of gas and stars, formed during disk, so that some gas loses angular momentum, flows a merger or distant tidal interaction between massive spiral toward the center where it can fuel a starburst [7], and some galaxies, and is as massive as a dwarf galaxy [1](Figure 1). other gas gains angular momentum and flies away in long It should also be relatively long-lived, so that it survives after tidal tails. the interaction, either orbiting around its massive progenitor At least two mechanisms can lead to the formation of or expelled to large distances. This requires a lifetime of at massive substructures in tidal tails (Figures 1 and 2). First, least 1 gigayear, and a transient structure during a galaxy gravitational instabilities can develop, as in any gas-rich interaction would not deserve to be considered as a real TDG. medium. Having the material expelled from the disk eases The formation of TDGs in mergers has been postulated for gravitational collapse, as the stabilizing effect of rotation in decades [2], including potential candidates in the Antennae the parent disk disappears, or weakens. The process is then galaxies (NGC4038/39) [3], and became an increasingly a standard Jeans instability: when a region collects enough active research topic after the study of these tidal dwarf gas to overcome internal pressure support, it collapses into a candidates by Mirabel et al. [4]. self-bound object. The same process is believed to drive the Tidal tails are a common feature in galaxy interactions. formation of molecular clouds in spiral galaxy. The difference There are also some tidal bridges and collisional rings that is that the interaction stirs and heats the gas, and increases come about from the same processes and have similar its velocity dispersion [8]. As a result, the typical Jeans mass properties, even though some details differ. The tidal tails are is high, enabling relatively massive objects to form. These those long filaments seen around many interacting galaxies. star-forming gas clumps form at the Jeans mass, with a They are made up of material expelled from the disk of regular spacing, the Jeans wavelength, all along the long a parent spiral galaxy [6]. This material is expelled partly tidal tails. They resemble “beads on a string” [9]. Numerical 2 Advances in Astronomy (a) (b) Figure 1: NGC7252 (a) is a recent merger of two spiral galaxies into a partially-relaxed central spheroidal galaxy. Two massive TDGs are found near the tip of the two long tidal tails (blue = HI, pink = Hα – image courtesy of Pierre-Alain Duc). AM 1353-272 (b) does not have prominent, massive TDGs at the tip of tidal tails, but has instead may lower-mass objects all along its tail [5]. The bright spot on the northern tail is a foreground star. simulations model their formation accurately, provided that T = 0 T = 300 the resolution is high (to revolve the instability length) and gas content is accounted for with some hydrodynamic model [10]. This mechanism can result in relatively numerous TDGs, maybe ten per major merger, but these are not very 7 massive, at most a few 10 MO. The same process can form a large number of less massive structures, which are super star clusters rather than dwarf galaxies, potentially evolving into globular clusters. 50 kpc Some tidal dwarfs are much more massive, a few 108 9 or 10 solar masses, and typically form as single objects at = the tip of tidal tails [12]. They cannot form just by local T 1000 instabilities in a tidal tail. These massive TDGs result from the displacement of a large region of the outer disk of the progenitor spiral galaxy into the outer regions of the tidal tail, where material piles up and remains or becomes self- bound [13, 14]. As the interaction stirs the gas, the increased turbulence will provide the required pressure support to avoid fragmentation into many lower-mass objects. The shape of cold dark matter haloes, which are much more extended than the visible part of galaxies, making this process Figure 2: Simulation of the formation of long-lived TDGs, from more efficient [15]. The pile-up of material in massive TDGs theBournaud&Ducsample[11]. The two colliding spiral galaxies often occurs at the tip of tidal tails, and can also occur in ff are initially seen face-on. Yellow-red to blue colors code old stars di erent situations like gas captured and swung around the versus young stars; time is in megayear. Massive TDGs form at the companion [9, 16] or gas bridges linking two interacting tip of the tails, and some lower-mass ones also form in particular in galaxies [17, 18]. the Northern tail. A multi-grid technique increases the resolution A few tidal dwarfs of moderate mass, from the first on the most massive TDG to 10 parsec. It is resolved with a small mechanism, are found frequently in observed interacting internal spiral structure, and survives several gigayears around a galaxies. Massive TDGs in the very outer regions are more massiveredellipticalgalaxy. rare,atmost2–3permerger,butsomemergersdonothave any at all. Observations suggest that the presence of one type of TDG reduces the number of TDGs of the other type [19]. This is likely because the formation of a massive, tip-of-tail Sections 2 and 3 will review the internal mass content TDG collects a large fraction of the gas, and less remains of TDGs and how this can constrain the nature of missing available for the formation of numerous low-mass TDGs baryons. Different constraints, arising from statistics on TDG along the tail, by the first mechanism [19]. formation and survival, will be discussed in Section 4. Advances in Astronomy 3 Dark matter forms a spheroidal halo around galaxies, in both the standard Cold Dark Matter theories [20] and in other models (e.g., Warm Dark Matter [21]). All simulations show that this dark matter cannot participate in the formation of TDGs [10, 11, 14]. Once a TDG has formed, its escape velocity is low, at most a few tens of km s−1 for the biggest ones. The TDG will be embedded in the large halo of the parent spiral galaxy (since halos are much more extended than stellar and gaseous disks), so some dark matter particles will cross the TDG, but without being held by the gravitational well of the TDG. Indeed, the randomly- oriented velocities of dark matter particles in the halo of a −1 (a) spiral galaxy like the Milky Way are around 200 km s ,so the vast majority of these particles escape the tidal dwarf. At 100 any instant, some dark matter particles from the halo will incidentally be at the position of the TDG, but this makes up only a negligible fraction of the mass of any TDG, at most a 80 few percent. TDGs should then be free of dark matter. This means that 60 the dynamical mass measured from their rotation velocity and size, should not exceed their visible mass in stars and 40 gas—in contrast with “normal” dwarf galaxies and spiral Velocity (km/s) galaxies. Finding a dynamical mass in significant excess 20 would mean that TDGs contain an unseen component. This could be dark matter only if (part of the) dark matter is in a rotating disk component in their progenitor spiral galaxies, 0 012345just like stars and gas. Otherwise, this would require an unseen baryonic component in spiral galaxies, not just in Radius (kpc) the form of a hot gas halo—this one does not participate in Observed the formation of TDGs—but in the form of very cold gas Allowed by visible mass in the rotating disk.
Recommended publications
  • The Antennae Galaxies Move Closer 9 May 2008
    The Antennae Galaxies move closer 9 May 2008 archetypal merging galaxy system and are used as a standard against which to validate theories about galaxy evolution. An international group of scientists led by Ivo Saviane from the European Southern Observatory has used Hubble’s Advanced Camera for Surveys and Wide Field Planetary Camera 2 to observe individual stars spawned by the colossal cosmic collision in the Antennae Galaxies. They reached an interesting and surprising conclusion. By measuring the colours and brightnesses of red giant stars in the system, the scientists found that The Antennae Galaxies are among the closest known the Antennae Galaxies are much closer than merging galaxies. The two galaxies, also known as NGC previously thought: 45 million light-years instead of 4038 and NGC 4039, started to interact a few hundred the previous best estimate of 65 million light-years. million years ago, creating one of the most impressive sights in the night sky. They are considered by scientists as the archetypal merging galaxy system and are used The team targeted a region in the relatively as a standard with which to validate theories about quiescent outer regions in the southern tidal tail, galaxy evolution. The ground-based image (left) is taken away from the active central regions. This tail by Robert Gendler and shows the two merging galaxies consists of material thrown from the main galaxies and their impressive long tidal tails. The Hubble as they collided. The scientists needed to observe Advanced Camera for Surveys image (right) shows a regions with older red giant stars to derive an portion of the southern tidal tail.
    [Show full text]
  • 333 — 15 September 2020 Editor: Bo Reipurth ([email protected]) List of Contents
    THE STAR FORMATION NEWSLETTER An electronic publication dedicated to early stellar/planetary evolution and molecular clouds No. 333 — 15 September 2020 Editor: Bo Reipurth ([email protected]) List of Contents The Star Formation Newsletter Editorial ....................................... 3 Interview ...................................... 4 Editor: Bo Reipurth [email protected] My Favorite Object ............................ 7 Associate Editor: Anna McLeod Perspective ................................... 14 [email protected] Abstracts of Newly Accepted Papers .......... 18 Technical Editor: Hsi-Wei Yen Abstracts of Newly Accepted Major Reviews .. 51 [email protected] Dissertation Abstracts ........................ 52 Editorial Board New Jobs ..................................... 56 Short Announcements ........................ 58 Joao Alves Alan Boss Meetings ..................................... 59 Jerome Bouvier Summary of Upcoming Meetings .............. 60 Lee Hartmann Thomas Henning New Books ................................... 61 Paul Ho Passings ...................................... 63 Jes Jorgensen Charles J. Lada Thijs Kouwenhoven Michael R. Meyer Ralph Pudritz Luis Felipe Rodríguez Cover Picture Ewine van Dishoeck Hans Zinnecker The image shows the active star forming regions of M8 and M20 and associated giant molecular clouds, The Star Formation Newsletter is a vehicle for together with the hidden Galactic Center to the fast distribution of information of interest for as- lower left. The small Bok globule Barnard 86 is tronomers working on star and planet formation seen near the center of the image against the rich and molecular clouds. You can submit material star fields of Sagittarius. The vertical axis is 10◦, for the following sections: Abstracts of recently with north up and east left. accepted papers (only for papers sent to refereed journals), Abstracts of recently accepted major re- Image by Bo Reipurth (Canon EOS Ra, 30 sec, views (not standard conference contributions), Dis- 135mm lens at f/2, ISO 6400).
    [Show full text]
  • Star Formation
    IV. Star Formation 1. Basic Aspects of Star Formation • Star Formation: The fundamental cosmic (baryonic) process Determines cosmic fate of normal matter Galaxy formation, Star Conditions for life evolution, IMF Formation Elements Planet formation (He => U) Clusters Light, K.E. of ISM black holes WS 2018/19 (AGN,CDE stellar) IV 2 1 Star formation visible on local scales 3 Stellar associations: Does the energy feedback self-regulate the SF? 2. Star Formation in Spiral Galaxies IC5333 in Hα star formation follows the gaseous spiral arms. 4 2 Star formation can also happen in diffuse, less dense HI gas at the rim of gas disks. NGC 4625 UV disk is 4x larger than optical disk. Gil de Paz et al. (2005) 6 3 2.1. “Kennicutt/Schmidt law”: 2 global relat.s n SF threshold at g 6 M SF g (1989) ApJ, ˙ n 1.4 WS 2018/19 CDE IV 8 4 1.40.15 (2.5 0.7) 104 g M yr 1kpc 2 SF 2 s 1Ms pc g SF 0.017 g g dyn WS 2018/19 CDE IV 9 Kennicutt (1998) ApJ, 498 Can we understand the SF – gas surface density relation? if large - scale SF is produced by small - scale dynamics over a large area : g g 1.5 (for const. H) SF 1 g SF 2 (G g ) but : SF could be very short WS 2018/19 CDE IV 10 5 Starbursting galaxies drop off the KS correlation; the same for mergers. Hensler (2012) ApSS Proceed. + WS 2018/19 CDE IV Kuehtreiber (2010) BSc.
    [Show full text]
  • Tidal Dwarf Galaxies and Missing Baryons
    Tidal Dwarf Galaxies and missing baryons Frederic Bournaud CEA Saclay, DSM/IRFU/SAP, F-91191 Gif-Sur-Yvette Cedex, France Abstract Tidal dwarf galaxies form during the interaction, collision or merger of massive spiral galaxies. They can resemble “normal” dwarf galaxies in terms of mass, size, and become dwarf satellites orbiting around their massive progenitor. They nevertheless keep some signatures from their origin, making them interesting targets for cosmological studies. In particular, they should be free from dark matter from a spheroidal halo. Flat rotation curves and high dynamical masses may then indicate the presence of an unseen component, and constrain the properties of the “missing baryons”, known to exist but not directly observed. The number of dwarf galaxies in the Universe is another cosmological problem for which it is important to ascertain if tidal dwarf galaxies formed frequently at high redshift, when the merger rate was high, and many of them survived until today. In this article, I use “dark matter” to refer to the non-baryonic matter, mostly located in large dark halos – i.e., CDM in the standard paradigm. I use “missing baryons” or “dark baryons” to refer to the baryons known to exist but hardly observed at redshift zero, and are a baryonic dark component that is additional to “dark matter”. 1. Introduction: the formation of Tidal Dwarf Galaxies A Tidal Dwarf Galaxy (TDG) is, per definition, a massive, gravitationally bound object of gas and stars, formed during a merger or distant tidal interaction between massive spiral galaxies, and is as massive as a dwarf galaxy [1] (Figure 1).
    [Show full text]
  • HI Observations of Interacting Galaxy Pair NGC 4038/9
    Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 27 October 2018 (MN LATEX style file v1.4) H i Observations of Interacting Galaxy Pair NGC 4038/9 ⋆ Scott Gordon1 , B¨arbel Koribalski2, Keith Jones1 1Department of Physics, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia 2Australia Telescope National Facility, CSIRO, P.O. Box 76, Epping, NSW 1710, Australia Received date; accepted date ABSTRACT We present the results of new radio interferometer H i line observations for the merging galaxy pair NGC 4038/9 (‘The Antennae’), obtained using the Australia Tele- scope Compact Array. The results improve substantially on those of van der Hulst (1979) and show in detail the two merging galactic disks and the two tidal tails pro- duced by their interaction. The small edge-on spiral dwarf galaxy ESO 572–G045 is also seen near the tip of the southern tail, but distinct from it. It shows no signs of tidal interaction. The northern tidal tail of the Antennae shows no H i connection to the disks and has an extension towards the west. The southern tidal tail is continuous, with a prominent H i concentration at its tip, roughly at the location of the tidal dwarf galaxy observed optically by Mirabel, Dottori & Lutz (1992). Clear velocity structure is seen along the tidal tails and in the galactic disks. Radio continuum images at 20cm and 13 cm are also presented, showing the disks in detail. Key words: instrument: Australia Telescope Compact Array — galaxies: individual: NGC 4038, NGC 4039, ESO 572–G045 — galaxies: interacting 1 INTRODUCTION star formation is occurring in the disks and in the over- lap region between them.
    [Show full text]
  • Oregon Star Party Advanced Observing List
    Welcome to the OSP Advanced Observing List In a sincere attempt to lure more of you into trying the Advanced List, each object has a page telling you what it is, why it’s interesting to observe, and the minimum size telescope you might need to see it. I’ve included coordinates, the constellation each object is located in, and either a chart or photo (or both) showing what the object looks like and how it’s situated in the sky. All you have to do is observe and enjoy the challenge. Stretch your skill and imagination - see something new, something unimaginably old, something unexpected Even though this is a challenging list, you don’t need 20 years of observing experience or a 20 inch telescope to be successful – although in some cases that will help. The only way to see these cool objects for yourself is to give them a go. Howard Banich, The minimum aperture listed for each object is a rough estimate. The idea is to Chuck Dethloff and show approximately what size telescope might be needed to successfully observe Matt Vartanian that particular object. The range is 3 to 28 inches. collaborated on this The visibility of each object assumes decently good OSP observing conditions. year’s list. Requirements to receive a certificate 1. There are 14 objects to choose from. Descriptive notes and/or sketches that clearly show you observed 10 objects are needed to receive the observing certificate. For instance, you can mark up these photos and charts with lines and arrows, and add a few notes describing what you saw.
    [Show full text]
  • Tides in Colliding Galaxies
    Tides in colliding galaxies Pierre-Alain Duc and Florent Renaud Abstract Long tails and streams of stars are the most noticeable upshots of galaxy collisions. Their origin as gravitational, tidal, disturbances has however been recog- nized only less than fifty years ago and more than ten years after their first obser- vations. This Review describes how the idea of galactic tides emerged, in particular thanks to the advances in numerical simulations, from the first ones that included tens of particles to the most sophisticated ones with tens of millions of them and state-of-the-art hydrodynamical prescriptions. Theoretical aspects pertaining to the formationof tidal tails are then presented.The third part of the review turns to obser- vations and underlines the need for collecting deep multi-wavelength data to tackle the variety of physical processes exhibited by collisional debris. Tidal tails are not just stellar structures, but turn out to contain all the components usually found in galactic disks, in particular atomic / molecular gas and dust. They host star-forming complexes and are able to form star-clusters or even second-generation dwarf galax- ies. The final part of the review discusses what tidal tails can tell us(or not)aboutthe structure and content of present-day galaxies, including their dark components, and explains how tidal tails may be used to probe the past evolution of galaxies and their mass assembly history. On-going deep wide-field surveys disclose many new low- surface brightness structures in the nearby Universe, offering great opportunities for attempting galactic archeology with tidal tails.
    [Show full text]
  • Planet and Star Formation (2012)
    Refereed Papers 2012 19.11.13 08:52 Übersicht / Summary Planeten- und Sternentstehung/ Planet and Star Formation (2012) Refereed Papers Acke, B., M. Min, C. Dominik, B. Vandenbussche, B. Sibthorpe, C. Waelkens, G. Olofsson, P. Degroote, K. Smolders, E. Pantin, M. J. Barlow, J. A. D. L. Blommaert, A. Brandeker, W. De Meester, W. R. F. Dent, K. Exter, J. Di Francesco, M. Fridlund, W. K. Gear, A. M. Glauser, J. S. Greaves, P. M. Harvey, T. Henning, M. R. Hogerheijde, W. S. Holland, R. Huygen, R. J. Ivison, C. Jean, R. Liseau, D. A. Naylor, G. L. Pilbratt, E. T. Polehampton, S. Regibo, P. Royer, A. Sicilia-Aguilar and B. M. Swinyard: Herschel images of Fomalhaut. An extrasolar Kuiper belt at the height of its dynamical activity. Astronomy and Astrophysics 540, id. A125 (2012) Adamo, A., L. J. Smith, J. S. Gallagher, N. Bastian, J. Ryon, M. S. Westmoquette, I. S. Konstantopoulos, E. Zackrisson, S. S. Larsen, E. Silva-Villa, J. C. Charlton and D. R. Weisz: Revealing a ring-like cluster complex in a tidal tail of the starburst galaxy NGC 2146. Monthly Notices of the Royal Astronomical Society 426, 1185-1194 (2012) Adams, J. D., T. L. Herter, M. Osorio, E. Macias, S. T. Megeath, W. J. Fischer, B. Ali, N. Calvet, P. D'Alessio, J. M. De Buizer, G. E. Gull, C. P. Henderson, L. D. Keller, M. R. Morris, I. S. Remming, J. Schoenwald, R. Y. Shuping, G. Stacey, T. Stanke, A. Stutz and W. Vacca: First science observations with SOFIA/FORCAST: properties of intermediate-luminosity protostars and circumstellar disks in OMC-2.
    [Show full text]
  • HI Observations of Interacting Galaxy Pair NGC 4038/9
    Mon. Not. R. Astron. Soc. 326, 578–596 (2001) H I observations of interacting galaxy pair NGC 4038/9 Scott Gordon,1P Ba¨rbel Koribalski2 and Keith Jones1 1Department of Physics, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia 2Australia Telescope National Facility, CSIRO, PO Box 76, Epping, NSW 1710, Australia Accepted 2001 April 11. Received 2001 April 10; in original form 2000 November 14 ABSTRACT We present the results of new radio interferometer H I line observations for the merging galaxy pair NGC 4038/9 (‘The Antennae’), obtained using the Australia Telescope Compact Array. The results improve substantially with respect to those of van der Hulst and show in detail the two merging galactic discs and the two tidal tails produced by their interaction. The small edge-on spiral dwarf galaxy ESO 572–G045 is also seen near the tip of the southern tail, but distinct from it. It shows no signs of tidal interaction. The northern tidal tail of the Antennae shows no H I connection to the discs and has an extension towards the west. The southern tidal tail is continuous, with a prominent H I concentration at its tip, roughly at the location of the tidal dwarf galaxy observed optically by Mirabel, Dottori & Lutz. Clear velocity structure is seen along the tidal tails and in the galactic discs. Radio continuum images at 20 and 13 cm are also presented, showing the discs in detail. Key words: galaxies: individual: NGC 4038 – galaxies: individual: NGC 4039 – galaxies: individual: ESO 572–G045 – galaxies: interactions – radio continuum: galaxies – radio lines: galaxies.
    [Show full text]
  • Dynamic and Photometric Evolutionary Models of Tidal Tails and Ripples John F
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1989 Dynamic and photometric evolutionary models of tidal tails and ripples John F. Wallin Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Astrophysics and Astronomy Commons Recommended Citation Wallin, John F., "Dynamic and photometric evolutionary models of tidal tails and ripples " (1989). Retrospective Theses and Dissertations. 9095. https://lib.dr.iastate.edu/rtd/9095 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Hydrogen Tails, Plumes, Clouds and Filaments
    The Realm of the Low-Surface-Brightness Universe Proceedings IAU Symposium No. 355, 2019 c 2019 International Astronomical Union D. Valls-Gabaud, I. Trujillo & S. Okamoto, eds. DOI: 00.0000/X000000000000000X Hydrogen tails, plumes, clouds and filaments B¨arbel S. Koribalski CSIRO Astronomy and Space Science, Australia Telescope National Facility P.O. Box 76, Epping, NSW 1710, Australia email: [email protected] Abstract. Here I present a brief review of interacting galaxy systems with extended low surface brightness (LSB) hydrogen tails and similar structures. Typically found in merging pairs, galaxy groups and clusters, H i features in galaxy surroundings can span many hundreds of kpc, tracing gravitational interactions between galaxies and ram pressure forces moving through the intra- group/cluster medium. Upcoming large H i surveys, e.g., with the wide-field (FOV = 30 square degrees) Phased Array Feeds on the Australian SKA Pathfinder (ASKAP), will provide a census of LSB structures in the Local Universe. By recording and comparing the properties (length, shape, H i mass, etc.) of these observed structures and their associated galaxies, we can – using numerical simulations – try to establish their origin and evolutionary path. Keywords. galaxies, neutral hydrogen (H i), radio telescopes, galaxy interactions, tidal tails 1. Introduction The evolution and transformation of a galaxy is strongly influenced by its environment, where it is exposed to varying degrees of tidal interactions, ram pressure stripping, colli- sions, and ionising radiation. Here I present a preliminary review of extended H i features found in the outskirts of galaxies and typically observed in galaxy groups and clusters.
    [Show full text]
  • THE STAR FORMATION NEWSLETTER an Electronic Publication Dedicated to Early Stellar/Planetary Evolution and Molecular Clouds
    THE STAR FORMATION NEWSLETTER An electronic publication dedicated to early stellar/planetary evolution and molecular clouds No. 331 — 15 July 2020 Editor: Bo Reipurth ([email protected]) List of Contents The Star Formation Newsletter Interview ...................................... 3 Abstracts of Newly Accepted Papers ........... 6 Editor: Bo Reipurth [email protected] Abstracts of Newly Accepted Major Reviews .. 38 Associate Editor: Anna McLeod Dissertation Abstracts ........................ 40 [email protected] Meetings ..................................... 41 Technical Editor: Hsi-Wei Yen Summary of Upcoming Meetings .............. 43 [email protected] Short Announcements ........................ 44 Editorial Board Joao Alves Alan Boss Jerome Bouvier Cover Picture Lee Hartmann Thomas Henning The cover shows a region of the Serpens star form- Paul Ho ing cloud as imaged by HST. A disk around the Jes Jorgensen young star HBC 672 = EC82 (to the upper right) Charles J. Lada casts a large shadow over its surroundings. See the Thijs Kouwenhoven abstract by Pontoppidan et al. in this issue. Michael R. Meyer Image courtesy NASA, ESA, and Klaus Pontoppi- Ralph Pudritz dan (STScI). Luis Felipe Rodríguez Ewine van Dishoeck Hans Zinnecker The Star Formation Newsletter is a vehicle for fast distribution of information of interest for as- tronomers working on star and planet formation Submitting your abstracts and molecular clouds. You can submit material for the following sections: Abstracts of recently Latex macros for submitting abstracts accepted papers (only for papers sent to refereed and dissertation abstracts (by e-mail to journals), Abstracts of recently accepted major re- [email protected]) are appended to views (not standard conference contributions), Dis- each Call for Abstracts.
    [Show full text]