Partial Redundancy Elimination, Loop Optimization & Lazy Code Motion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Loop Pipelining with Resource and Timing Constraints
UNIVERSITAT POLITÈCNICA DE CATALUNYA LOOP PIPELINING WITH RESOURCE AND TIMING CONSTRAINTS Autor: Fermín Sánchez October, 1995 1 1 1 1 1 1 1 1 2 1• SOFTWARE PIPELINING 1 1 1 2.1 INTRODUCTION 1 Software pipelining [ChaSl] comprises a family of techniques aimed at finding a pipelined schedule of the execution of loop iterations. The pipelined schedule represents a new loop body which may contain instructions belonging to different iterations. The sequential execution of the schedule takes less time than the sequential execution of the iterations of the loop as they were initially written. 1 In general, a pipelined loop schedule has the following characteristics1: • All the iterations (of the new loop) are executed in the same fashion. • The initiation interval (ÍÍ) between the issuing of two consecutive iterations is always the same. 1 Figure 2.1 shows an example of software pipelining a loop. The DDG representing the loop body to pipeline is presented in Figure 2.1(a). The loop must be executed ten times (with an iteration index i G [0,9]). Let us assume that all instructions in the loop are executed in a single cycle 1 and a new iteration may start every cycle (otherwise the dependence between instruction A from 1 We will assume here that the schedule contains a unique iteration of the loop. 1 15 1 1 I I 16 CHAPTER 2 I I time B,, Prol AO Q, BO A, I Q, B, A2 3<i<9 I Steady State D4 B7 I Epilogue Cy I D9 (a) (b) (c) I Figure 2.1 Software pipelining a loop (a) DDG representing a loop body (b) Parallel execution of the loop (c) New parallel loop body I iterations i and i+ 1 will not be honored).- With this assumption,-the loop can be executed in a I more parallel fashion than the sequential one, as shown in Figure 2.1(b). -
Research of Register Pressure Aware Loop Unrolling Optimizations for Compiler
MATEC Web of Conferences 228, 03008 (2018) https://doi.org/10.1051/matecconf/201822803008 CAS 2018 Research of Register Pressure Aware Loop Unrolling Optimizations for Compiler Xuehua Liu1,2, Liping Ding1,3 , Yanfeng Li1,2 , Guangxuan Chen1,4 , Jin Du5 1Laboratory of Parallel Software and Computational Science, Institute of Software, Chinese Academy of Sciences, Beijing, China 2University of Chinese Academy of Sciences, Beijing, China 3Digital Forensics Lab, Institute of Software Application Technology, Guangzhou & Chinese Academy of Sciences, Guangzhou, China 4Zhejiang Police College, Hangzhou, China 5Yunnan Police College, Kunming, China Abstract. Register pressure problem has been a known problem for compiler because of the mismatch between the infinite number of pseudo registers and the finite number of hard registers. Too heavy register pressure may results in register spilling and then leads to performance degradation. There are a lot of optimizations, especially loop optimizations suffer from register spilling in compiler. In order to fight register pressure and therefore improve the effectiveness of compiler, this research takes the register pressure into account to improve loop unrolling optimization during the transformation process. In addition, a register pressure aware transformation is able to reduce the performance overhead of some fine-grained randomization transformations which can be used to defend against ROP attacks. Experiments showed a peak improvement of about 3.6% and an average improvement of about 1% for SPEC CPU 2006 benchmarks and a peak improvement of about 3% and an average improvement of about 1% for the LINPACK benchmark. 1 Introduction fundamental transformations, because it is not only performed individually at least twice during the Register pressure is the number of hard registers needed compilation process, it is also an important part of to store values in the pseudo registers at given program optimizations like vectorization, module scheduling and point [1] during the compilation process. -
Equality Saturation: a New Approach to Optimization
Logical Methods in Computer Science Vol. 7 (1:10) 2011, pp. 1–37 Submitted Oct. 12, 2009 www.lmcs-online.org Published Mar. 28, 2011 EQUALITY SATURATION: A NEW APPROACH TO OPTIMIZATION ROSS TATE, MICHAEL STEPP, ZACHARY TATLOCK, AND SORIN LERNER Department of Computer Science and Engineering, University of California, San Diego e-mail address: {rtate,mstepp,ztatlock,lerner}@cs.ucsd.edu Abstract. Optimizations in a traditional compiler are applied sequentially, with each optimization destructively modifying the program to produce a transformed program that is then passed to the next optimization. We present a new approach for structuring the optimization phase of a compiler. In our approach, optimizations take the form of equality analyses that add equality information to a common intermediate representation. The op- timizer works by repeatedly applying these analyses to infer equivalences between program fragments, thus saturating the intermediate representation with equalities. Once saturated, the intermediate representation encodes multiple optimized versions of the input program. At this point, a profitability heuristic picks the final optimized program from the various programs represented in the saturated representation. Our proposed way of structuring optimizers has a variety of benefits over previous approaches: our approach obviates the need to worry about optimization ordering, enables the use of a global optimization heuris- tic that selects among fully optimized programs, and can be used to perform translation validation, even on compilers other than our own. We present our approach, formalize it, and describe our choice of intermediate representation. We also present experimental results showing that our approach is practical in terms of time and space overhead, is effective at discovering intricate optimization opportunities, and is effective at performing translation validation for a realistic optimizer. -
CS153: Compilers Lecture 19: Optimization
CS153: Compilers Lecture 19: Optimization Stephen Chong https://www.seas.harvard.edu/courses/cs153 Contains content from lecture notes by Steve Zdancewic and Greg Morrisett Announcements •HW5: Oat v.2 out •Due in 2 weeks •HW6 will be released next week •Implementing optimizations! (and more) Stephen Chong, Harvard University 2 Today •Optimizations •Safety •Constant folding •Algebraic simplification • Strength reduction •Constant propagation •Copy propagation •Dead code elimination •Inlining and specialization • Recursive function inlining •Tail call elimination •Common subexpression elimination Stephen Chong, Harvard University 3 Optimizations •The code generated by our OAT compiler so far is pretty inefficient. •Lots of redundant moves. •Lots of unnecessary arithmetic instructions. •Consider this OAT program: int foo(int w) { var x = 3 + 5; var y = x * w; var z = y - 0; return z * 4; } Stephen Chong, Harvard University 4 Unoptimized vs. Optimized Output .globl _foo _foo: •Hand optimized code: pushl %ebp movl %esp, %ebp _foo: subl $64, %esp shlq $5, %rdi __fresh2: movq %rdi, %rax leal -64(%ebp), %eax ret movl %eax, -48(%ebp) movl 8(%ebp), %eax •Function foo may be movl %eax, %ecx movl -48(%ebp), %eax inlined by the compiler, movl %ecx, (%eax) movl $3, %eax so it can be implemented movl %eax, -44(%ebp) movl $5, %eax by just one instruction! movl %eax, %ecx addl %ecx, -44(%ebp) leal -60(%ebp), %eax movl %eax, -40(%ebp) movl -44(%ebp), %eax Stephen Chong,movl Harvard %eax,University %ecx 5 Why do we need optimizations? •To help programmers… •They write modular, clean, high-level programs •Compiler generates efficient, high-performance assembly •Programmers don’t write optimal code •High-level languages make avoiding redundant computation inconvenient or impossible •e.g. -
Scalable Conditional Induction Variables (CIV) Analysis
Scalable Conditional Induction Variables (CIV) Analysis ifact Cosmin E. Oancea Lawrence Rauchwerger rt * * Comple A t te n * A te s W i E * s e n l C l o D C O Department of Computer Science Department of Computer Science and Engineering o * * c u e G m s E u e C e n R t v e o d t * y * s E University of Copenhagen Texas A & M University a a l d u e a [email protected] [email protected] t Abstract k = k0 Ind. k = k0 DO i = 1, N DO i =1,N Var. DO i = 1, N IF(cond(b(i)))THEN Subscripts using induction variables that cannot be ex- k = k+2 ) a(k0+2*i)=.. civ = civ+1 )? pressed as a formula in terms of the enclosing-loop indices a(k)=.. Sub. ENDDO a(civ) = ... appear in the low-level implementation of common pro- ENDDO k=k0+MAX(2N,0) ENDIF ENDDO gramming abstractions such as filter, or stack operations and (a) (b) (c) pose significant challenges to automatic parallelization. Be- Figure 1. Loops with affine and CIV array accesses. cause the complexity of such induction variables is often due to their conditional evaluation across the iteration space of its closed-form equivalent k0+2*i, which enables its in- loops we name them Conditional Induction Variables (CIV). dependent evaluation by all iterations. More importantly, This paper presents a flow-sensitive technique that sum- the resulted code, shown in Figure 1(b), allows the com- marizes both such CIV-based and affine subscripts to pro- piler to verify that the set of points written by any dis- gram level, using the same representation. -
Induction Variable Analysis with Delayed Abstractions1
Induction Variable Analysis with Delayed Abstractions1 SEBASTIAN POP, and GEORGES-ANDRE´ SILBER CRI, Mines Paris, France and ALBERT COHEN ALCHEMY group, INRIA Futurs, Orsay, France We present the design of an induction variable analyzer suitable for the analysis of typed, low-level, three address representations in SSA form. At the heart of our analyzer stands a new algorithm that recognizes scalar evolutions. We define a representation called trees of recurrences that is able to capture different levels of abstractions: from the finer level that is a subset of the SSA representation restricted to arithmetic operations on scalar variables, to the coarser levels such as the evolution envelopes that abstract sets of possible evolutions in loops. Unlike previous work, our algorithm tracks induction variables without prior classification of a few evolution patterns: different levels of abstraction can be obtained on demand. The low complexity of the algorithm fits the constraints of a production compiler as illustrated by the evaluation of our implementation on standard benchmark programs. Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—compilers, interpreters, optimization, retargetable compilers; F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages—partial evaluation, program analysis General Terms: Compilers Additional Key Words and Phrases: Scalar evolutions, static analysis, static single assignment representation, assessing compilers heuristics regressions. 1Extension of Conference Paper: -
Fast-Path Loop Unrolling of Non-Counted Loops to Enable Subsequent Compiler Optimizations∗
Fast-Path Loop Unrolling of Non-Counted Loops to Enable Subsequent Compiler Optimizations∗ David Leopoldseder Roland Schatz Lukas Stadler Johannes Kepler University Linz Oracle Labs Oracle Labs Austria Linz, Austria Linz, Austria [email protected] [email protected] [email protected] Manuel Rigger Thomas Würthinger Hanspeter Mössenböck Johannes Kepler University Linz Oracle Labs Johannes Kepler University Linz Austria Zurich, Switzerland Austria [email protected] [email protected] [email protected] ABSTRACT Non-Counted Loops to Enable Subsequent Compiler Optimizations. In 15th Java programs can contain non-counted loops, that is, loops for International Conference on Managed Languages & Runtimes (ManLang’18), September 12–14, 2018, Linz, Austria. ACM, New York, NY, USA, 13 pages. which the iteration count can neither be determined at compile https://doi.org/10.1145/3237009.3237013 time nor at run time. State-of-the-art compilers do not aggressively optimize them, since unrolling non-counted loops often involves 1 INTRODUCTION duplicating also a loop’s exit condition, which thus only improves run-time performance if subsequent compiler optimizations can Generating fast machine code for loops depends on a selective appli- optimize the unrolled code. cation of different loop optimizations on the main optimizable parts This paper presents an unrolling approach for non-counted loops of a loop: the loop’s exit condition(s), the back edges and the loop that uses simulation at run time to determine whether unrolling body. All these parts must be optimized to generate optimal code such loops enables subsequent compiler optimizations. Simulat- for a loop. -
Strength Reduction of Induction Variables and Pointer Analysis – Induction Variable Elimination
Loop optimizations • Optimize loops – Loop invariant code motion [last time] Loop Optimizations – Strength reduction of induction variables and Pointer Analysis – Induction variable elimination CS 412/413 Spring 2008 Introduction to Compilers 1 CS 412/413 Spring 2008 Introduction to Compilers 2 Strength Reduction Induction Variables • Basic idea: replace expensive operations (multiplications) with • An induction variable is a variable in a loop, cheaper ones (additions) in definitions of induction variables whose value is a function of the loop iteration s = 3*i+1; number v = f(i) while (i<10) { while (i<10) { j = 3*i+1; //<i,3,1> j = s; • In compilers, this a linear function: a[j] = a[j] –2; a[j] = a[j] –2; i = i+2; i = i+2; f(i) = c*i + d } s= s+6; } •Observation:linear combinations of linear • Benefit: cheaper to compute s = s+6 than j = 3*i functions are linear functions – s = s+6 requires an addition – Consequence: linear combinations of induction – j = 3*i requires a multiplication variables are induction variables CS 412/413 Spring 2008 Introduction to Compilers 3 CS 412/413 Spring 2008 Introduction to Compilers 4 1 Families of Induction Variables Representation • Basic induction variable: a variable whose only definition in the • Representation of induction variables in family i by triples: loop body is of the form – Denote basic induction variable i by <i, 1, 0> i = i + c – Denote induction variable k=i*a+b by triple <i, a, b> where c is a loop-invariant value • Derived induction variables: Each basic induction variable i defines -
A Hierarchical Region-Based Static Single Assignment Form
A Hierarchical Region-Based Static Single Assignment Form Jisheng Zhao and Vivek Sarkar Department of Computer Science, Rice University fjisheng.zhao,[email protected] Abstract. Modern compilation systems face the challenge of incrementally re- analyzing a program’s intermediate representation each time a code transforma- tion is performed. Current approaches typically either re-analyze the entire pro- gram after an individual transformation or limit the analysis information that is available after a transformation. To address both efficiency and precision goals in an optimizing compiler, we introduce a hierarchical static single-assignment form called Region Static Single-Assignment (Region-SSA) form. Static single assign- ment (SSA) form is an efficient intermediate representation that is well suited for solving many data flow analysis and optimization problems. By partitioning the program into hierarchical regions, Region-SSA form maintains a local SSA form for each region. Region-SSA supports a demand-driven re-computation of SSA form after a transformation is performed, since only the updated region’s SSA form needs to be reconstructed along with a potential propagation of exposed defs and uses. In this paper, we introduce the Region-SSA data structure, and present algo- rithms for construction and incremental reconstruction of Region-SSA form. The Region-SSA data structure includes a tree based region hierarchy, a region based control flow graph, and region-based SSA forms. We have implemented in Region- SSA form in the Habanero-Java (HJ) research compiler. Our experimental re- sults show significant improvements in compile-time compared to traditional ap- proaches that recompute the entire procedure’s SSA form exhaustively after trans- formation. -
The Effect of C Ode Expanding Optimizations on Instruction Cache Design
May 1991 UILU-ENG-91-2227 CRHC-91-17 Center for Reliable and High-Performance Computing " /ff ,./IJ 5; F.__. =, _. I J THE EFFECT OF C ODE EXPANDING OPTIMIZATIONS ON INSTRUCTION CACHE DESIGN William Y. Chen Pohua P. Chang Thomas M. Conte Wen-mei W. Hwu Coordinated Science Laboratory College of Engineering UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN Approved for Public Release. Distribution Unlimited. UNCLASSIFIED ;ECURIrY CLASSIFICATION OF THiS PAGE REPORT DOCUMENTATION PAGE ii la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS Unclassified None 2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION / AVAILABILITY OF REPORT Approved for public release; 2b. DECLASSIFICATION I DOWNGRADING SCHEDULE distribution unlimited 4, PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S) UILU-ENG-91-2227 CRHC-91-17 _.NAME OFPERFORMING ORGANIZATION 7a. NAME OF MONITORING ORGANIZATION Coordinated Science Lab (If ap_lic,_ble) NCR, NSF, AI_, NASA University of Illinois 6b. OFFICEN/A SYMBOL 6cAOORESS(O_,S_,andZ;PCode) 7b. AOORESS(O_,$tate, andZIPCodc) Dayton, OH 45420 ii01 W. Springfield Avenue Washington DC 20550 Langley VA 20200 Urbana, IL 61801 NAME OF FUNDING/SPONSORING 18b.OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER NO0014-9 l-J- 1283 NASA NAG 1-613 ORGANIZATION 7a I (If aDplitable) 8c. ADDRESS (City, State, and ZlP Code) 10. SOURCE OF FUNDING NUMBERS WORK UNIT ELEMENT NO. NO. ACCESSION NO. 7b I 11. TITLE (Include Securf(y C/aclrification) The Effect of Code Expanding Optimizations on Instruction Cache Design I 12. PERSONAL AUTHOR(S) Chen, William, Pohua Chang, Thomas Conte and Wen-Mei Hwu 13a. TYPE OF REPORT i13b, TIME COVERED 114. -
Generalizing Loop-Invariant Code Motion in a Real-World Compiler
Imperial College London Department of Computing Generalizing loop-invariant code motion in a real-world compiler Author: Supervisor: Paul Colea Fabio Luporini Co-supervisor: Prof. Paul H. J. Kelly MEng Computing Individual Project June 2015 Abstract Motivated by the perpetual goal of automatically generating efficient code from high-level programming abstractions, compiler optimization has developed into an area of intense research. Apart from general-purpose transformations which are applicable to all or most programs, many highly domain-specific optimizations have also been developed. In this project, we extend such a domain-specific compiler optimization, initially described and implemented in the context of finite element analysis, to one that is suitable for arbitrary applications. Our optimization is a generalization of loop-invariant code motion, a technique which moves invariant statements out of program loops. The novelty of the transformation is due to its ability to avoid more redundant recomputation than normal code motion, at the cost of additional storage space. This project provides a theoretical description of the above technique which is fit for general programs, together with an implementation in LLVM, one of the most successful open-source compiler frameworks. We introduce a simple heuristic-driven profitability model which manages to successfully safeguard against potential performance regressions, at the cost of missing some speedup opportunities. We evaluate the functional correctness of our implementation using the comprehensive LLVM test suite, passing all of its 497 whole program tests. The results of our performance evaluation using the same set of tests reveal that generalized code motion is applicable to many programs, but that consistent performance gains depend on an accurate cost model. -
A Tiling Perspective for Register Optimization Fabrice Rastello, Sadayappan Ponnuswany, Duco Van Amstel
A Tiling Perspective for Register Optimization Fabrice Rastello, Sadayappan Ponnuswany, Duco van Amstel To cite this version: Fabrice Rastello, Sadayappan Ponnuswany, Duco van Amstel. A Tiling Perspective for Register Op- timization. [Research Report] RR-8541, Inria. 2014, pp.24. hal-00998915 HAL Id: hal-00998915 https://hal.inria.fr/hal-00998915 Submitted on 3 Jun 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Tiling Perspective for Register Optimization Łukasz Domagała, Fabrice Rastello, Sadayappan Ponnuswany, Duco van Amstel RESEARCH REPORT N° 8541 May 2014 Project-Teams GCG ISSN 0249-6399 ISRN INRIA/RR--8541--FR+ENG A Tiling Perspective for Register Optimization Lukasz Domaga la∗, Fabrice Rastello†, Sadayappan Ponnuswany‡, Duco van Amstel§ Project-Teams GCG Research Report n° 8541 — May 2014 — 21 pages Abstract: Register allocation is a much studied problem. A particularly important context for optimizing register allocation is within loops, since a significant fraction of the execution time of programs is often inside loop code. A variety of algorithms have been proposed in the past for register allocation, but the complexity of the problem has resulted in a decoupling of several important aspects, including loop unrolling, register promotion, and instruction reordering.