Development and Application of New Chiral Β-Amino Alcohols in Synthesis and Catalysis

Total Page:16

File Type:pdf, Size:1020Kb

Development and Application of New Chiral Β-Amino Alcohols in Synthesis and Catalysis Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 626 _____________________________ _____________________________ Development and Application of New Chiral β-Amino Alcohols in Synthesis and Catalysis Use of 2-Azanorboryl-3-Methanols as Common Intermediates in Synthesis and Catalysis BY PEDRO PINHO ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2001 Dissertation for the Degree of Doctor of Philosophy in Organic Chemistry presented at Uppsala University in 2001 ABSTRACT Pinho, P. 2001. Development and Application of New Chiral β-Amino Alcohols in Synthesis and Catalysis. Use of 2-Azanorbornyl-3-Methanols as Common Intermediates in Synthesis and Catalysis. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 626. 43 pp. Uppsala. ISBN 91-554-5091-9. The development and application of unnatural amino alcohols, prepared via hetero-Diels-Alder reactions, in synthesis and catalysis is described. The studies are concerned with the [i] scope of the hetero-Diels-Alder reaction and preparation of important intermediates in the synthesis of antiviral agents, [ii] application of amino alcohols in the ruthenium transfer hydrogenation of ketones, [iii] use of similar precursors in the in situ generation of oxazaborolidines for reduction of ketones, and [iv] development and application of new chiral auxiliaries for dialkylzinc additions to activated imines, respectively. [i] The use of chiral exo-2-azanorbornyl-3-carboxylates in the preparation of enantiopure cyclopentyl- amines is described. At the same time the scope of the hetero-Diels-Alder reaction, used in their preparation, is extended by manipulations of the dienophiles. [ii] Application of 2-azanorbornyl-3-methanol as a very efficient ligand in the ruthenium-catalysed asymmetric transfer hydrogenation of aromatic ketones. This ligand (2 mol%) in combination with [RuCl2(p-cymene)]2 (0.25 mol%) gave rise to a very fast reaction (1.5 h) leading to the reduced products in excellent yields and enantioselectivities (up to 97% ee). [iii] Preparation of α-disubstituded 2-azanorbornyl-3-methanols, in situ generation of the corresponding oxazaborolidines, and use of the latter in reduction of aromatic ketones. Concentration, solvent, and temperature effects on the reaction outcome are described. [iv] Development of two generations of chiral auxiliaries for the addition of dialkylzinc reagents to N- (diphenylphosphinoyl) imines. Studies using density functional computations allowed the rationalisation of the reaction mechanism and the development of a second generation of ligands that improved the previously reported results. Up to 98% ee could be obtained with these new ligands. Solvent effects on the outcome of the reaction and extension of the work to a larger variety of N- (diphenylphosphinoyl) imines are described. Key words: Asymmetric synthesis, hetero-Diels-Alder reactions, chiral cyclopentyl-amines, chiral ligands and catalysts, amino alcohols, asymmetric reductions, ruthenium transfer hydrogenation, oxazaborolidines, asymmetric additions, dialkylzinc reagents. Pedro Pinho, Department of Organic Chemistry, Institute of Chemistry, Uppsala University, Box 531, SE-751 21 Uppsala, Sweden. [email protected] © Pedro Pinho 2001 ISSN 1104-232X ISBN 91-554-5019-9 Printed in Sweden by Uppsala Universitet Tryck & Medier, Uppsala 2001 Watching fate as it flows down the path we have chose -Trent Raznor 3 Papers included in the thesis This thesis is based on the following papers and appendix, referred to in the text by their Roman numerals I-VIII. I. Diels-Alder Reaction of Heterocyclic Imine Dienophiles. Pinho, P.; Hedberg, C.; Roth, P.; Andersson, P. G. J. Org. Chem. 2000, 65, 2810-2812. II. A novel synthesis of chiral cyclopentyl- and cyclohexyl-amines. Pinho, P.; Andersson, P. G. Chem. Commun. 1999, 597-598. III. (1S, 3R, 4R)-2-Azanorbornylmethanol, an Efficient Ligand for Ruthenium- Catalyzed Asymmetric Transfer Hydrogenation of Ketones. Pinho, P.; Alonso, D. A.; Guijarro, D.; Temme, O.; Andersson, P. G. J. Org. Chem. 1998, 63, 2749-2751. IV. (1S, 3R, 4R)-2-Azanorbornyl-3-methanol Oxazaborolidines in the Asymmetric Reduction of Ketones. Pinho, P.; Guijarro, D.; Andersson, P. G. Tetrahedron 1998, 54, 7897-7906. V. Enantioselective Addition of Dialkylzinc Reagents to N-(Diphenylphosphinoyl) Imines Promoted by 2-Azanorbornylmethanols. Pinho, P.; Guijarro, D.; Andersson, P. G. J. Org. Chem. 1998, 63, 2530-2535. VI. A Theoretical and Experimental Study of the Asymmetric Addition of Dialkylzinc to N-(Diphenylphosphinoyl)benzalimine. Pinho, P.; Brandt, P.; Hedberg, C.; Lawonn, K.; Andersson, P. G. Chem. Eur. J. 1999, 5, 1692-1699. VII. Asymmetric Addition of Diethylzinc to N-(diphenylphosphinoyl) Imines. Pinho, P.; Andersson, P. G. Tetrahedron 2001, 57, 1615-1618. VIII. Appendix: Supplementary Material. Pinho, P. Reprints were made with permission from the publishers 4 Contents Papers included in the thesis List of abbreviations 1. Introduction 7 1.1 Towards enantiomerically pure or enriched compounds 8 1.2 Asymmetric synthesis – Ligands and metals 9 1.3 The use of simple β-amino alcohols as chiral ligands 11 2. Hetero-Diels-Alder reaction – Applications in synthesis and preparation of unnatural β-amino alcohols 13 2.1 Introduction 13 2.2 Studies on the scope of the aza-Diels-Alder reaction – Towards nicotinic acetylcholine receptors 14 2.3 Preparation of enantiomerically pure cyclopentyl- and cyclohexyl-amines 18 2.4 Access to unnatural β-amino alcohols 21 3. Ruthenium-catalysed asymmetric transfer hydrogenation of ketones 23 3.1 Introduction 23 3.2 The 2-azanorbornyl-3-methanol as a ligand for ruthenium 24 3.3.Reaction mechanism 26 4. Oxazaborolidines in the asymmetric reduction of ketones 29 4.1 Introduction 29 4.2 Reaction mechanism 29 4.3 Preparation of 2-azanorbornyl-3-methanol ligands and their application in the form of the corresponding oxazaborolidines 30 5. Enantioselective addition of dialkylzinc reagents to N-(diphenylphosphinoyl) imines 34 5.1 Introduction 34 5.2 The 2-azanorbornyl-3-methanols as chiral auxiliaries for the addition reaction 35 5.2.1 The first generation ligands – Synthesis and results obtained 35 5.2.2 The second generation ligands – Synthesis and results obtained 36 5.3 Reaction mechanism 39 Acknowledgements 42 5 List of abbreviations Abs. Config. Absolute configuration Bn Benzyl n-Bu Butyl t-Bu tert-Butyl Cat. Catalytic CBS Corey, Bakshi, Shibata Config. Configuration CpH Cyclopentadiene DIBAL-H Diisobutylaluminium hydride ee Enantiomeric excess equiv. Equivalent Et Ethyl h Hour(s) HMB Hexamethylbenzene HPLC High Performance Liquid Chromatography LAH Lithium aluminium hydride M Metal Me Methyl min Minute(s) MS Molecular sieves 1-Napht 1-Naphtyl NMO N-methylmorpholine N-oxide NMR Nuclear Magnetic Ressonance Ph Phenyl i-Pr iso-Propyl n-Pr Propyl rt Room temperature Stoich. Stoichiometric TFA Triflouroacetic acid THF Tetrahydrofuran TIPSCl Triisopropylsilylchloride Ts p-Toluenesulphonyl TS Transition State X Halogen (Cl, Br, I) 6 “Life depends on chiral recognition, because living systems interact with enantiomers in decisively different manners.” Noyori, R.1 1. Introduction In 1849 Louis Pasteur resolved for the first time an enantiomeric pair by means of mechanical separation of their differently shaped crystals. Since then chirality has been recognised as of extreme importance, not only in chemistry and biology as academic subjects, but also in life itself. What then is chirality? A given molecule, or object in general is said to be chiral or disymmetric if it does not possess any improper rotation axis Sn of any order n, where S1 σ 2 corresponds to a symmetry plane ( ) and S2 to an inversion center (i). A consequence of this definition is that chiral objects are not superimposable on their mirror images and are able to rotate the plane of polarised light by the same angle, but in different directions, Figure 1.1. N COOH HOOC N H H (S)-Proline (R)-Proline Mirror plane Figure 1.1 The two enantiomers (“mirror images”) of the amino acid proline It is now widely accepted that Nature is chiral where amino acids, terpenes, carbohydrates, and alkaloids are all natural occurring substances that are often enantiopure or at least enantioenriched, i.e. one of the enantiomers predominates over the other. The presence of chirality in Nature implies that usually only one enantiomer of a certain compound is producing the correct response on a living organism. As a consequence normally only one enantiomer of a given drug has the desired activity, hence, medicinal 1 In Asymmetric Catalysis in Organic Synthesis; John Wiley & Sons: New York, 1994. 2 Klessinger, M.; Michl, J. Excited States and Photochemistry of Organic Molecules, Section 3.2; VCH Publishers, Inc.: New York, 1995. 7 chemistry has a very strong need for enantioselective processes in drug development. However, this is not the only field where processes of this kind are being developed. Tastes and smells may also be dependent on enantiomers, which raises the importance of chirality in the food flavouring and perfumery industries. Agrochemicals may be easier or harder to degrade depending on which enantiomer of the chemical substance is used. Due to the growing concern about environmental aspects in modern society this branch of industry has therefore an increasing need for enantioselective processes in the preparation of their products. These are only some of the reasons why synthetic organic chemistry has developed
Recommended publications
  • Stoichiometric Reactions of Enamines Derived from Diphenylprolinol Silyl Ethers with Nitro Olefins and Lessons for the Correspon
    Helvetica Chimica Acta – Vol. 96 (2013) 799 Stoichiometric Reactions of Enamines Derived from Diphenylprolinol Silyl Ethers with Nitro Olefins and Lessons for the Corresponding Organocatalytic Conversions – a Survey1) by Dieter Seebach*, Xiaoyu Sun2a), Marc-Olivier Ebert, W. Bernd Schweizer, Nirupam Purkayastha2b), Albert K. Beck, Jçrg Duschmale´, and Helma Wennemers Laboratorium fr Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zrich, Hçnggerberg HCI, Wolfgang-Pauli-Strasse 10, CH-8093 Zrich (phone: þ 41-44-632-2990; fax: þ 41-44-632-1144; e-mail: [email protected]) and Takasuke Mukaiyama2c), Meryem Benohoud2d), and Yujiro Hayashi* Tokyo University of Science, Department of Industrial Chemistry, Faculty of Engineering, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan and Department of Chemistry, Tohoku University, 6-3 Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8578, Japan (phone: þ 81-22-795-3554; fax: þ 81-22-795-6566; e-mail: [email protected]) and Markus Reiher* Laboratorium fr Physikalische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zrich, Hçnggerberg HCI F 235, Wolfgang-Pauli-Strasse 10, CH-8093 Zrich (phone: þ 41-44-633-4308; fax: þ 41-44-633-1595; e-mail: [email protected]) Dedicated to Jack D. Dunitz – friend and professor for the professors of LOC – on the occasion of his 90th birthday The stoichiometric reactions of enamines prepared from aldehydes and diphenyl-prolinol silyl ethers (intermediates of numerous organocatalytic processes) with nitro olefins have been investigated. As reported in the last century for simple achiral and chiral enamines, the products are cyclobutanes (4 with monosubstituted nitro-ethenes), dihydro-oxazine N-oxide derivatives (5 with disubstituted nitro- ethenes), and nitro enamines derived from g-nitro aldehydes (6, often formed after longer reaction times).
    [Show full text]
  • 6 Synthesis of N-Alkyl Amino Acids Luigi Aurelio and Andrew B
    j245 6 Synthesis of N-Alkyl Amino Acids Luigi Aurelio and Andrew B. Hughes 6.1 Introduction Among the numerous reactions of nonribosomal peptide synthesis, N-methylation of amino acids is one of the common motifs. Consequently, the chemical research community interested in peptide synthesis and peptide modification has generated a sizeable body of literature focused on the synthesis of N-methyl amino acids (NMA). That literature is summarized herein. Alkyl groups substituted on to nitrogen larger than methyl are exceedingly rare among natural products. However, medicinal chemistry programs and peptide drug development projects are not limited to N-methylation. While being a much smaller body of research, there is a range of methods for the N-alkylation of amino acids and those reports are also covered in this chapter. The literature on N-alkyl, primarily N-methyl amino acids comes about due to the useful properties that the N-methyl group confers on peptides. N-Methylation increases lipophilicity, which has the effect of increasing solubility in nonaqueous solvents and improving membrane permeability. On balance this makes peptides more bioavailable and makes them better therapeutic candidates. One potential disadvantage is the methyl group removes the possibility of hydro- gen bonding and so binding events may be discouraged. It is notable though that the N-methyl group does not fundamentally alter the identity of the amino acid. Some medicinal chemists have taken advantage of this fact to deliberately discourage binding of certain peptides that can still participate in the general or partial chemistry of a peptide. A series of recent papers relating to Alzheimers disease by Doig et al.
    [Show full text]
  • Diarylprolinol Derivatives in Organocatalysis from Another Point of View: Structural Aspects
    Diarylprolinol derivatives in organocatalysis from another point of view: structural aspects Eugenia Marqués-Lópeza* and Raquel P. Herrerab,c* a Technische Universität Dortmund, Organische Chemie. Otto-Hahn-Str. 6. 44227 Dortmund, Germany. b Laboratorio de Síntesis Asimétrica, Departamento de Química Orgánica. Instituto de Ciencia de Materiales de Aragón. Universidad de Zaragoza-CSIC. 50009 Zaragoza, Spain. c ARAID. Fundación Aragón I+D. Gobierno de Aragón, Zaragoza, Spain. e-mails: [email protected], [email protected] Fax: +34 976 762075 and +49 2317555363 1 Abstract The synthesis of complex active molecules has afforded the search for new methods and new processes in organic synthesis. In this context, organic metal free catalysis has appeared as a powerful tool being complementary to metal catalysis in the field of asymmetric synthesis. The success of this methodology has been increasing in the last decade and the research for new organocatalytic systems as well as new applications has attracted the interest of many research groups. Among all organocatalysts, diarylprolinol derivatives have emerged as powerful scaffolds for asymmetric catalysis, proof of that is the huge number of publications reported using this kind of structure as catalysts. However, only in a few cases, different aspects of the catalysts structures and additional additives have been largely studied and a plausible explanation has been given. In this sense, this review treats to illustrate these important and scarce examples and to give a very general vision relating to the application of diarylprolinol derivatives in organocatalytic transformations from another point of view: structural aspects. The influence of catalyst structure, electronic effects, and the use of additives will be the aim of discussion and comment in this work.
    [Show full text]
  • Organocatalysts for Enantioselective Synthesis of Fine Chemicals: Definitions, Trends and Developments Chiara Palumbo* and Matteo Guidotti
    SOR-CHEM Organocatalysts for enantioselective synthesis of fine chemicals: definitions, trends and developments Chiara Palumbo* and Matteo Guidotti CNR-Institute of Molecular Sciences and Technologies, Via C. Golgi 19, Milan, Italy *Corresponding author’s e-mail address: [email protected] Published online: 17 December 2014 (version 1); 3 March 2015 (version 2); 23 July 2015 (version 3) Cite as: Palumbo C. and Guidotti M., ScienceOpen Research 2015 (DOI: 10.14293/S2199-1006.1.SOR-CHEM.AGZIIB.v3) Reviewing status: Please note that this article is under continuous review. For the current reviewing status and the latest referee’s comments please click here or scan the QR code at the end of this article. Primary discipline: Chemistry Keywords: Organocatalysts, Asymmetric synthesis, Fine chemicals, Covalent organocatalysis, Non-covalent organocatalysis Hydrogen-bonding, Organic synthesis ABSTRACT the right-handed enantiomer of a chemical or drug. For Organocatalysis, that is the use of small organic molecules to instance, some different fragrances are isomers of the same catalyze organic transformations, has been included among molecule: (S)-(−)-limonene (1) smells like turpentine, whereas the most successful concepts in asymmetric catalysis, and it (R)-(+)-limonene (2) smells like lemon (Figure 1a). One can has been used for the enantioselective construction of C–C, distinguish the two fragrances thanks to our nasal receptors, C–N, C–O, C–S, C–P and C–halide bonds. Since the seminal made of chiral molecules able to recognize the difference works in early 2000, the scientific community has been paying between the two enantiomers. an ever-growing attention to the use of organocatalysts for the Other examples are molecules used by insects as sexual synthesis, with high yields and remarkable stereoselectivities, attractors, pheromones, as well as most of commercialized of optically active fine chemicals of interest for the pharma- drugs.
    [Show full text]
  • Amino Acids. 7.1A a Novel Synthetic Route to L-Proline
    3494 J. Org. Chem. 1986,51, 3494-3498 Amino Acids. 7.1a A Novel Synthetic Route to L-Proline Karlheinz Drauz,*lb Axel Kleemann, Jiirgen Martens, and Paul Scherberich Forschung Chemie Organisch, Degussa AG, 0-6450 Hanau, West Germany Franz Effenberger* Institut fur Organische Chemie der Universitat Stuttgart, 0-7000 Stuttgart 80, West Germany Received April 1, 1986 Reaction of LBoxoproline esters L-2with phosgene at 0 OC gives ~-5,~dichloro-l-(chlorocarbonyl)prolineesters L-6,which readily lose hydrogen chloride to form ~-5-chloro-l-(chloroarbonyl)-4,5-dehydroprolineesters L-7. Catalytic hydrogenation (Pd/C, 180 bar) of L-7yields L-1-(chlorocarbony1)prolineesters L-15and thence, upon hydrolysis, L-proline (~17).A "one-pot reaction" for the whole sequence is described, starting from easily accessible L-5-oxoproline esters and yielding L-proline in 78% overall yield and 99.7% optical purity. Scheme I L-Proline is gaining increasing importance as the central component in pharmaceutical products and agricultural chemicals; several of its derivatives are valuable chiral auxiliary reagents. Some highly active ACE inhibitors, for H H hydrogenotion instance, are derived from L-proline, e.g., CaptopriP and its cyclic analogue2b and Merck's Enalapril.2c Bicyclic hydantoins derived from L-proline are employed as fun- L-J gicide~.~Chiral diamines that can be prepared from either L-proline or L-hydroxyproline in high optical purity have been employed as chiral auxiliary reagents in asymmetric syntheses4 (e.g., (S)-2-(anilinomethyl)pyrrolidine, (2S,2'S)-2-(hydroxymethyl)-l-[(l-methylpyrrolidin-2'-yl)- methyllpyrrolidine, (2S,4S)-2-(anilinomethyl)-l-ethyl-C pyrrolidinone8bor pyrrolidine." A technically interesting hydr~xypyrrolidine,~and (S)- 1-amino-2-(methoxy- variation is the preparation of D,L-proline from acrolein methyl)pyrrolidine)! with HCN and ammonia.8d The disadvantage of all these Until today, L-proline is obtained almost exclusively processes lies in the necessity for a resolution of the from protein hydrolysates by ion-exchange chromatogra- racemate.
    [Show full text]
  • Stereospecific Synthesis of Naphthoindolizidine and Tetrahydrobenzisoquinoline Derivatives Naresh Kumar University of Wollongong
    University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 1983 Stereospecific synthesis of naphthoindolizidine and tetrahydrobenzisoquinoline derivatives Naresh Kumar University of Wollongong Recommended Citation Kumar, Naresh, Stereospecific synthesis of naphthoindolizidine and tetrahydrobenzisoquinoline derivatives, Doctor of Philosophy thesis, , University of Wollongong, 1983. http://ro.uow.edu.au/theses/2108 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] STEREOSPECIFIC SYNTHESIS OF NAPHTHOINDOLIZIDINE AND TETRAHYDROBENZISOQUINOLINE DERIVATIVES A THESIS submitted in fulfilment of the requirements for admittance to the degree of DOCTOR OF PHILOSOPHY of the UNIVERSITY OF WOLLONGONG by NARESH KUMAR The University of Wollongong P.O. Box 1144, Wollongong N.S.W. 2500 May 1983 TABLE OF CONTENTS SUMMARY INTRODUCTION A. Tylophora and Related Alkaloids B. The Stereochemistry of Phenanthroindolizidines C. Physiological Activity D. Previous Syntheses of Phenanthroindolizidine Alkaloids E. Previous Syntheses of Benzisoquinolines RESULTS AND DISCUSSION A. Aim and Proposed Synthetic Route B. Synthesis of Naphthalenylmethyl Chlorides C. N-Alkylation D. Cyclization Experiments Attempts of Intramolecular Alkylation Attempts of Intramolecular Acylation E. Reduction of Naphthoindolizidinones and Tetrahydrobenzisoquinolinones F. The N.M.R. Spectra of Amino-Acid Derivatives
    [Show full text]
  • Recent Advances in Asymmetric Organocatalyzed Conjugate Additions to Nitroalkenes
    molecules Review Recent Advances in Asymmetric Organocatalyzed Conjugate Additions to Nitroalkenes Diego A. Alonso *, Alejandro Baeza *, Rafael Chinchilla *, Cecilia Gómez *, Gabriela Guillena *, Isidro M. Pastor * and Diego J. Ramón * Department of Organic Chemistry and Institute of Organic Synthesis (ISO), Faculty of Sciences, University of Alicante, PO Box 99, 03080 Alicante, Spain * Correspondence: [email protected] (D.A.A.); [email protected] (A.B.); [email protected] (R.C.); [email protected] (C.G.); [email protected] (G.G.); [email protected] (I.M.P); [email protected] (D.J.R.); Tel.: +34-96-590-3822 (R.C.) Academic Editor: Derek J. McPhee Received: 11 May 2017; Accepted: 26 May 2017; Published: 29 May 2017 Abstract: The asymmetric conjugate addition of carbon and heteroatom nucleophiles to nitroalkenes is a very interesting tool for the construction of highly functionalized synthetic building blocks. Thanks to the rapid development of asymmetric organocatalysis, significant progress has been made during the last years in achieving efficiently this process, concerning chiral organocatalysts, substrates and reaction conditions. This review surveys the advances in asymmetric organocatalytic conjugate addition reactions to α,β-unsaturated nitroalkenes developed between 2013 and early 2017. Keywords: nitroalkenes; Michael addition; organocatalysis; asymmetric synthesis 1. Introduction Asymmetric organocatalysis is still a relatively young field for the chemical research community. Thus, not too many years ago, the term ‘catalysis’ was normally associated to transition metal-mediated reactions or to enzyme-aided biocatalysis. However, small organic molecules can achieve remarkably stereoselective and efficient transformations. In addition, the employed organocatalysts are usually of low molecular weight, easy to synthesize, chemically robust, and affordable.
    [Show full text]
  • Amino Alcohol Catalyzed Direct Asymmetric Aldol Reactions: Enantioselective Synthesis of Anti-A-Fluoro-B-Hydroxy Ketones
    Tetrahedron Letters Tetrahedron Letters 45 (2004) 5681–5684 Amino alcohol catalyzed direct asymmetric aldol reactions: enantioselective synthesis of anti-a-fluoro-b-hydroxy ketonesq Guofu Zhong,c,* Junhua Fana,b,c and Carlos F. Barbas, IIIa,b,c,* aThe Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA bThe Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA cThe Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA Received 16 April 2004; revised 19 May 2004; accepted 19 May 2004 Abstract—Prolinol but not proline-(a recently established catalyst of simple intermolecular aldol reactions) was found to be an efficient catalyst for fluoroaldol reactions providing anti-a-fluoro-b-hydroxy ketones with good regio-, diasterio-, and enantio- selectivities. Ó 2004 Elsevier Ltd. All rights reserved. The replacement of hydroxy groups or hydrogen atoms aldehyde acceptor presents significant demands on the in drug molecules with fluorine has long been a strategy catalyst since the reaction can lead to the formation of for modifying their pharmacological activity.1 Due to three different regio- and diastereomeric products and fluorine’s strongly electron withdrawing nature, incor- their enantiomers (Scheme 1). Indeed, indirect regio- poration of fluorine into organic molecules alters their selective routes to the synthesis of racemic fluoroadols chemical and physiological
    [Show full text]
  • Asymmetric Synthesis of Functionalised Pyrrolidines and Their Application in Total Synthesis
    Asymmetric Synthesis of Functionalised Pyrrolidines and their Application in Total Synthesis Christopher James Maddocks Doctor of Philosophy University of York Department of Chemistry December 2020 Abstract The intramolecular aza-Michael reaction has been used effectively in the synthesis of nitrogen heterocycles, with several efforts made in recent years to do so asymmetrically. The selection of the Michael acceptor can play an important role in both the rate and enantioselectivity of the reaction. The research in this thesis demonstrates how the use of a chiral phosphoric acid can catalyse the intramolecular asymmetric aza-Michael reaction of a protected amine with an α,β- unsaturated thioester. The scope of the reaction was demonstrated in the synthesis of 2,2- and 3,3-spirocyclic pyrrolidines in high yields and enantioselectivity (Scheme 1). The synthesis of an unsubstituted pyrrolidine provided the core of two natural products (R)- bgugaine and (R)-irnidine and both succumbed to total synthesis. (R)-Bgugaine was synthesized in a 33% overall yield in 6 steps while (R)-irnidine was synthesized for the first time in an overall yield of 18% over 6 steps. Scheme 1. Asymmetric synthesis of spirocyclic pyrrolidines Scheme 2. Total synthesis of (R)-bgugaine and (R)-irnidine 1 Contents Abstract ...................................................................................................................................... 0 Contents ....................................................................................................................................
    [Show full text]