THE ASTRONOMICAL JOURNAL, 117:2466È2484, 1999 May ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE SECOND EXT REME UL T RAV IOL ET EXPL ORER RIGHT ANGLE PROGRAM CATALOG D. J. CHRISTIAN,1 N. CRAIG,1 W. CAHILL,B.ROBERTS, AND R. F. MALINA Center for EUV Astrophysics, University of California at Berkeley, 2150 Kittredge Street, Berkeley, CA 94720È5030; damian=cea.berkeley.edu Received 1998 November 23; accepted 1999 January 22 ABSTRACT We present the detection of 235 extreme ultraviolet sources, of which 169 are new detections, using the Extreme Ultraviolet ExplorerÏs (EUV E) Right Angle Program (RAP) data. This catalog includes obser- vations since the Ðrst EUV E RAP catalog (1994 January) and covers 17% of the sky. The EUV E RAP uses the all-sky survey telescopes (also known as ““ scanners ÏÏ), mounted at right angles to the Deep Survey and spectrometer instruments, to obtain photometric data in four wavelength bands centered at D100AŽ (Lexan/B), D200AŽ (Al/Ti/C), D400AŽ (Ti/Sb/Al), and D550AŽ (Sn/SiO). This allows the RAP to accumulate data serendipitously during pointed spectroscopic observations. The long exposure times possible with RAP observations provide much greater sensitivity than the all-sky survey. We present EUV E source count rates and probable source identiÐcations from the available catalogs and literature. The source distribution is similar to previous extreme ultraviolet (EUV) catalogs with 2% early-type , 45% late-type stars, 8% white dwarfs, 6% extragalactic, 24% with no Ðrm classiÐcation, and 15% with no optical identiÐcation. We also present 36 detections of early-type stars that are probably the result of non-EUV radiation. We have detected stellar Ñares from approximately 12 sources, including: EUVE J0008]208, M4 G32-6 (EUVE J0016]198), a new source EUV E J0202]105, EUVE J0213]368, RS CVn V711 Tau (EUVE J0336]005), BY Draconis type variable V837 Tau (EUVE J0336]259), the new K5 binary EUVE J0725[004, EUVE J1147]050, EUVE J1148[374, EUVE J1334[083 (EQ Vir), EUVE J1438[432 (WT 486/487), EUVE J1808]297, and the M5.5e star G208[45 (EUVE J1953]444). We present sample light curves for the brighter sources. Key words: catalogs È stars: late-type È ultraviolet emission

1. INTRODUCTION timing studies of cataclysmic variables (Howell, Sirk, & Malina 1995; Warren, Sirk & Vallerga 1995; Craig et al. Early Berkeley sounding rockets followed by the Extreme 1996), active galactic nuclei (Fruscione 1998), and detections Ultraviolet (EUV) telescope Ñown on board the 1975 of stellar Ñares (Christian, Drake, & Mathioudakis 1998). Apollo-Soyuz mission proved the feasibility of working in Ž The Ðrst RAP catalog (McDonald et al. 1994) presented 114 the wave band between D100 and 900A (Margon et al. sources, 99 of which were new EUV detections. The long 1976; Lampton et al. 1976). These e†orts culminated in the observations possible with the RAP program allow a much Extreme Ultraviolet Explorer (EUV E), the Ðrst satellite greater sensitivity than the all-sky survey. The RAP is dis- dedicated entirely to the EUV wave band. The primary cussed in detail below. scientiÐc goals of the EUV E mission were to conduct a In this paper, we present results of the analysis of EUV E photometric survey of the entire sky over the EUV band, as RAP observations since the Ðrst RAP catalog, 1994 well as a more sensitive survey along the ecliptic (1992 JulyÈ January. We describe the RAP and instrument character- 1993 January). The survey period was followed by dedi- istics in ° 2. We present the observation selection criteria cated spectroscopy for selected EUV targets (from 1993 and analysis techniques in ° 3, and in ° 4 we present the January to the present). The EUV E all-sky survey detected catalog results in tabular form with explanations. In ° 5we 734 objects (Bowyer et al. 1996, hereafter Cat2). The EUV E discuss the distribution of source types, and in ° 6we source list has been expanded by correlating EUV E all-sky present light curves for a sample of bright sources, including survey detections from the Lexan bandpass centered at 100 Ñare detections from late-type stars. AŽ with ROSAT PSPC detections (Lampton et al. 1997), thus raising the number of EUV E sources to over 900. The 2. OBSERVATIONS EUV E and ROSAT WFC surveys (Pye et al. 1995) have The Guest Observer (GO) phase of the EUV E mission shown the brightest EUV sources to be hot white dwarfs, has accumulated pointed observations of over 400 unique active and nearby late-type stars, cataclysmic variables, and sources since the initial phase of the all-sky survey was various types of active galactic nuclei. completed (from 1993 January to the present). The GO The number of EUV E sources has been further expanded pointed observations have primarily used the EUV Deep by serendipitous observations using the all-sky survey tele- Survey and Spectrometer (DS/S) telescope. However, scopes during pointed Guest Observer observations. EUV E pseudoserendipitous observations have continued through all-sky survey telescopes are mounted perpendicular to the this phase by using the survey telescopes, which are Deep Survey/Spectrometer (DS/S) telescope and provide mounted perpendicular to the DS/S in what has become serendipitous data during pointed DS/S observations. This known as the Right Angle Program (RAP). The source program has become known as the Right Angle Program detections from the Ðrst of this program were present- (RAP). RAP data have provided valuable photometric and ed by McDonald et al. (1994), which covered observations through 1994 January. Table 3 of the second EUV E all-sky ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ catalog (Cat2) includes miscellaneous EUV E detections and 1 Eureka ScientiÐc Inc., Oakland, CA. RAP Ðrst catalog results though 1994 December; the selec- 2466 THE SECOND EUV E RIGHT ANGLE PROGRAM CATALOG 2467 tion criteria in Table 3 varies, and for this reason we include detections using the Deep Survey telescope. Details of the RAP results since 1994 January. One of the key advantages scanner and DS observations are discussed below. of RAP observations over the all-sky survey is that expo- 2.1. Scanning Telescopes sure times for each Ðeld observed on the sky are generally much longer because they are dictated by the DS/S point- The direction in which the scanning telescopes are ings. We have analyzed RAP pointings with a minimum pointed depends on two factors: the pointing direction of exposure time of 10 ks, to generally have signiÐcantly more the Guest ObserverÏs DS/S observation and the roll angle of exposure than the all-sky survey, which had a few hundred the spacecraft. While for a given DS/S observation the DS/S seconds per exposure at intermediate ecliptic latitudes. pointing is Ðxed, there is often considerable latitude in the Over 600 individual RAP pointings from 1994 January to choice of roll angles. Based on this latitude, the roll angle 1998 November were identiÐed. The almost 4 of RAP can be chosen such that the scanners can acquire any pre- DS and scanner pointings included in this catalog cover viously known EUV target or new Ðeld that might lie within B17% of the sky with a exposure times of at least 10 ks. the allowed scanner Ðeld of view. The average exposure time is 55 ks with the 700 ks DS/S The scanners were designed to obtain data in three bands observation of 1H 0419[577 being the longest. We present during an observation. A source positioned in the Lexan/B an exposure map of the RAP DS and scanner Ðelds Ðlter (hereafter ““ Lexan ÏÏ) of scanner A will also appear in included in this work in Figure 1. the Al/Ti/C Ðlter (hereafter ““ Al/C ÏÏ) of scanner B and the The optics and Ðlters of the scanning and Deep Survey Sn/SiO (““ tin ÏÏ) Ðlter of scanner C. Similarly, a source posi- telescopes were designed to be sensitive to particular tioned in the Lexan Ðlter of scanner B will appear in the regions of the EUV spectrum (Bowyer & Malina 1991 and Al/C Ðlter of scanner A and the Ti/Sb/Al (““ dagwood ÏÏ) Ðlter Malina et al. 1994) and are listed in Table 1. Although our of scanner C. The scanner A Lexan quadrant developed a analysis concentrates on detections made with the scanning signiÐcant pin-hole early in the mission that caused about telescopes, it also includes initial results from serendipitous one-half of the right-side Ðlter quadrant to be unusable. For this reason later in the mission, known EUV sources TABLE 1 observed with the RAP were placed in the scanner B Lexan NSTRUMENT PECIFICATIONS AND ILTER ANDPASSES quadrant. Scanner C tin band has the largest background of EUV E I S 10% F B any instrument, because of geocornal lines of He I (584 AŽ ) and placed a high demand on the available telemetry. The FOV jpeak Bandpass Instrument (deg) Filter (AŽ )(AŽ ) tin Ðlter of scanner C was turned o† after 1995 May to allow other instruments more telemetry bandwidth, and no Deep survey ...... 2 Lexan/B 91 67È178 tin data are available after this time. Al/C 171 157È364 Scanners A and B ...... 5 Lexan/B 89 58È174 2.2. Deep Survey Al/Ti/C 171 156È234 The Deep Survey/Spectrometer (DS/S) telescope also Scanner C...... 4 Ti/Sb/Al 405 345È605 provides the capability for serendipitous source detections Sn/SiO 555 500È740 during long GO pointings. The bandpasses of the DS

60o

30o

12h 6h 0h 18h

-30o

-60o

FIG. 1.ÈAito† projection in equatorial coordinates of the sky coverage for RAP scanner and DS pointings presented in this catalog. Circles indicate the B20 deg2 Ðeld of view of the ““ scanning ÏÏ telescopes, and the smaller circles the B3.5 deg2 Ðeld of view of the DS telescope. The shading of the symbols represents the exposure time from a few tens of kiloseconds (lighter circles) to over 100 ks (darker circles) (see text). 2468 CHRISTIAN ET AL. imaging instrument are also summarized in Table 1. In references therein. SpeciÐc EUV and soft X-ray catalogs are general, serendipitous sources appear in the Lexan band. discussed below in the description of the table formats. Sources are also detected in the outer Al/C Ðlter quadrants, We present results for scanner Lexan and Al/C detections but the point-spread function (PSF) and vignetting e†ects in Table 2, dagwood and tin detections in Table 3, DS are larger (Sirk et al. 1997). We searched detector images of detections in Table 4, and out-of-bandpass detections in the DS in the same way as for the scanning telescopes. DS Table A1 in the Appendix. These tables all have similar pointings are generally longer, because a change in space- formats, as described presently. For each table we give the craft roll angle for a particular GO target generally doesnÏt EUV E name based on the J2000.0 EUV E position in change the area of sky being observed. For this reason, DS column (1), measured EUV E J2000.0 and pointings have the potential to Ðnd fainter EUV sources. in columns (2) and (3), and the e†ective exposure We present the initial DS detections in this paper, but time in column (4). In a small number of cases the e†ective analysis of DS exposures with longer integrations times will exposure is less than 10 ks because of the corrections be presented in a future paper. described in ° 3. Columns (5) and (6) are count rates per ANALYSIS kilosecond in the particular bands as indicated in each 3. table. We indicate 90% conÐdence upper limits with the We identiÐed over 600 individual RAP pointings from symbol ““ \ ÏÏ (see ° 3). Column (7) gives a quality Ñag to 1994 January until 1998 November with exposures of at indicate the conÐdence of the identiÐcation. We have least 10 ks. The 600 pointings reduced to about 400 Ðelds adapted the same quality Ñags as used in Cat2. Namely, a once duplicate pointings were removed. We systematically ““ 1 ÏÏ indicates a likely identiÐcation with supporting evi- created FITS images of the scanner and DS instruments. dence as a previously identiÐed EUV source. A ““ 2 ÏÏ indi- Images were searched for sources by visual inspection (as in cates that although the detection is statistically signiÐcant, McDonald et al. 1994), because several detector features there was no other supporting evidence, and an ““ H ÏÏ indi- (pinholes and Ðlter bar reÑections) do not allow an aperture cated no identiÐcation was found. Last, a ““ U ÏÏ indicates mask to be used without eliminating a large portion of that (1) the source has a strong ultraviolet continuum, (2) imaging area. Spurious sources were limited by requiring the reported emission is outside the EUV bandpass, and (3) detections to have a consistent PSF, as was done in Cat2. is often referred to as ““ ultraviolet leak ÏÏ (McDonald et al. Marginal detections were also investigated with IRAF 1994; Vedder et al. 1993). In general we moved these image analysis tools. We derived source count rates and sources into Table A1. Columns (8) and (9) give source required they be 2 times their associated errors. Sources identiÐcation where plausible, and columns (10) and (11) with less signiÐcant detections but determined to be real are give spectral type and magnitude, respectively, from given as 90% conÐdence upper limits. We also investigated SIMBAD or the literature if indicated. Spectral types and the positional coincidence of marginal source detections object classes are discussed in ° 5. Column (12) gives the with known EUV sources and considered whether they fell angular separation between the measured EUV E position within the acceptable angular separation (discussed in ° 4.1). and the identiÐed sourceÏs position. Last, column (13) pro- Variations in the Lexan and Al/C background rates are vides comments, which includes references to the literature generally small, and sources with count rates of 10 counts (deÐned in footnotes as the initial of the Ðrst authorÏs ks~1 can be detected at the 3 p level in D20 ks. The average surname and year of publication), an indication if the source exposure times for most sources in this catalog exceed this was o†-axis or obstructed by a Ðlter bar or pinhole, and an value. Variations in the dagwood and tin bands are gener- indication if the source was detected in previous EUV/soft ally much larger, but the small number of detections in X-ray catalogs. We have indicated these catalogs with a these Ðlters are treated on an individual basis. This work three- or four-letter acronym: ““ 2EU ÏÏ for the EUV E second aims to discover new EUV sources but does not attempt the catalog (Bowyer et al. 1996), ““ L97 ÏÏ for the Lampton et al. level of completeness of the EUV E all-sky survey catalogs. 1997 catalog of fainter EUV E detections, ““ 1RXS ÏÏ for the EUV E scanner data are not included in the EUV E per- ROSAT all-sky bright source catalog (Voges et al. 1996),2 manent archive because of limited resources. We obtained ““ 2RE ÏÏ for the ROSAT second all-sky survey (Pye et al. the data directly from the on-line telemetry database at the 1995), ““ WGA ÏÏ for the White, Giommi, & Angelini (1995)3 Center for EUV Astrophysics. We used the EUV E IRAF ROSAT PSPC catalog, ““ 1ES ÏÏ for the Ðrst Einstein slew analysis packages to convert the EUV E telemetry into survey (Elvis et al. 1992), and ““ 2E ÏÏ for the second Einstein quick position-oriented event (QPOE) Ðles. These Ðles are soft X-ray catalog (McDowell 1994). essentially a photon list remapped to the position of the source on the sky and so contain all the necessary timing 4.1. Scanner IdentiÐcations information for deriving count rates and light curves. 4.1.1. Scanners A and B: 100 and 200 Ó Count rates were determined using appropriate source and background apertures applied to scanner and DS We present source detections and identiÐcations for the QPOE Ðles. Exposure times for ““ good ÏÏ data (spacecraft Lexan and Al/C bandpasses of scanners A and B in Table 2. nighttime data with no Earth blockage and periods spent In Figure 2 we compare the distribution of o†sets derived passing through the South Atlantic Anomaly removed) from the sample of sources with both scanner A and B were corrected for telescope vignetting, instrument dead detections. The average o†set for scanner A was 105A, times, and dead times in the telemetry (called Primbsching) whereas the average o†set for scanner B was 66A, and for using the IRAF EFFEXP routine in the EUV package. this reason we used the scanner B positions where available. 4. CATALOG LISTINGS ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ We conducted source identiÐcations using SIMBAD, 2 See also http://www.rosat.mpe-garching.mpg.de/survey/. HEASARC, and NED (Helou et al. 1995) databases and 3 See also http://heasarc.gsfc.nasa.gov/W3Browse/all/wgacat.html. TABLE 2 RAP SCANNER DATA

T [ Exposure Angular Time Lexana Al/Ti/Cb Separationd Name R.A. Decl. (ks) (counts ks~1) (counts ks~1) Q ID Name 1 ID Name 2 Typec Magnitude (arcsec) Notese (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

EUVE J0005[500... 000548.6 [50 05 39.1 116 13 ^ 4 \8 2 JL 156 Blu . . . 67 2EUVE J0005[50.0 DC 0003[50:[D80] 066 Sy 14 91 2EU, D80 EUVE J0006]201... 000634.6 ]20 10 23.2 21 \11 . . . 1 [SPB96] 26 UV 10.9 114 SPB96 EUVE J0006]290... 000636.5 ]29 00 20.9 102 23 ^ 6 \10 1 HD 166 BD ]28¡4704 K0 V 6.13 67 L97, 1RXS, 1WGA EUVE J0008]208... 000855.9 ]20 48 45.4 36 29 ^ 95^ 3 1 G131-26 LTT 10045 M4.5 13.54 105 1RXS, 1WGA EUVE J0016]198... 001614.1 ]19 51 36.4 52 15 ^ 6 \11 1 G32-7 LTT 10088 M4.5 13.22 50 1RXS G32-6 LTT 10087 M4 12.26 51 EUVE J0019]064... 001943.0 ]06 24 24.1 36 5 ^ 2 . . . 1 WD 0017]061 PHL 790 DA 15.9 51 EUVE J0103]623... 010323.7 ]62 22 09.5 26 22 ^ 5 . . . 1 1RXS J010318.0]622146 X . . . 46 1RXS V388 Cas G243-55 M5 13.66 82 EUVE J0122[567... 012215.5 [56 46 34.0 61 12 ^ 9 \16 1 HD 8435 CPD [57¡296 G6/G8 III 8.8 165 1RXS, RSCVn EUVE J0123]178... 012351.6 ]17 52 27.5 21 \5 . . . H NOID ...... EUVE J0136]414... 013647.4 ]41 25 10.2 44 \10 \10 1 HD 9826 BD ]40¡332 F8 4.1 12 1RXS EUVE J0154]208... 015435.8 ]20 48 40.0 32 6 ^ 36^ 3 2 HD 11636 TD1 1090 A5 V 2.64 31 EUVE J0202]105... 020229.7 ]10 35 00.2 109 16 ^ 410^ 3 1 1RXS J020228.9]103455 X 13 1RXS EUVE J0208[100... 020842.7 [10 05 30.1 35 3 ^ 2 . . . 1 HD 13191 BD [10¡438 G5 9.9 5 1RXS, 1WGA 1E 0206.2[1019 X 8.9 23 EUVE J0213]368... 021326.3 ]36 49 36.8 28 12 ^ 4 \5 1 1RXS J021320.6]364837 X 91 1RXS EUVE J0215[095... 021549.9 [09 30 47.2 28 13 ^ 4 . . . 1 1RXS J021559.9[092913 X . . . 175 FB, 1RXS EUVE J0241[006... 024115.6 [00 41 26.2 74 15 ^ 6 \10 1 NGC 1068: [R97] 16 X 32 84 Cet HD 16765 F7 IV 5.71 39 2EU, 1ES, 1RXS, 1WGA EUVE J0248]311... 024844.2 ]31 06 52.6 117 177 ^ 918^ 5 1 VY Ari HD 17433 K0 6.76 21 2EU, 2RE, 1RXS, 1WGA, L97 EUVE J0249]312... 024943.9 ]31 13 39.4 73 72 ^ 9 \10 H NOID ...... EUVE J0250]312... 025058.2 ]31 14 43.1 73 . . . 9 ^ 4 H NOID ...... EUVE J0251]312... 025102.0 ]31 14 29.0 24 19 ^ 5 . . . H NOID ...... EUVE J0251]312... 025107.4 ]31 15 16.6 72 57 ^ 6 . . . H NOID ...... EUVE J0309]496... 030905.6 ]49 37 17.0 22 \54^ 2 1 Cl Melotte 2044 HD 19373 G0 V 4.05 83 2E EUVE J0311[229... 031120.7 [22 54 46.8 28 6 ^ 3 . . . H NOID ...... EUVE J0328]041... 032811.8 ]04 08 48.5 23 \5 . . . 1 HD 21497 AG ]03¡397 F8 8.7 26 FB, 1RXS EUVE J0336]005... 033647.7 ]00 34 56.3 64 580 ^ 26 72 ^ 12 1 V711 Tau 1RXS J033647.2]003518 G5 6.2 28 2EU, 2RE, 1RXS, 1WGA EUVE J0337]259... 033710.3 ]25 59 28.3 73 137 ^ 919^ 4 1 V837 Tau 2RE J033711]255926 G2 V 13.0 13 2EU, 2RE, 1RXS EUVE J0348[009... 034836.6 [00 59 32.3 64 405 ^ 38 312 ^ 31 1 WD 0346[01 GD 50 DAw 13.98 211 OA, 2EU, 1RXS, L97 EUVE J0357]286... 035708.1 ]28 37 45.8 79 51 ^ 6 . . . 1 RE J035706]283806 V1092 Tau K2 V 13.0 28 2EU, 1RXS, 2RE, L97 EUVE J0411]236... 041154.4 ]23 38 24.4 63 8 ^ 5 \6 1 HD 284163 BD ]23¡635 K0 9.35 23 2EU, 1RXS, 1WGA EUVE J0418]232... 041809.7 ]23 16 26.8 63 \55^ 3 1 HD 284303 BD ]22¡669 K0 38 2EU, 1RXS, 1WGA EUVE J0419]156... 041946.5 ]15 37 28.2 25 10 ^ 5 \5 1 Cl Melotte 25 28 HD 27371 K0 III 3.65 30 2EU, 1RXS, 1WGA EUVE J0422]150... 042244.9 ]15 03 37.8 25 5 ^ 3 \5 1 Cl Melotte 25 40 HD 27691 G0 6.99 23 1RXS, 1WGA EUVE J0423]149... 042353.6 ]14 55 42.2 25 6 ^ 3 \8 1 1RXS J042350.4]145514 X . . . 54 1RXS, 1WGA Cl Melotte 25 288 M2.5 13.32 91 2E EUVE J0424]147... 042414.8 ]14 45 18.7 25 13 ^ 45^ 3 1 Cl Melotte 25 50 HD 27836 G1 V 7.62 41 2E, 1ES, 1RXS, 1WGA EUVE J0426]155... 042608.5 ]15 33 47.5 24 12 ^ 6 \6 1 Cl Melotte 25 59 HD 28034 G0 7.49 146 2EU, 1RXS, 1WGA, 2E EUVE J0438]231... 043849.8 ]23 08 26.2 71 5 ^ 3 \5 1 Cl Melotte 25 105 HD 29419 F5 7.53 39 2EU, 1RXS EUVE J0441]209... 044119.8 ]20 54 02.5 71 91 ^ 923^ 7 1 V834Tau HD 29697 K3 V 7.98 15 2EU, 2RE, 1RXS, L97 EUVE J0446]090... 044649.0 ]09 00 21.6 111 7 ^ 5 \10 1 Cl Melotte 25 113 HD 30311 F5 7.26 70 1RXS EUVE J0449]069... 044950.5 ]06 58 07.0 116 56 ^ 730^ 6 1 HD 30652 TD1 3592 F6 V 3.19 37 2EU, 1ES, 2RE, 1RXS, L97 EUVE J0449]057... 044934.5 ]05 42 00.0 111 8 ^ 5 157 ^ 15 H NOID ...... OA TABLE 2ÈContinued

T [ Exposure Angular Time Lexana Al/Ti/Cb Separationd Name R.A. Decl. (ks) (counts ks~1) (counts ks~1) Q ID Name 1 ID Name 2 Typec Magnitude (arcsec) Notese (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

EUVE J0457[063... 045719.3 [06 22 12.7 96 \5 . . . 1 1RXS J045717.3[062138 X . . . 46 1RXS EUVE J0459[030... 045913.6 [03 04 16.0 102 3 ^ 2 . . . H NOID ...... EUVE J0500[057... 050049.9 [05 45 47.2 96 6 ^ 4 \10 2 HD32147 BD [05¡1123 K3 V 6.2 99 EUVE J0501[064... 050155.6 [06 26 43.1 95 \5 . . . 2 HD 32307 BD [06¡1064 A2 8.9 44 FB EUVE J0504[039... 050446.8 [03 54 55.8 101 13 ^ 5 . . . 1 HD 32704 BD [04¡1032 G8 V 9.0 161 1RXS, 1WGA, L97 EUVE J0531[068... 053135.4 [06 52 41.2 48 . . . 149 ^ 12 2 Parenago 742 Star 12.7 64 EUVE J0538[066... 053834.2 [06 38 59.6 48 13 ^ 6 . . . 1 2E 0536.0[0642 X . . . 95 2E, 1RXS, 1WGA EUVE J0607]472... 060736.4 ]47 12 11.5 37 3 ^ 2 . . . 1 1RXS J060732.5]471154 X . . . 67 1RXS EUVE J0611]482... 061144.4 ]48 13 47.3 32 \4 . . . 1 1RXS J061145.4]481323 X . . . 26 FB, 1RXS EUVE J0618[199... 061826.7 [19 59 40.2 20 . . . 9 ^ 5 H NOID ...... FB EUVE J0631[231... 063133.5 [23 11 10.7 19 15 ^ 523^ 4 1 2E 0629.3[2308 X . . . 106 1WGA EUVE J0632[232... 063220.8 [23 14 46.0 20 121 ^ 924^ 5 1 1WGA J0632.2[2316 X . . . 173 1WGA EUVE J0632[065... 063244.8 [06 32 42.0 83 6 ^ 4 . . . 1 HD 46361 BD [06¡1599 G0 9.5 138 1RXS EUVE J0633[231... 063304.5 [23 11 15.7 19 16 ^ 442^ 7 1 2E 0630.9[2307 X . . . 115 1WGA EUVE J0639[265... 063903.2 [26 35 26.2 21 5 ^ 3 . . . 1 HD 47787 SAO 172095 K1 V 8.9 131 1RXS EUVE J0640[035... 064025.8 [03 32 29.8 76 24 ^ 610^ 6 1 HD 295290 BD [03¡1538 G0 9.1 62 L97, 2RE, 1RXS, 1WGA EUVE J0642[041... 064251.0 [04 08 38.0 76 6 ^ 3 \10 2 HD 48332 TD1 7893 F5 6.65 53 EUVE J0644[310... 064432.0 [31 03 18.0 21 17 ^ 419^ 7 2 HD 48917 B TD1 8028 F 10.6 59 PH

2470 EUVE J0644[312... 064454.6 [31 13 43.7 38 6 ^ 321^ 4 H NOID ...... EUVE J0650[005... 065056.3 [00 32 44.5 16 5 ^ 3 . . . 2 PMN J0650[0031 RadioS . . . 77 FB HD 49933 TD1 8284 F2V 5.77 102 2RE, 1RXS, 1WGA EUVE J0652[051... 065210.3 [05 10 00.5 76 12 ^ 410^ 5 1 1RXS J065218.0[051018 2E 0649.8[0506 X . . . 116 FB, 1RXS HD 50281 K3 V 6.57 145 EUVE J0654[021... 065416.6 [02 09 13.0 72 231 ^ 15 100 ^ 13 1 WD 0651[020 1RXS J065414.2[020940 DAw 14.82 45 2EU, 2RE, 1RXS, 1WGA, L97 EUVE J0718[114... 071831.4 [11 27 29.2 53 \5 . . . 1 EUVE J0718[11.4 M V:e . . . 13 2EU, 1RXS, 1RAP EUVE J0725[004... 072515.6 [00 26 13.2 44 35 ^ 616^ 8 1 2E 0722.7[0020 X . . . 26 L97 AG[00 1021 2RE J072513[002551 K5 8.9 48 2RE, 1RXS, J95 EUVE J0726[022... 072600.8 [02 14 19.7 44 \6 . . . 1 HD 58556 BD [01¡1707 G0 7.1 63 1RXS EUVE J0738]239... 073829.8 ]23 59 55.7 37 4 ^ 2 \3 1 1RXS J073829.3]240014 X . . . 5 1RXS EUVE J0832]057... 083200.1 ]05 45 18.4 40 7 ^ 4 . . . 1 1RXS J083147.3]054504 X . . . 192 1RXS EUVE J0835]051... 083524.2 ]05 08 12.1 39 16 ^ 36^ 32AG]05¡1257 BD ]05¡2004p F0 9.1 221 FB EUVE J0841]033... 084122.4 ]03 20 55.3 4 100 ^ 11 . . . 1 RE J084103]032059 WD 0838]035 DA 15.0 91 2EU, 2RE, 1RXS, L97 EUVE J0843]033... 084328.3 ]03 22 13.4 4 10 ^ 4 . . . H NOID ...... EUVE J0914]022... 091406.0 ]02 16 44.4 5 46 ^ 13 13 ^ 11 2 AG ]02¡1243 BD ]02¡2164 F2 8.3 145 OA EUVE J0933]154... 093354.6 ]15 28 55.2 102 \7 \51AG]15¡1077 BD ]16¡1992 G0 8.9 50 1RXS EUVE J0939]146... 093928.7 ]14 37 49.4 98 \6 . . . H NOID ...... EUVE J0956]412... 095653.3 ]41 14 55.5 49 9 ^ 5 . . . 1 PG 0953]415 QSO 0953]415 QSO 15.3 28 1RXS, 1WGA EUVE J0957]410... 095744.3 ]41 02 33.1 49 \5 . . . 1 HD 86146 TD1 14415 F6 Vs 5.1 58 1RXS, 1WGA EUVE J1014]168... 101445.1 ]16 48 54.4 15 48 ^ 10 15 ^ 4 2 HD 88776 BD ]17¡2189 F 10.1 42 FB EUVE J1024]262... 102400.8 ]26 16 55.2 23 41 ^ 9 . . . 1 HD 90052 2RE 1024]262 DA]G5 9.6 50 2EU, 2RE, B97 EUVE J1056]604... 105612.2 ]60 25 43.0 74 18 ^ 8 . . . 1 1RXS J105624.6]601556 X . . . 192 1RXS EUVE J1056]602... 105646.7 ]60 14 16.4 74 \8 . . . H NOID ...... EUVE J1058]602... 105851.9 ]60 13 38.3 74 10 ^ 6 . . . 1 StKM 1-897 K6 12.39 99 EUVE J1102]226... 110204.3 ]22 36 27.7 20 3 ^ 2 . . . 1 HD 95559 BD ]23¡2297 G5 8.7 49 2RE, 1RXS, 1WGA EUVE J1103]366... 110313.0 ]36 38 35.2 134 \5 . . . 1 LP 263-64 M3.5 13.67 47 1RXS, 1WGA EUVE J1103]359... 110321.2 ]35 58 14.2 134 7 ^ 5 \6 1 1RXS J110320.5]355900 X . . . 47 1RXS, 1WGA EUVE J1104]381... 110427.7 ]38 11 42.0 134 154 ^ 10 17 ^ 5 1 Mrk 421 QSO 1101]384 BLL 13.5 14 2EU, 2RE, 2E, 1RXS, 1WGA, L97 TABLE 2ÈContinued

T [ Exposure Angular Time Lexana Al/Ti/Cb Separationd Name R.A. Decl. (ks) (counts ks~1) (counts ks~1) Q ID Name 1 ID Name 2 Typec Magnitude (arcsec) Notese (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

EUVE J1105]588... 110537.4 ]58 51 02.9 75 11 ^ 7 . . . 1 1RXS J110537.4]585128 X 25 1RXS EUVE J1112]358... 111234.4 ]35 49 01.9 134 6 ^ 4 \10 1 HD 97334 TD1 15449 G0 V 6.41 15 2EU, 2E, 1RXS EUVE J1118]314... 111812.9 ]31 29 51.0 53 20 ^ 410^ 3 1 HD 98230 m UMa B F8.5 V 4.87 144 FB, 2EU, 2RE, 1RXS EUVE J1118]404... 111838.9 ]40 25 42.2 63 \10 . . . 1 PG 1115]407 FIRST J111830.2 QSO 16.0 96 OA, 1RXS, 1WGA ]402553 EUVE J1122]392... 112217.9 ]39 12 14.8 63 \10 ... 1 AG]39 1182 BD ]39¡2437 K5 9.8 22 1RXS, 1WGA EUVE J1129]381... 112912.0 ]38 08 28.0 99 15 ^ 58^ 5 1 GD 310 PG 1126]384 DA 14.89 156 2RE EUVE J1141]342... 114104.7 ]34 12 02.5 68 13 ^ 411^ 4 1 HD 101501 TD1 15797 G8 V 5.1 30 2EU, 1RXS, 1WGA EUVE J1147]050... 114734.8 ]05 01 40.4 10 24 ^ 7 \6 1 RE J114735]050109 M V:e 12.1 50 RE, 1RXS EUVE J1148[374... 114825.1 [37 29 09.6 29 7 ^ 3 . . . 1 CCDM J11484[3729A/B CD [36¡7429 M0 9.8 23 1RXS, 1WGA, J98 EUVE J1149]287... 114959.3 ]28 43 51.6 94 125 ^ 9 \6 1 RE J1149]284 EU UMa CV 17.0 90 2EU, 2RE, 1RXS EUVE J1203]445... 120308.3 ]44 31 54.5 28 48 ^ 12 . . . 1 NGC 4051 1H 1205]44 Sy1 11.5 83 OA, 2EU, 2E, 1ES, 1RXS, 1WGA EUVE J1225[159... 122534.1 [15 59 27.2 111 \5 . . . 1 LHS 2557 LP 795-15 M 11.84 20 I mag, E93 EUVE J1227]069... 122733.9 ]06 59 21.8 31 \6 . . . 1 1WGA J1227.5]0701 X . . . 108 1WGA EUVE J1229]020... 122908.7 ]02 03 09.4 93 13 ^ 4 \6 1 3C 273A 3U 1224]02 QSO 12.86 30 2EU, 2E, 1ES, 1RXS, 1WGA EUVE J1229[134... 122957.5 [13 27 09.0 111 8 ^ 4 . . . 2 CCDM J12301[1324D . . . 12.1 169 OA, B mag EUVE J1251]275... 125146.3 ]27 30 36.0 30 8 ^ 36^ 3 1 HD 111812 31 Com G0 IIIp 4.94 26 2EU, 2RE, 2E, 1RXS, 1WGA EUVE J1251]225... 125146.2 ]22 31 11.6 79 13 ^ 5 \10 1 BD ]23¡2508 StKM 1-1038 M0 10.50 89 1RXS EUVE J1253]227... 125339.9 ]22 44 24.0 125 \6 \6 2 NGP9 F378[0421813 Gal 19.7 102 NED

2471 EUVE J1254]221... 125437.4 ]22 08 08.9 125 \4 . . . 1 HD 112196 TD1 16544 F8 V 6.97 105 1RXS EUVE J1254]224... 125405.6 ]22 25 17.4 125 \87^ 5 H NOID ...... EUVE J1255]258... 125536.6 ]25 53 21.8 30 9 ^ 4 . . . 1 LoTr 5 HD 112313 PN 8.7 156 2EU, 2RE, 1WGA, L97 EUVE J1255[678... 125543.9 [67 49 01.9 82 16 ^ 5 . . . H NOID ...... EUVE J1256]220... 125653.8 ]22 00 29.3 79 4229 ^ 45 3261 ^ 37 1 GD 153 WD 1254]223 DAw 13.40 144 2EU, 2RE, 1ES, 2E, L97 EUVE J1257]351... 125748.3 ]35 11 31.6 21 8 ^ 4 \5 1 BF CVn GJ 490A M0.5 10.5 154 FB, 2EU, 2RE, 2E, 1ES, 1RXS, 1WGA BD ]36¡2322B GJ 490B M4 13.16 152 EUVE J1308[687... 130840.5 [68 46 37.6 82 \6 . . . H NOID ...... EUVE J1315[679... 131512.1 [67 56 26.9 80 \8 . . . H NOID ...... EUVE J1334[083... 133444.0 [08 20 25.4 88 27 ^ 6 \8 1 HD 118100 EQ Vir K5 Ve 9.31 2 2RE, 1RXS, 1WGA, 2E, 1ES EUVE J1339[055... 133910.8 [05 30 19.1 55 94 ^ 9 \10 H NOID ...... EUVE J1350[414... 135055.5 [41 26 34.1 92 130 ^ 13 . . . 2 PPM 318915 CD[40 8199 . . . 10.9 55 EUVE J1438[432... 143845.5 [43 14 24.6 131 8 ^ 35^ 3 1 WT 486/487 M2.5/3 13.5 26 1RXS, WT91, C98 EUVE J1441[373... 144106.0 [37 22 18.5 50 \6 . . . H NOID ...... EUVE J1529]804... 152912.4 ]80 25 41.5 35 6 ^ 35^ 3 1 HD 139777 TD1 18446 G0 IVÈV] 6.58 24 2EU, 2RE, 1RXS, L97 EUVE J1545[465... 154530.4 [46 35 31.9 14 38 ^ 9 . . . 2 HD 327428 CD [46¡10332 K0 9.8 132 EUVE J1547[450... 154756.9 [45 01 08.0 14 4 ^ 3 . . . H NOID ...... EUVE J1549]260... 154941.8 ]26 04 58.1 76 10 ^ 4 \6 1 HD 141714 d CrB G3.5 III 4.63 94 1RXS, 2E, 1ES EUVE J1558]255... 155844.6 ]25 34 18.5 76 \5 . . . 1 HD 143313 MS Ser K2 V 8.33 7 2EU, 1RXS, 1ES, 2E EUVE J1600[165... 160031.8 [16 35 26.5 54 \4 . . . H NOID ...... EUVE J1603]052... 160316.3 ]05 17 55.3 25 \6 . . . H NOID ...... EUVE J1621]081... 162113.2 ]08 09 16.9 40 20 ^ 4 \8 H NOID ...... FB EUVE J1629]780... 162916.2 ]78 03 34.9 35 1354 ^ 33 17 ^ 6 1 RE J1629]780 WD 1631]78 DA 13.0 68 2EU, 2RE, 1RXS, 1WGA, 1ES, L97 EUVE J1649[439... 164920.3 [43 55 50.5 32 \4 . . . 1 1RXS J164913.6[435527 X . . . 76 1RXS EUVE J1651[443... 165127.6 [44 21 33.1 32 3 ^ 2 . . . 1 1RXS J165124.4[442243 X . . . 78 1RXS EUVE J1705[018... 170513.3 [01 50 33.9 5 9 ^ 4 . . . 1 2E 1702.6[0142 1RXS J170507.9 X . . . 212 2E, 1RXS [0147081l X EUVE J1715[266... 171521.8 [26 36 23.4 5 15 ^ 6 . . . 1 HD 155886 2EUVE 1715[26.5 K0 V 5.2 76 2EU, 1RXS EUVE J1716[265... 171616.2 [26 32 48.5 5 6 ^ 4 . . . 1 HD 156026 2EUVE 1716[26.5 K5 V 6.3 60 2EU, 1RXS EUVE J1808]297... 180808.2 ]29 46 32.2 102 55 ^ 10 . . . 1 RX J1808.2]2941 X . . . 80 OA TABLE 2ÈContinued

T [ Exposure Angular Time Lexana Al/Ti/Cb Separationd Name R.A. Decl. (ks) (counts ks~1) (counts ks~1) Q ID Name 1 ID Name 2 Typec Magnitude (arcsec) Notese (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

EUVE J1809]300... 180908.3 ]30 01 54.8 102 21 ^ 8 . . . 1 HD 166435 TD1 21816 G0 6.8 216 OA, 2EU, 2RE, 1RXS EUVE J1818[371... 181840.4 [37 10 39.8 31 13 ^ 4 . . . 2 HD 167820 G8 III 7.6 168 FB EUVE J1823[342... 182347.2 [34 14 24.7 89 13 ^ 6 \6 1 V2539 Sgr V* 14.7 132 B mag EUVE J1833[005... 183312.5 [00 32 47.0 26 \4 . . . 1 1RXS J183317.1[003406 X . . . 104 FB, 1RXS EUVE J1834[006... 183439.6 [00 41 10.7 26 5 ^ 3 . . . 2 IRAS 18320[0044 ...... 46 FB EUVE J1847]019... 184740.8 ]01 57 06.8 60 634 ^ 22 234 ^ 16 1 WD 1845]019 2RE J184739]015731 DA 12.96 76 2EU, 2RE, 1RXS, L97 EUVE J1848[223... 184805.6 [22 20 46.3 10 32 ^ 9 . . . 1 RE J184757[221929 WD 1844[223 DA 14.0 138 OA, 2EU, 2RE, 1RXS EUVE J1849[238... 184947.9 [23 50 47.0 12 35 ^ 814^ 6 1 V1216 Sgr 2EUVE J1849[23.8 M3.5 10.95 47 2EU, 1RXS EUVE J1855]084... 185538.9 ]08 28 36.5 15 13 ^ 6 ... 2 AG]08 2416 BD ]08¡3905 F8 10.2 59 EUVE J1858[299... 185811.4 [29 56 08.2 23 4 ^ 3 . . . 1 1RXS J185803.4[295318 X . . . 20 1RXS EUVE J1911[286... 191101.9 [28 40 00.8 21 4 ^ 3 ... 2 CPD [28¡6801 CD[28 15466 G5 9.1 219 FB EUVE J1926[566... 19266.8 [56 36 54.3 8 592 ^ 26 . . . 1 2RE J192559[563327 G5 V 10.6 179 OA, 2EU, 2RE, 1RXS EUVE J1953]444... 195355.8 ]44 24 36.0 32 6 ^ 36^ 4 1 G208-45 GJ 1245B M5.5 V 13.99 47 1RXS G208-44 GJ 1245A M5.5Ve 13.41 54 EUVE J1954[239... 195410.8 [23 54 44.6 18 17 ^ 410^ 4 1 HD 188088 GJ 770 K3/K4 V 6.18 130 1RXS EUVE J1957]298... 195724.8 ]29 50 48.8 22 \6 . . . 2 HD 333118 A7 10.0 48 FB, 1RXS, B mag EUVE J2005]544... 200504.4 ]54 25 53.8 17 6 ^ 2 \13 1 G230-26 GJ 781 M0 11.97 23 1RXS EUVE J2005]226... 200544.3 ]22 40 32.9 98 466 ^ 21 8 ^ 4 1 QQ Vul H2005]22 CV 14.86 57 2EU, 2RE, 2E, 1RXS, 1WGA, L97

2472 EUVE J2013]467... 201334.3 ]46 46 04.8 20 6 ^ 3 . . . 1 HD 192577 J K . . . 12 1 HD 192577 V695 Cyg K2 II] 3.79 103 EUVE J2028[114... 202845.6 [11 29 22.9 32 4 ^ 3 . . . 1 1RXS J202843.5[112828 X . . . 63 1RXS EUVE J2029]096... 202949.7 ]09 41 03.8 33 3 ^ 2 . . . 1 EUVE J2029]09.7 HU Del M4.5 13.04 71 2EU, 2RE, 2E CCDM J20298]0941A M0 13.0 25 1RXS EUVE J2053]298... 205355.6 ]29 52 37.2 92 77 ^ 16 . . . H NOID ...... OA EUVE J2057]310... 205716.7 ]31 02 40.2 93 262 ^ 18 94 ^ 20 1 [SPB96] 2075 UV 14.2 79 SPB96 EUVE J2059]400... 205943.6 ]40 05 36.6 28 9 ^ 3 . . . 1 V1396 Cyg GJ 815A M1.5 10.1 39 2EU, 2RE EUVE J2100[426... 210006.6 [42 38 26.9 23 \5 . . . 1 1RXS J210005.5[423844 X . . . 22 1RXS, 1WGA Hen 3[1924 CD[43 14304 K3 . . . 154 EUVE J2102]278... 210213.5 ]27 52 11.6 92 64 ^ 12 . . . H NOID ...... EUVE J2112]500... 211240.5 ]50 05 51.4 35 996 ^ 35 529 ^ 26 1 GD 394 WD 2111]49 DAw 13.09 39 2EU, 2RE, 1RXS, 1WGA, L97 EUVE J2117]342... 211709.6 ]34 12 01.8 84 . . . 126 ^ 18 1 RX J2117.1]3412 WD 2117]341 WD 13.2 45 1RXS EUVE J2118]115... 211836.4 ]11 34 01.9 34 4 ^ 2 . . . 1 1RXS J211835.2]113411 X . . . 20 1RXS EUVE J2121]104... 212123.2 ]10 24 12.2 34 5 ^ 2 . . . 2 HD 203345 BD ]09¡4786 F5 6.75 68 EUVE J2137]016... 213741.9 ]01 36 50.0 83 4 ^ 2 \10 1 RXJ 2137.6]013 M 12.35 40 1RXS, F98 2E 2135.1]0123 X . . . 49 EUVE J2139[273... 213914.1 [27 19 11.2 54 3 ^ 2 . . . 2 HD 205905 G4 IVÈV 6.7 79 EUVE J2141[140... 214132.6 [14 02 50.6 30 5 ^ 4 \8 1 HD 206301 TD1 28359 G2 V 5.18 40 FB, 2EU, 1RXS, L97 EUVE J2149[720... 214904.4 [72 05 54.9 64 32 ^ 14 . . . 1 AY Ind CPD [72¡2640 M0.5 9.8 11 FB, 1RXS EUVE J2152[620... 215211.8 [62 02 29.0 29 4 ^ 2 . . . 1 HD 207575 TD1 28496 F6 V 7.3 132 1RXS EUVE J2155[618... 215511.5 [61 52 39.0 29 \5 . . . 1 IDS 21478[6221A/B CPD [62¡6277A/B F0 IV 6.7 21 1RXS HD 296 BD [05¡2 G0 9.0 22 EUVE J2156[416... 215638.1 [41 41 50.3 94 260 ^ 15 \20 1 RE J215634[414159 MCT 2153[4156 DA 15.7 36 2EU, 2RE, 1RXS, 1WGA, L97 EUVE J2157[406... 215724.9 [40 36 12.2 94 \5 \8 H NOID ...... EUVE J2157[400... 215753.4 [40 01 57.7 94 \612^ 7 2 BPS CS 22881[0015 ...... 26 EUVE J2158[404... 215820.1 [40 24 32.0 94 \6 \8 1 1RXS J215813.2[402401 X . . . 85 1RXS EUVE J2158[590... 215829.4 [59 01 09.0 43 12 ^ 4 . . . 1 HD 208496 TD1 28604 F3 V 6.2 23 1RXS EUVE J2158[302... 215850.0 [30 13 48.7 86 333 ^ 21 . . . 1 PKS 2155[304 1H2156[304 BLL 13.09 31 2EU, 2RE, 1ES, 2E, 1RXS, 1WGA, L97 TABLE 2ÈContinued

T [ Exposure Angular Time Lexana Al/Ti/Cb Separationd Name R.A. Decl. (ks) (counts ks~1) (counts ks~1) Q ID Name 1 ID Name 2 Typec Magnitude (arcsec) Notese (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

EUVE J2202[412... 220229.2 [41 13 21.4 94 \5 . . . 1 BPS CS 22881[0031 sdB 15.81 71 1WGA EUVE J2203]482... 220317.8 ]48 16 02.3 31 11 ^ 7 \8 1 2EUVE J2203]48.2 ...... 20 2EU EUVE J2204]472... 220443.8 ]47 16 21.0 32 11 ^ 7 . . . 1 HK Lac HD 209813 K0 III 6.91 187 2EU, 1ES, 2E, 1RXS EUVE J2210[300... 221027.6 [30 03 34.9 86 91 ^ 11 39 ^ 9 1 RE J221028[300519 WD 2207[303 DA 12.9 104 2EU, 2RE, 1RXS EUVE J2228[000... 222850.2 [00 01 42.0 59 20 ^ 9 ... 1 f Aqr BD [00¡4365 F3 IIIÈIV 3.65 32 L97 EUVE J2229]000... 222900.3 ]00 01 31.4 76 15 ^ 9 . . . 1 PHL 1928 . . . 18.5 89 OA, B mag EUVE J2236]001... 223606.2 ]00 07 25.0 76 12 ^ 6 \8 1 PHL 329 RX J2236.0]0007 DA 13.97 35 2EU, RX, K84 EUVE J2238[206... 223847.6 [20 37 32.2 85 111 ^ 13 24 ^ 10 1 HD 214479 RX J2238.7[2037 M1.5 9.07 56 2EU, 1ES, 2E, 1RXS, L97 2473 EUVE J2238]022... 223830.0 ]02 17 02.8 24 \5 . . . 2 HD 214494 AG]02 2867 G0 8.0 78 EUVE J2244[322... 224437.6 [32 15 41.3 65 13 ^ 4 . . . 1 PHL 396 WD 2241[325 DA 16.6 149 2EU, 2RE EUVE J2249[209... 224906.0 [20 59 08.9 85 34 ^ 10 \5 2 HD 215964 BD [21¡6309 G3/G5 V 9.5 137 EUVE J2322[469... 232224.0 [46 54 25.2 39 \11 . . . H NOID ...... EUVE J2327]048... 232750.0 ]04 50 59.2 58 4 ^ 2 . . . 1 VZ Psc BD ]04¡5072 K5 10.3 47 1RXS EUVE J2334[472... 233402.3 [47 14 12.8 39 287 ^ 17 687 ^ 25 1 RE J233401[471351 MCT 2331[4731 DA 13.1 21 2EU, 2RE EUVE J2355]286... 235510.0 ]28 38 46.7 102 129 ^ 11 \10 1 II Peg HD 224085 K0 V 7.37 118 2RE, 2EU, 1ES, 2E, 1RXS, 1WGA, L97

NOTE.ÈUnits of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds. a EUV E count rate in the Lexan/B band (58[174AŽ or 0.071[0.21 keV). b EUV E count rate in the Al/Ti/C band (156[234AŽ or 0.053[0.079 keV). c Spectral types from SIMBAD, NED, and the literature where available. d Angular separation between the EUV E position and the identiÐed sourceÏs position. e Catalogs cited: (2EU), EUVE second catalog (Bowyer et al. 1996); (L97), Lampton et al. 1997 catalog of fainter EUVE detections; (1RXS), ROSAT all-sky bright source catalog (Voges et al. 1996); (2RE) ROSAT second all-sky survey (Pye et al. 1995); (WGA), White et al. 1995 ROSAT PSPC catalog; (1ES), Ðrst Einstein slew survey (Elvis et al. 1992); (2E), second Einstein soft X-ray catalog (McDowell 1994). Other references: (C98), Christian et al. 1998; (B97), Burleigh, Barstow, & Fleming 1997; (D80), Dressler 1980; (E93), Eggen 1993; (F98), Fleming 1998; (J95), Je†eries, Bertram, & Spurgeon 1995; (J98), Jensen, Cohen, & Neuhauser 1998; (K84), Kilkenny 1984; (SPB96), Smith et al. 1996; (WT91),Wroblewski & Torres 1991. (FB), Ðlter bar; (OA), o† axis; (PH), pinhole; (DS), Detection from Deep Survey (see text). TABLE 3 RAP LONG WAVELENGTH SCANNER DATA

T [ Exposure Angular Time Dagwooda Tinb Separationd Name R.A. Decl. (ks) (counts ks~1) (counts ks~1) Q ID Name 1 ID Name 2 Typec Magnitude (arcsec) Notese (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 2474 EUVE J0001]276 . . . 00 01 26.8 ]27 38 32.6 24 . . . \16 H NOID ...... EUVE J0536[060 . . . 05 36 40.7 [06 05 12.8 28 370 ^ 16 . . . U HD 37209 TD1 4984 B1 V 5.72 108 PH, 1WGA EUVE J1256]220 . . . 12 57 05.8 ]22 01 43.0 79 . . . 351 ^ 27 1 GD 153 WD 1254]223 DAw 13.4 55 2EU, 2RE, 1ES, 2E, L97 EUVE J1847]019 . . . 18 47 35.8 ]01 57 11.9 53 \8 . . . 1 WD 1847]019 2RE 1845]015 DA 12.96 18 2EU, 2RE, 1RXS, L97 EUVE J2005]544 . . . 20 05 04.4 ]54 25 53.8 17 6 ^ 2 . . . 1 G230-26 GJ 781 M0 11.97 23 1RXS

a EUV E count rate in the Ti/Sb/Al (dagwood; 345[605AŽ or 0.02[0.036 keV) band. b EUV E count rate in the Sn/SiO (tin; 500[740AŽ or 0.017[0.025 keV) band. c Spectral type from SIMBAD and the literature where available. d Angular separation between the EUV E position and the identiÐed sourceÏs position. e As in Table 2. TABLE 4 RAP DEEP SURVEY DATA

T [ Exposure Angular Time Lexana Al/Cb Separationd Name R.A. Decl. (ks) (counts ks~1) (counts ks~1) Q ID Name 1 ID Name 2 Typec Magnitude (arcsec) Notese (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

EUVE J0008]594 . . . 00 08 18.1 ]59 27 08.3 18 14 ^ 8 . . . H NOID ...... EUVE J0028[631 . . . 00 28 22.1 [63 06 52.2 53 \8 . . . H NOID ...... EUVE J0030[633 . . . 00 30 58.9 [63 21 53.9 53 10 ^ 3 . . . H NOID ...... EUVE J0031[629 . . . 00 31 40.3 [62 58 11.1 53 13 ^ 5 . . . 2 HD 2885 HR 127 A2 V] 4.54 54 1WGA EUVE J0032[630 . . . 00 32 51.1 [63 02 22.6 53 \6 . . . 2 HD 3003 TD1 292 A0 V 5.08 63 EUVE J0033[633 . . . 00 33 06.3 [63 18 07.6 53 4 ^ 2 . . . 1 1WGA J0033.0[6317 X 36 EUVE J0319]033 . . . 03 19 28.7 ]03 18 25.2 143 \5 ... 2 AG]03 377 BD ]02¡521 G0 8.5 40 2475 EUVE J0320]030 . . . 03 20 53.0 ]03 03 45.0 143 \5 . . . H NOID ...... EUVE J0425]159 . . . 04 25 38.1 ]15 55 46.6 92 . . . \30 1 Cl Melotte 25 57 HD 27991 F7 V 6.46 45 2EU, 2E, 1WGA, 1RXS EUVE J0425[572 . . . 04 25 40.9 [57 15 06.5 102 71 ^ 8 . . . 1 EUVE J0424.6[5714 RX J0425.6[5714 CV 19 35 H98 EUVE J0426[572 . . . 04 26 02.9 [57 12 40.2 102 79 ^ 8 . . . 1 1H 0419[577 1ES 0425[57.3 Sy 15.1 42 2EU, 2RE, 1ES EUVE J0428]158 . . . 04 28 40.6 ]15 52 20.6 92 10 ^ 4 . . . 1 Cl Melotte 25 72 HD 28319 A7 III 3.4 19 2E, 1WGA EUVE J0428]162 . . . 04 28 50.8 ]16 17 10.3 92 8 ^ 4 . . . 1 CL Melotte 25 190 HD 285806 K7 V 10.70 7 2E, 1WGA, 1RXS EUVE J0429]161 . . . 04 29 00.3 ]16 09 24.1 92 7 ^ 4 . . . 1 Cl Melotte 25 75 HD 28363 F8 6.59 16 2E, 1WGA, 1RXS EUVE J0429]163 . . . 04 29 00.5 ]16 20 30.5 92 \6 . . . 1 Cl Melotte 25 VA 512 2E 0426.1]1614 M1.5 14.28 18 2E EUVE J0430]156 . . . 04 30 07.3 ]15 38 9.2 92 9 ^ 6 . . . 1 Cl Melotte 25 80 HD 28485 F0V 5.58 6 2E, 1WGA, 1RXS EUVE J0430]157 . . . 04 30 35.2 ]15 43 28.6 92 \10 . . . 1 Cl Melotte 25 182 HD 28545 K0 8.99 35 2E, 1WGA EUVE J0430]161 . . . 04 30 46.2 ]16 07 59.5 92 . . . 22 ^ 9 1 Cl Melotte 25 85 HD 28568 F2 6.51 56 2E, 1RXS EUVE J0436[472 . . . 04 36 23.0 [47 15 27.4 66 \8 . . . 1 2EUVEJ0436[47.2f 1RXS J043617.2[471409 X . . . 93 2EU, 1RXS, 1WGA EUVE J0436[472 . . . 04 36 56.7 [47 15 55.8 66 7 ^ 4 . . . H NOID ...... EUVE J0437[475 . . . 04 37 13.3 [47 32 45.6 66 \10 . . . 1 1RXS J043711.9[473142 X . . . 65 1RXS, 1WGA EUVE J0437[472 . . . 04 37 30.4 [47 12 34.6 66 35 ^ 9 . . . 1 1ES 0435[472 RX J04374[4711 Sy1 15.3 72 2EU, 1ES, 1RXS EUVE J0438[474 . . . 04 38 47.1 [47 29 13.2 66 \8 . . . 1 1RXS J043847.0[472751 X . . . 82 1RXS 2 PMN J0438[4728 . . . 57 EUVE J0531[036 . . . 05 31 23.9 [03 41 22.9 30 . . . 63 ^ 23 1 HD 36395 GJ 205 M1.5 7.92 149 2EU, 1RXS TABLE 4ÈContinued

T [ Exposure Angular Time Lexana Al/Cb Separationd Name R.A. Decl. (ks) (counts ks~1) (counts ks~1) Q ID Name 1 ID Name 2 Typec Magnitude (arcsec) Notese (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

EUVE J0532[031 . . . 05 32 05.1 [03 06 29.6 10 . . . 64 ^ 29 1 HBC 97 2RE J0532[030 K7e 11.52 59 2EU, 2RE, 1RXS, 1WGA 1 1RXS J053204.3[030519 X . . . 71 1RXS EUVE J0659[293 . . . 06 59 31.7 [29 18 54.7 98 \6 . . . 1 1WGA J0659.5[2918 X 36 1WGA EUVE J0659[292 . . . 06 59 55.1 [29 17 40.9 98 22 ^ 5 . . . H NOID ...... EUVE J0700[288 . . . 07 00 04.5 [28 49 20.3 64 \6 . . . 2 WT 1539 . . . 12.5 162 WT96 EUVE J0729[381 . . . 07 29 29.9 [38 08 13.9 62 8 ^ 4 . . . 2 HD 59704 F7 V 7.8 49 1RXS EUVE J0750]148 . . . 07 50 34.2 ]14 50 24.4 90 \5 . . . 2 HD 63648 TD1 11121 F2 7.2 35 1WGA EUVE J0942]700 . . . 09 42 27.7 ]70 03 05.4 198 \13 . . . 1 LHS2176/2178 M2/3 10.6/11.2 85 1WGA EUVE J1019]194 . . . 10 19 41.8 ]19 28 39.4 45 11 ^ 6 . . . 2 HD 89449 TD1 14746 F6 IV 4.80 27 EXO, 1WGA EUVE J1034]396 . . . 10 34 38.1 ]39 38 24.4 63 35 ^ 8 . . . 1 Z 1031.6]3953 KUG 1031]398 Sy1 15.6 5 2EU, 2RE, 1WGA, 1RXS EUVE J1104]382 . . . 11 04 44.4 ]38 14 54.6 57 5 ^ 3 . . . 1 HD 95976 BD ]39¡2418 F2 7.4 7 1E, EXO, 1WGA EUVE J1105]382 . . . 11 05 50.3 ]38 13 05.9 57 5 ^ 3 . . . 1 WD 1103]384 PG 1103]384 DA 17.2 50 EXO EUVE J1332]372 . . . 13 32 36.8 ]37 12 24.8 154 \15 . . . 2 NGP9 F270[0321988 Gal . . . 114 EUVE J1334]372 . . . 13 34 16.8 ]37 15 29.9 154 6 ^ 2 . . . 1 2E 1332.0]3730 QSO 1332]375 QSO 18.2 19 2E, 1RXS EUVE J1335]371 . . . 13 35 37.9 ]37 06 44.3 154 \6 . . . H NOIDg ...... EUVE J1348]263 . . . 13 48 36.3 ]26 22 03.7 89 \6 . . . 1 MS 1346.2]2637 EXO 1346.2]2637 QSO 18.5 28 2E, EXO, 1WGA, 1RXS EUVE J1348]265 . . . 13 48 36.3 ]26 31 03.0 89 \6 . . . 1 PGC 94626 2E 1346.2]2646 Sy2 16.5 18 2E, 1WGA EUVE J1348]265 . . . 13 48 55.4 ]26 35 19.0 89 18 ^ 6 . . . 1 EXSS 1346.5]2650 1WGA J1348.8]2635 X . . . 23 1WGA, 1RXS EUVE J1349]269 . . . 13 49 07.0 ]26 58 00.8 89 15 ^ 6 . . . 1 HD 120476 BD ]27¡2296 K2 7.04 54 1E, EXO, 1RXS 1 GJ 528A/B K4/6 7.6/8.3 54 1WGA EUVE J1453]191 . . . 14 53 23.4 ]19 09 18.7 75 28 ^ 8 . . . 1 HD 131511 BD ]19¡2881 K2 V 6.01 33 RX, 1WGA, 1RXS EUVE J2338]462 . . . 23 38 00.2 ]46 12 10.1 10 15 ^ 4 . . . 1 HD 222143 BD ]45¡4288 G5 6.4 38 2EU, 1RXS, 1WGA EUVE J2348[281 . . . 23 48 56.2 [28 06 37.4 62 25 ^ 6 . . . 1 HD 223352 TD1 30097 A0 V 4.57 68 1RXS EUVE J2348[276 . . . 23 48 40.4 [27 39 44.6 62 11 ^ 5 . . . 1 LHS 4016 M2.5 12.4 38 1WGA, 1RXS EUVE J2349[278 . . . 23 49 21.9 [27 51 31.3 62 13 ^ 5 . . . 1 HD 223408 CPD [28¡7723 F6/F7 V 7.1 34 1WGA

a EUV E count rate in the DS Lexan/B band (67[178AŽ or 0.07[0.18 keV). b EUV E count rate in the DS Al/C band (157[364AŽ or 0.034 [0.079 keV). c Spectral types from SIMBAD, NED, and the literature where available. d Angular separation between the EUV E position and the identiÐed sourceÏs position. e As in Tables 2. (WT96), Wroblewski & Torres 1996; (H98), Halpern et al. 1998. f Bowyer et al. 1996 list this source as a ““ NOID. ÏÏ g NED shows NGP9 F270[038303 168A away. THE SECOND EUV E RIGHT ANGLE PROGRAM CATALOG 2477

742, an unclassiÐed star with a high Al/C count rate and Scanner A may be an early type star. Source distribution by type is 15 Scanner B discussed below in ° 5. 4.1.2. Scanner C: 400 and 660 AŽ We have separated out the long wavelength bandpasses from scanner C and present these results in Table 3. McDonald et al. (1994) only had three scanner C source ] 10 detections. These were a detection of EUVE J1352 06.2 in the dagwood bandpass and detections in the tin band of HZ 43 and WD 1254]223. Our Table 3 presents Ðve detections from the long wavelength scanner (““ C ÏÏ). These include the No. of Objects white dwarfs WD 1254]223 and WD 1847]019, an unidentiÐed tin detection, EUVE J0001]276, the Einstein [ ] 5 source 2E 0534.3 0605, and EUVE J2005 544. The Ein- stein source 2E 0534.3[0605 is near the known pinhole in dagwood Ðlter of scanner C and is most likely an early-type star showing ““ UV leak. ÏÏ There was a marginal detection of a dagwood source 114A from the position of M9 star AP Lac, and another 100A from K0 star AG]41 1554. 0 However, neither of these possible detections had corre- 0.5 1.0 1.5 2.0 sponding Al/C or Lexan detections and were dismissed as Offset (arcmin) spurious. FIG. 2.ÈComparison of positional o†sets in scanners A and B. Shown The lack of successful longer wavelength detections leads is the distribution of the angular separation between the EUV E position us to investigate the handful of signiÐcant dagwood and tin and the identiÐed sourceÏs position for those objects with both scanner A detections from Cat2. The tin Ðlter was e†ectively turned o† and B detections (see text). after 1995 March; therefore we could only search for tin detections until then. EUVE J0256]080 and EUVE [ Slightly more than one-half of the sources in Table 2 have J1854 324 were the only sources with signiÐcant RAP exposures. However, neither source was detected with both Lexan and Al/C detections. In many cases the lack of ~1 an Al/C detection is the result of the column density along upper limits of 10 counts ks . the line of sight but can also be caused by obscuration of a Deep Survey IdentiÐcations Ðlter bar in one of the detectors. In general most sources are 4.2. with 50A of their identiÐcation. We also allowed up to a few Results for sources detected serendipitously in the DS arcminutes for sources that are o†-axis or obscured by a Lexan and Al/C bands are given in Table 4. The DS collects Ðlter bar. We list the most likely candidates up to D3@ imaging data in a Ðeld of view with a 1¡ radius around a separation for WGA and RXS sources, since systematic particular GOÏs target. Serendipitous DS sources presented o†sets of both detections may combine. In several cases we here are generally brighter sources that were easily seen in allow up to a few arcminute o†set for likely EUV sources short-exposure detector images, although the exposure with no other nearby sources (e.g., EUVE J0122[567, times in the table are generally several tens of kiloseconds. EUVE J1229[134, and EUVE 2204]472). Unlike the scanner observations, which can have comple- Although there is not space to mention all the interesting mentary Lexan and Al/C detections, DS detections are for sources, we brieÑy mention a few and discuss Ñaring late- either Ðlter only, unless multiple pointings occurred. We type stars in ° 6. We have identiÐed EUVE J0005[500 as have generally excluded GO targets from this table, but JL 156. Bowyer et al. (1996) have identiÐed this source as a they may be included in a future more complete DS catalog. Seyfert, EQ 0003[50; however, the possible Al/C detection Although the trilobed PSF of the DS can make it difficult to makes a foreground stellar source more likely. We also derive accurate source coordinates, the average source report several detections of active galactic nuclei: Mrk 421 o†sets were 49A, well within agreement with o†sets present- (EUVE J1104]381), 3C 273 (EUVE J1229]020), NGC ed in Cat2. 4051 (EUVE J1203]445), and the new EUV detection of Similar to the all-sky catalog (Cat2) and the scanner galaxy NGP8 F378[0421813 (EUVE J1253]227). We results, more than 40% of the DS detections are late-type identiÐed EUVE J1104]381 as Mrk 421, although DC stars. The 2nd EUV E catalog DS results listed no A-type white dwarf PG 1101]385 is only 64A away. In the original stars, but we list four A-type stars. Also, the Bowyer DS WFC bright source catalog (Pounds et al. 1993) PG table had no extragalactic sources, while we have seven 1101]385 was listed as a possible identiÐcation for this detections. These types of detections are probably the result source. PG 1101]385 is a DC white dwarf, but this was of sensitivity gained with the longer exposure times possible revised since DCs are too cool to be strong sources of EUV during pointed DS observations. One of the more inter- emission. We also note that the X-ray source labeled as esting source is EUVE J0426[572, which showed CV-like NGC 1068 [R97] 16 (Radecke 1997) from a ROSAT PSPC variability and has been identiÐed as a CV with a 80.5 image of NGC 1068 is probably the F star 84 Cet. Also minute period by Halpern et al. 1998. We have also include noteworthy are the DA white dwarfs not detected in Cat2, the GO target from that observation, 1H0419[57, because WD 0017]061 (EUVE J0019]064) and GD 310 (EUVE of confusion with the coordinates (Halpern et al. 1998). The J1129]381). EUVE J0531[068 identiÐed as Parenago DS pointing of the Abell 1795 (R.A. 13h48m, decl. ]26¡) resulted in four serendipitous detections. These 2478 CHRISTIAN ET AL. Vol. 117 include QSO MS 1346.2]2637, PGC 94626, a Seyfert 2, detections presented here ( Ðlled symbols) along with the X-ray source EXSS 1346.5]2650, and K2 star HD 120476. Cat2 and Lampton et al. 1997 faint detections (open SOURCE DISTRIBUTION symbols) in Figure 3. We have grouped the sources into six 5. basics categories: late-type stars, early-type stars, white We have classiÐed sources into eight categories: early- dwarfs, extragalactic, other, and NOID. We have combined type stars, late-type stars, white dwarfs, cataclysmic vari- the CVs and sources indicated as X-ray (““ X ÏÏ) into the ables (CVs), extragalactic objects (e.g., BL Lac [BLL], ““ other ÏÏ group for the plot. quasi-stellar object [QSO], Seyfert [Sy]), sources listed as Our source distribution (Fig. 3) contains 1136 unique X-ray detections, but with no spectral type as ““ X ÏÏ, sources sources; 967 from the Bowyer plus Lampton lists with with an identiÐcation but no spectral type as ““ other, ÏÏ and duplicates removed, and the 169 new sources from this lastly, sources with no identiÐcation as ““ NOID. ÏÏ The dis- work. Similar to Bowyer et al. (1996) and ROSAT WFC tribution of sources in each class for Tables 2È4 are given in surveys there are an excess of sources in Table 5. We present an all-sky projection in Galactic coor- 3 (180 \ lII \ 270) but a decreased number of sources in dinates (with l \ 0¡ at center increasing leftward) of the 271 quadrants 1 and 4. There are especially large number of sources (over 40) in quadrant 3 with b \ 0 in the well- TABLE 5 known low column direction near (210, [20) (Welsh et al. EUV SOURCE IDENTIFICATIONS BY TYPE 1994). Bowyer et al. (1996) and Lampton et al. (1997) note that the distribution of EUV sources is nonisotropic as a Type Scanner DS result of the nonuniformity of the local , and the new RAP sources presented here mirrors the EUV E Early stars (O, B, A) ...... 4 4 all-sky survey distribution. Later stars (F, G, K, M) ...... 86 20 White dwarf ...... 17 1 6. TEMPORAL RESULTS Cataclysmic variables ...... 2 1 Extragalactic ...... 7 7 6.1. L ight Curves Other ...... 15 1 We used the XRAY.XTIMING package to create light X-ray ...... 30 6 curves from the QPOE photon event lists. Although we NOID ...... 27 7 made FITS images of all 600 individual RAP pointings, we Total 188 47 did not create QPOE Ðles for all duplicate pointings. In

Late type n N n Early-type n n n n n White dwarf N n n n n Extragalactic n n n n n n Other n n n N N o n n NOID 60n n n n n n n n n N n n n N n n n n n n n n n n n n N N n n n n n n n n n nn n n n on n n n N n 30 n n n n Nn nn n n n nn n n nn n nn n Nn n n n n n n n n n n n n n nn n n n nn N n n n n n n n o o n o o 180n n n 90 n 0 n n 270 n nn n n n n N n n n n NN n n nn n n n n n n N n n N n n N n n n n n n n n n n N n n n n nn n N n n n n n n nn n n n n n n n n n n n n -30o n N n N n n n N n n n N n n n n n n n n n n n n n n n nn n n n Nnn n n n n N N n nn n N n n N on n n n n n n -60 n n n n n n n n n N n nn n n n n n n n n n n n

FIG. 3.ÈAito† projection of EUV E sources in equatorial coordinates. Shown are sources from both the EUV E all-sky survey second catalog (Bowyer et al. 1996) and Lampton et al. (1997) faint list as open symbols, and sources from this RAP catalog as Ðlled symbols. Sources are displayed as late-type stars (triangles), early-type stars (squares), white dwarfs (diamonds), other (circles), extragalactic (pentagon), and NOID (““ N, ÏÏ with ““ n ÏÏ for Bowyer]Lampton). No. 5, 1999 THE SECOND EUV E RIGHT ANGLE PROGRAM CATALOG 2479 general, for sources with repeat pointings we chose the RAP observation with the longest exposure time. For light curves, we found binning the data per EUV E orbit provid- ed sufficient counts for useful signal-to-noise ratio while maintaining as much time resolution as possible. We used the canonical value of 5760 s for the 96 minute EUV E orbit. We present light curves for a representative source from each class of objects. Late-type stars, from which several Ñares and Ñarelike brightenings were detected, are present- ed in ° 6.2. These light curves are meant to be samples, and further investigations will be addressed in future papers as merited. We present the discovery of a 28.3 hr period for DA white dwarf GD 394 in Figure 4. The nearly one-day period is found in both the 1992 October 27 and 1996 November 21 RAP data sets and also in the EUV E DS and shortwave spectrometer observations of 1995 October 13 (Dupuis et al. 1999). We present the folded Lexan light curve of known cataclysmic variable QQ Vul (EUVE J2005]226) in Figure 5. We have folded the Lexan counts on the 222.5 minute period using the ephemeris of Osborne FIG. 6.ÈEUV E light curves of EUVE J1104]381 (Mrk 421). Details are the same as Fig. 4.

et al. (1987). We show the Lexan and Al/C light curves for Mrk 421 (EUVE J1104]382) in Figure 6. Our Al/C detec- tion of Mrk 421 at 17 ^ 5 counts ks~1 is puzzling. Bowyer et al. (1996) did not report an Al/C detection for Mrk 421, but checking the EUV E count rate server gives an all-sky survey Al/C count rate of 27 ^ 13 counts ks~1. Fruscione (1996) gives a column for Mrk 421 or 1.4 ] 1020 cm~2, which makes an Al/C detections nearly impossible, unless the ionized fraction of He is extremely low in that direction. A more likely possibility is the observed Al/C counts are from short-wavelength (\70AŽ ) radiation as the result of the Al/C ÐlterÏs sensitivity to soft X-rays (Malina et al. 1994). 6.2. Stellar Flares We have detected stellar Ñares from 12 sources, including EUVE J0008]208, M4 star G32-6 (EUVE J0016]198), a ] ] FIG. 4.ÈEUV E light curves of EUVE J2112]500 (GD 394) showing a new source EUVE J0202 105, EUVE J0213 368, RS B28.3 hr period. Top, Lexan/B (100AŽ )A light curve; bottom, Al/C (200 Ž ) CVn V711 Tau (EUVE J0336]005), BY Draconis type light curve. Bin size is 5760 s (about 1 EUV E orbit; see text). variable V837 Tau (EUVE J0336]259), the new K5 binary EUVE J0725[004, EUVE J11447]050, EUVE J1148[374, EUVE J1334[083, EUVE J1808]297, and the M5.5e star G208[45 (EUVE J1953]444). A large stellar Ñare detected from EUVE J1438[432, which was identiÐed as an M star (WT 486/487), has been presented elsewhere (Christian & Vennes 1999). The majority of Ñare detections are from late M stars, and further analysis of Ñare characteristics will be presented in a future paper. We iden- tiÐed EUVE J0008]208 as an M4.5 star, G131-26, which had corresponding ROSAT all-sky survey (RASS) source 1RXS J000854.3]205031. EUVE J0016]198 is also a late M star and has a RASS detection, 1RXS J001614.0]195142. The new EUVE detection EUVE J0202]105 is an untyped RASS source, 1RXS J020228.9]103455, and probably a nearby active late-type star. EUVE J0725[004, slightly closer to 2E 0722.7[0020, is also identiÐed with 2RE J072513[002551, which Je†eries identiÐed as a K5]K5 binary with a 1.4 day period. EUVE J1147]050 and EUVE J1148[374 are also active M-type FIG. 5.ÈEUV E Lexan/B (100AŽ ) light curve of EUVE J2005]226 (QQ stars with RASS detections 1RXS J114738.0]050119 and Vul) folded on the 222.5 minute period. Bin size is 500 s (see text). 1RXS J114824.0[372838, respectively. We identiÐed 2480 CHRISTIAN ET AL.

FIG. 7.ÈEUV E light curves of EUVE J0008]208 (G 131[26). Top, FIG. 9.ÈEUV E light curves of EUVE J0202]105 (1RXS Lexan/B (100AŽ )A light curve; bottom, Al/C (200Ž ). Bin size is 5760 s (about J020228.9]103455). Details are the same as in Fig. 7. 1 EUV E orbit; see text).

EUVE J1334[083 with a well-known Ñare star EQ Vir. Last, EUVE J1953]444 is another late-type active M star (M5.5e) with corresponding RASS identiÐcation, 1RXS J195354.7]442454. We show selected Lexan and Al/C (where available) light curves of Ñare detections in Figures 7È18.

7. SUMMARY We have presented the detection of 235 extreme ultraviol- et sources, of which 169 are new detections using the Extreme Ultraviolet ExplorerÏs (EUV E) Right Angle Program (RAP). These observations covered the interval between 1994 January (end of Ðrst RAP catalog; McDonald et al. 1994) and 1998 November with a sky coverage of 17%. Our results include two new long-wavelength ([400 AŽ ) detections (EUVE J0001]276 and EUVE J2005]544). We also presented 47 serendipitous detections in the Deep FIG. 10.ÈEUV E Lexan (100AŽ ) light curve of EUVE J0213]368 Survey telescope, and 36 early-type stars whose detections (1RXS J021320.6]364837). Bin size is 5760 s.

FIG. 8.ÈEUV E light curves of EUVE J0016]198 (G32-7). Details are FIG. 11.ÈEUV E light curves of EUVE J0336]259 (V837 Tau). Details the same as in Fig. 7. are the same as in Fig. 7. FIG. 15.ÈEUV E Lexan (100AŽ ) light curve of EUVE J1148[374 (CCDM J11484[3729A/B). Details are the same as in Fig. 10. FIG. 12.ÈEUV E light curves of EUVE J0336]005 (V711 Tau). Details are the same as in Fig. 7.

FIG. 16.ÈEUV E light curves of EUVE J1334[083 (EQ Vir). Details IG [ [ F . 13.ÈEUV E light curves of EUVE J0725 004 (2E 0722.7 0020). are the same as in Fig. 7. Details are the same as in Fig. 7.

FIG. 14.ÈEUV E Lexan (100AŽ ) light curve of EUVE J1147]050 (RE FIG. 17.ÈEUV E Lexan (100AŽ ) light curve of EUVE J1808]297 (RX J114735]050109). Details are the same as in Fig. 10. J1808.2]2941). Details are the same as in Fig. 10. 2482 CHRISTIAN ET AL.

45% late-type stars, 8% white dwarfs, 6% extragalactic, 24% with no Ðrm classiÐcation (including 15% classiÐed as ““ X-ray ÏÏ), and 15% with no identiÐcation. We presented sample light curves, including the discovery of a 28.3 hr period from GD 394 and detections of stellar Ñares from approximately 12 sources. Flare detections include the fol- lowing new EUV E sources: EUVE J0008]208, J0016]198, J0202]105, J0213]368, J1148-374, J1808]297, and J1953]444.

This research was made possible by NASA Astrophysical Data Products grant NAG5-3470. The authors thank John Vallerga and Jean Dupuis for useful discussions about the EUV E instruments. This research has made use of the FIG. 18.ÈEUV E Lexan (100AŽ ) light curve of EUVE J1953]444 (G SIMBAD database, operated at CDS, Strasbourg, France, 208[45). Details are the same as in Fig. 10. the NASA/IPAC Extragalactic database (NED), which is operated by the Jet Propulsion Laboratory, California are the result of out-of-band pass emission but may be Institute of Technology, under contract with NASA, and interesting for Ðlter characterization, variability studies, or the High Energy Astrophysics Science Archive Research searching for hidden companions. The source distribution is Center (HEASARC), provided by NASAÏs Goddard Space similar to previous EUV catalogs with 2% early-type stars, Flight Center.

APPENDIX

OUT-OF-BANDPASS DETECTIONS

The EUV E Ðlters are known to be transparent to FUV and UV emission (McDonald et al. 1994; Vedder et al. 1993). We have included stellar detections earlier than type A0 in this appendix. These detections are potentially useful for (1) character- izing the EUV E Ðlters, (2) variability studies, and (3) possible detections of hidden EUV sources, like companion WD, as was the case for B5 star Y Pup (Vennes,BerghoŽ fer, & Christian 1997). We present 36 ““ out-of-bandpass ÏÏ (““ B-star ÏÏ) detections in Table A1 using the same format at Tables 2È4 in the main text. The only notable di†erence is that Table A1 includes both scanner and Deep Survey (DS) detections. Early-type stars (O and B) are generally easy to distinguish in detector images, as the result of their large irregular point-spread functions and occasional halos. McDonald et al. (1994) show that the Lexan Ðlter is transparent to radiation between 2300 and 2800AŽ but note no B stars were detected in the EUV E all-sky survey in the Al/Ti/C (““ Al/C ÏÏ) band. Almost 70% of the sources listed in Table A1 have strong Al/C detections. These detections are most likely from far-ultraviolet (FUV) photons (D900AŽ ) passing through microscopic pinholes in the Al/C Ðlter that developed in orbit resulting in a minimal gray transmission of less than 10~6 over all wavelengths (Vallerga et al. 1998). This gray Ðlter transmission combined with the quantum efficiency of the microchannel plate (MCP) detectors results in a strong sensitivity in the band between 900 and 1200AŽ . Therefore, strong FUV sources can have appreciable Al/C count rates (Vallerga et al 1993), and this explains the large Al/C count rates seen for many sources in Table A1. Electromagnetic radiation from bright FUV sources like O and B stars passing through the Ðlter micropinholes will fall on the MCP out of focus. This radiation can also be scattered and reÑected o† of Ðlter bars. Such sources can appear several arcminutes from the source true position. For these reasons we allow detections of brighter B stars up to several arcminutes from their optical positions. For example, we included bright B stars c Cas, g Cen, and HD 212571, which all have large angular separations, but there are no other bright nearby sources to account for this emission. TABLE A1 RAPBSTAR DATA

T [ Exposure Angular Time Lexana Al/Cb Separationd Name R.A. Decl. (ks) (counts ks~1) (counts ks~1) Q ID Name 1 ID Name 2 Typec Magnitude (arcsec) Notese (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

EUVE J0008]290 . . . 00 08 09.8 ]29 04 25.0 102 26 ^ 9 121 ^ 16 U HD 358 TD1 31 B8 IVmnp 2.06 180 OA EUVE J0032]069 . . . 00 32 21.4 ]06 55 58.8 36 \6 . . . U HD 2913 TD1 284 B9.5 5.67 87 1RXS EUVE J0057]607 . . . 00 57 07.6 ]60 46 34.3 26 232 ^ 14 672 ^ 24 U c Cas TD1 521 B0 IVe 2.3 283f OA EUVE J0239]003 . . . 02 39 19.7 ]00 19 06.6 74 . . . 466 ^ 23 U HD 16582 TD1 1564 B2 IV 4.07 142 EUVE J0437]009 . . . 04 37 03.4 ]00 59 26.2 15 7 ^ 3 . . . U HD 29335 TD1 3382 B7 V 5.3 156 EUVE J0501[071 . . . 05 01 28.2 [07 09 13.7 95 8 ^ 3 . . . U HD 32249 TD1 3881 B3 V 4.81 78 FB EUVE J0512[162 . . . 05 12 55.7 [16 13 28.6 22 \5 . . . U HD 33904 TD1 4224 B9 IV 3.31 70 FB, 2E, 1ES, 1RXS EUVE J0535[059 . . . 05 35 06.8 [05 54 15.5 48 488 ^ 18 19 ^ 7 U HD 37000 NGC 1977 552 B5 V 7.45 102 FB, 1WGA EUVE J0535[054 . . . 05 35 23.2 [05 24 28.4 34 15 ^ 434^ 6 U HD 37042 BD [05¡1320 B1 V 6.3 36 FB, 1RXS, 1WGA EUVE J0535[059 . . . 05 35 28.8 [05 54 51.1 34 44 ^ 6 306 ^ 20 U BD [06¡1241B ADS 4193 B B7 IV 7.0 38 1RXS, 1WGA EUVE J0535[059 . . . 05 35 57.1 [05 56 34.1 48 453 ^ 22 15 ^ 6 U AU Ori NGC 1977 927 ?e . . . 52 FB EUVE J0540[014 . . . 05 40 16.5 [01 27 55.4 94 \5 . . . U HD37674 BD [01¡1001 B3 Vn 7.67 47 DS EUVE J0540[019 . . . 05 40 48.2 [01 56 06.4 94 535 ^ 18 ... U f Ori A HD 37742 O9 Iab 1.7 44 DS, 1RXS EUVE J0540[011 . . . 05 40 53.7 [01 08 34.4 94 44 ^ 8 . . . U HD37756 TD1 532 B2 IV[V 4.95 68 DS EUVE J0540[015 . . . 05 40 58.0 [01 30 31.0 94 \5 . . . U HD 37776 TD1 5138 B2 IV 6.98 26 DS EUVE J0622[179 . . . 06 22 44.8 [17 59 29.8 20 296 ^ 18.3 1250 ^ 32 U b Cma HD 44743 B1 II/III 1.9 133 2EU, 2RE, 2E, 1RXS, 1WGA EUVE J0628[070 . . . 06 28 47.3 [07 02 22.6 83 . . . 50 ^ 8 U ADS 5107 ABC BD [06¡1574J B3 3.76 25 FB EUVE J0631[234 . . . 06 31 53.8 [23 25 09.5 20 122 ^ 10 37 ^ 8 U HD 46328 TD1 7390 B1 III 4.33 34 1RXS, 1WGA, L97 EUVE J0644[310 . . . 06 44 22.8 [31 04 48.7 38 17 ^ 430^ 5 U HD 48917 TD1 8028 B2 IIIe 5.20 87 PH EUVE J0649[324 . . . 06 49 49.6 [32 27 02.5 21 65 ^ 26 57 ^ 15 U HD 50013 TD1 8307 B1.5 IVne 3.9 209 OA EUVE J0702[042 . . . 07 02 51.9 [04 12 51.1 70 11 ^ 429^ 7 U HD 52918 TD1 8920 B1 V 4.99 100 EUVE J0714[102 . . . 07 14 36.7 [10 15 49.0 53 . . . 68 ^ 14 U YZC 11 2492 BD [10¡1935 B8 V 9.4 96 EUVE J1045]455 . . . 10 45 21.6 ]45 33 43.9 15 9 ^ 3 . . . U HD 93033 TD1 15098 B8 V 7.06 19 DS, 1RXS EUVE J1315[679 . . . 13 15 12.1 [67 56 26.9 82 \10 ... U g Mus HD114911 B8 V 4.80 168 EUVE J1347]492 . . . 13 47 38.4 ]49 15 42.8 33 . . . 525 ^ 19 U g UMa HD 120315 B3 V 1.86 78 EUVE J1349[424 . . . 13 49 47.4 [42 29 23.3 92 7 ^ 4 959 ^ 30 U k Cen HD 120324 B2 Vnpe 2.90 129 1WGA EUVE J1358[421 . . . 13 58 19.6 [42 06 15.1 92 64 ^ 8 . . . U HD 121743 TD1 17166 B2 IV 3.80 39 EUVE J1358[447 . . . 13 58 55.5 [44 46 50.2 92 . . . 261 ^ 19 U HD 121790 TD1 17169 B2 IVÈV 3.90 176 EUVE J1403[603 . . . 14 03 51.6 [60 21 51.1 25 460 ^ 24 19770 ^ 126 U b Cen HD 122451 B1 III 0.60 34 1RXS, 1WGA EUVE J1435[422 . . . 14 35 45.4 [42 14 12.1 121 374 ^ 19 82 ^ 9Ug Cen HD 127972 B1.5 Vne 2.3 330f OA EUVE J1441[378 . . . 14 41 59.9 [37 48 46.8 50 9 ^ 643^ 10 U HD 129116 TD1 17630 B3 V 4.00 76 EUVE J2006]235 . . . 20 06 56.1 ]23 33 10.1 98 . . . 28 ^ 14 U HD 190993 TD1 26062 B3 V 5.06 225 EUVE J2059]475 . . . 20 59 46.6 ]47 34 57.4 28 21 ^ 971^ 16 U HD 200120 TD1 27563 B1.5 Vnne 4.74 224 EUVE J2117]348 . . . 21 17 36.7 ]34 53 12.1 84 . . . 126 ^ 18 U HD 202904 TD1 27925 B2 Vne 4.43 226 OA EUVE J2204[268 . . . 22 04 42.7 [26 51 41.0 86 . . . 66 ^ 13 U HD 209522 TD1 28739 B4 IVne 5.90 163 OA EUVE J2225]013 . . . 22 25 43.0 ]01 22 24.6 76 25 ^ 11 89 ^ 14 U HD 212571 TD1 29057 B1 Ve 4.66 400f OA

a EUV E count rate in the Lexan/B band (see text for scanner or DS bandpasses). b EUV E count rate in the Al/C band (see text for scanner or DS bandpasses). c Spectral type where available from SIMBAD and literature. d Angular separation between the EUV E position and the identiÐed source. e As in Table 2 (see text). f Although angular separation is large, it is not unreasonable for an out-of-bandpass detection (see text). 2484 CHRISTIAN ET AL.

REFERENCES Bowyer, S., & Malina, R. F. 1991, in Extreme Ultraviolet Astronomy, ed. Malina, R. F., et al. 1994, AJ, 107, 751 R. F. Malina & S. Bowyer (Elmsford, N. Y.: Pergamon), 397 Margon, B., Malina, R., Bowyer, S., Cruddace, R., & Lampton, M. 1976, Bowyer, S., et al. 1996, ApJS, 102, 129 (Cat2) ApJ, 203, L25 Burleigh, M. R., Barstow, M. A., & Fleming, T. A. 1997, MNRAS, 287, 381 McDonald, K., et al. 1994, AJ, 108, 1843 Christian, D. J., Drake, J. J., & Mathioudakis, M. 1998, AJ, 115, 316 McDowell, J. 1994, CD-ROM Ser. I, 18È36, Einstein Observatory Soft Christian, D. J., & Vennes, S. 1999, AJ, 117, 1852 X-ray Source List (Cambridge: Smithsonian Astrophys. Obs.) (2E) Craig, N., Howell, S. B., Sirk, M. M., & Malina, R. F. 1996, ApJ, 457, L91 Osborne, J. P., Beuermann, K., Charles, P., Maraschi, L., Mukai, K., & Dressler, A. 1980, ApJS, 42, 565 Treves, A. 1987, ApJ, 315, L123 Dupuis, J., Chayer, P., Vennes, S., & Christian, D. J. 1999, in preparation Pounds, K. A., et al. 1993, MNRAS, 260, 77 Eggen, O. J. 1993, AJ, 106, 1885 Pye, J. P., et al. 1995, MNRAS, 274, 1165 Elvis, M., Plummer D., Schachter J., & Fabbiano, G. 1992, ApJS, 80, 257 Radecke, H. D. 1997, A&A, 319, 18 (1ES) Sirk, M., Vallerga, J. V., Finley, D. S., Jelinsky, P., & Malina, R. F. 1997, Fleming, T. A. 1998, ApJ, 504, 461 ApJS, 110, 347 Fruscione, A. 1996, ApJ, 459, 509 Smith, E. P., et al. 1996, ApJS, 104, 287 ÈÈÈ. 1998, Adv. Space Res., 21, 83 Vallerga, J. V., Roberts, B., Dupuis, J., & Jelinsky, P. 1998, Proc. SPIE, Halpern, J. P., Leighly, K. M., Marshall, H. L., Eracleous, M., & Storchi- 3356, 1001 Bergmann, T. 1998, PASP, 110, 1394 Vallerga, J. V., Siegmund, O. H. W., & Vedder, P. W. 1993, Proc. SPIE, Helou, G., Madore, B. F., Schmitz, M., Wu, X., Corwin, H. G., Jr., LaGue, 742, 392 C., Bennett, J., & Sun, H. 1995, in Information and On-Line Data in Vedder, P. W., Vallerga, J. V., Gibson, J. L., Stock, J., & Siegmund, O. H. Astronomy, ed. D. Egret & M. A. Albrecht (Dordrecht: Kluwer), 95 W. 1993, Proc. SPIE, 1742, 486 Howell, S. B., Sirk, M. M., & Malina, R. F. 1995, ApJ, 439, 991 Vennes, S.,BerghoŽ fer, T. W., & Christian, D. J. 1997, ApJ, 491, L85 Je†eries, R. D., Bertram, D., & Spurgeon, B. R. 1995, MNRAS, 267, 387 Voges, W., et al. 1996, IAU Circular 6420 (1RXS) Jensen, E. L. N., Cohen, D. H., & Neuhauser, H. 1998, AJ, 116, 414 Warren, J., Sirk, M. M., & Vallerga, J. V. 1995, ApJ, 445, 909 Kilkenny, K. 1984, MNRAS, 211, 969 Welsh, B. Y., Craig, N., Vedder, P. W., & Vallerga, J. V. 1994, ApJ, 437, 638 Lampton, M., Lieu, R., Schmitt, J. H. M. M., Bowyer, S., Voges, W., Lewis, White, N. E., Giommi, P., & Angelini, L. 1995, IAU Circ. 6100 J., & Wu, X. 1997, ApJS, 108, 545 (L97) Wroblewski, H., & Torres, C. 1991, A&AS, 91, 129 Lampton, M., Margon, B., Paresce, F., Stern, R., & Bowyer, S. 1976, ApJ, ÈÈÈ. 1996, A&AS, 115, 481 203, L71